
RAPID COMMUNICATIONS

PHYSICAL REVIEW B 86, 020505(R) (2012)

Geometric phases of d-wave vortices in a model of lattice fermions
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We study the local and topological features of Berry phases associated with the adiabatic transport of vortices
in a d-wave superconductor of lattice fermions. At half filling, where the local Berry curvature must vanish due
to symmetries, the phase associated with the exchange of two vortices is found to vanish as well, implying that
vortices behave as bosons. Away from half filling, and in the limit where the magnetic length is large compared to
the lattice constant, the local Berry curvature gives rise to an intricate flux pattern within the large magnetic unit
cell. This renders the Berry phase associated with an exchange of two vortices highly path dependent. However,
it is shown that “statistical” fluxes attached to the vortex positions are still absent. Despite the complicated profile
of the Berry curvature away from half filling, we show that the average flux density associated with this curvature
is tied to the average particle density. This is familiar from dual theories of bosonic systems, even though in the
present case, the underlying particles are fermions.
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Introduction. A phenomenology based on a BCS-like
pairing state with d-wave symmetry has led to considerable
success in understanding the properties of quasiparticles in
high-Tc superconducting cuprates. This includes the mixed
state of these systems, where a magnetic field Hc1 < H < Hc2

is applied and leads to the presence of an Abrikosov vortex
lattice. Effective models1–15 have been developed that describe
the dynamics of the quasiparticles under the simultaneous
influence of magnetic field, the supercurrent flow due to the
vortices, and in some cases the underlying microscopic lattice.
The vortices of the mixed state are usually assumed to be static,
i.e., frozen into the Abrikosov lattice. However, it has been
argued16 that both as a result of the small coherence length ξ ,
and possibly the proximity to an insulating state, fluctuations of
vortices may play a fundamental role. Moreover, at sufficiently
high magnetic fields below Hc2 , it has been predicted that
thermal and/or quantum fluctuations may melt the vortex
lattice or glass, leading to a “vortex liquid” regime.17 For
all these reasons, it is desirable to construct effective theories
that include the vortices as fundamental dynamical degrees
of freedom.18 Such a construction is readily available in
systems where the constituent particles are bosons, through
the well-known Kramers-Wannier duality.19 In Fermi systems,
however, the vortex degrees of freedom only exist as dual
partners of bosonic Cooper pairs that are themselves emergent
particles. This arguably complicates the task of passing directly
from a microscopic description in terms of electrons to an
effective theory in terms of vortices, requiring more ad hoc
assumptions. Such effective theories have been previously
discussed in a continuum formalism.16 In this Rapid Com-
munication, we aim to establish some key parameters of these
theories in a microscopic lattice model. This is similar in spirit,
but physically different, from earlier considerations for bosons
in the absence of a lattice.20 These defining parameters include
the quantum curvature felt by the vortices in the condensate,
that is, the effective magnetic field experienced by them,
and their mutual statistics. Specifically in the d-wave pairing
case, where the continuum description of vortices is somewhat
plagued by subtleties concerning self-adjoint extensions,8 our

microscopic starting point also serves as lattice regularization,4

which allows for a controlled study of the desired universal
properties.

Model description. We will study the Berry phases21 of
vortices in the BCS-Hofstadter model, which has been used
previously as a microscopic description of the mixed state in
the cuprates:5

H =
∑
〈rr′〉

[
− trr′c†rσ cr′σ ′ + �rr′

2
(c†r↓c

†
r′↑

+ c
†
r′↓c

†
r↑) + H.c.

]
− μN. (1)

In the above, the sum 〈rr′〉 is over the nearest neighbors,
and the hopping terms are just those of the Hofstadter
model, to be described below. The corresponding uniform
magnetic flux through the plaquettes of the lattice mirrors
the fact that the penetration depth is much larger than the
coherence length, as befits a type II superconductor. Assuming
symmetric gauge A(r) = (−y/2,x/2)�, where � the mag-
netic flux per plaquette, the hopping amplitude assumes the
form

trr′ = t e−i
∫ r′

r A·dl, (2)

where r refers to the discrete sites of the lattice. The d-wave
paring term is defined as

�rr′ = ηr−r′�0,rr′eiθrr′ , (3)

ηr−r′ = +/ − if (r − r′) ‖ x̂/ŷ. (4)

Here, ηr−r′ encodes the d-wave symmetry. �0,rr′ is essentially
constant, except for a suppression of amplitude near the vortex
core. We follow Ref. 6 in defining the pairing phase factor
eθrr′ via

eiθrr′ ≡ eiφ(r) + eiφ(r′)

| eiφ(r) + eiφ(r′) | , (5)
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i.e., as a link-centered average of a field φ(r) that satisfies the
following continuum equations,

∇ × ∇φ(r) = 2πẑ
∑

i

δ(r − ri), (6a)

∇ · ∇φ(r) = 0, (6b)

where the ri denote the vortex positions, which can take on
continuous values. The total number of vortices nV is equal
to the number of half flux-quanta �0, lx ly� = nV �0, where
�0 = π in natural units, and lx ,ly are the number of unit cells
in the x and y direction, respectively. Equation (6) can be
solved9 via

φ(r) =
∑

i

{arg[σ (z − zi,ω,ω′)]

+ 2γ (x − xi)(y − yi) + v0 · r}, (7)

where σ (z,ω,ω′) is the Weierstrass sigma function with half
periods ω = lx/2, ω′ = ily/2, z = x + iy, and the sum is over
vortex positions. Integration constants v0 = 2

∑
i A(ri) and

γ = π
2lx ly

− η

lx
have been chosen such that the superfluid ve-

locity vS = ∇φ/2 − A satisfies periodic boundary conditions,
and averages to zero over the magnetic unit cell,6 and η = ζ (ω)
is pure imaginary, with ζ the Weierstrass zeta function.

The pairing phase factor eiθrr′ in Eq. (5) is ill defined when
the denominator goes to 0. This is unacceptable since we mean
to continuously change vortex coordinates in the following. To
remove this singularity, we define �0,rr′ as

�0,rr′ ≡ �0

[
1 − exp

(
− |eiφ(r) + eiφ(r′)|

ξ

)]
, (8)

where �0 and ξ are constant parameters. This leads to a
suppression of pairing amplitude on links near the vortex,
hence ξ may be thought of as a core radius.

We further impose periodic magnetic boundary conditions
on our model as follows:

cr = T lx
x cr(T †

x )lx = T
ly
y cr(T †

y )ly , (9)

TRcrT
†

R = cr+Rei
∫ r+R

r A·dl+iR×r�. (10)

In the above, the magnetic translation operators Tx and Ty are
defined by letting R = x̂ or ŷ. We note that with the boundary
conditions (9) imposed on electron operators, the physics is
also periodic in the vortex positions ri . That is, one may
see that the formal replacements ri → ri + lx x̂, ri → ri + ly ŷ

affect the Hamiltonian by a unitary transformation, as given
explicitly below. In particular, the quasiparticle spectrum is
invariant under such replacements.

Calculation of the Berry phase. In the following, we will
consider the model Eqs. (1)–(9) as a function of vortex
positions {ri}. We note that the simultaneous presence of
the magnetic field and the discrete ionic lattice generically
opens up a gap in the quasiparticle spectrum of the d-wave
superconductor, except for special vortex configurations that
respect inversion symmetry.10 The Berry phase associated with
the motion of vortices is thus well defined. We further remark
that the model defined above is traditionally studied by means
of a singular gauge transformation,2 that, on average, removes
the magnetic field. This is inconvenient for present purposes,

since the precise transformation depends on vortex positions,
and the Berry phase is clearly not invariant under unitary
transformations that vary along the particular path in question.
We thus need to stay within the present framework of magnetic
translations and associated boundary conditions.

To study the Berry phases associated with the motion of
vortices, we first note that within our model the vortex positions
are well-defined continuous parameters that are, at least for
large enough lattice, entirely encoded in the pairing amplitudes
�rr′ . The Berry phase associated with vortex motion along
closed paths may be computed via

eiγ ≈ 〈�1|�m〉 · . . . · 〈�3|�2〉 · 〈�2|�1〉, (11)

where the |�i〉 are the ground states of the system along
a reasonably fine discretization of the path. The above
formula has the advantage (over the standard integral formula)
that a random, discontinuous phase that each |�i〉 acquires
in numerical diagonalization automatically cancels. Each
ground state is constructed as the vacuum of Bogoliubov
operators

γn↑ =
∑

r

[u∗
n(r)cr↑ − v∗

n(r)c†r↓], (12)

γn↓ =
∑

r

[u∗
n(r)cr↓ + v∗

n(r)c†r↑], (13)

where the matrices Urn = un(r), Vrn = vn(r), satisfy
Bogoliubov–de Gennes equations(

−t − μ −�

−�∗ t∗ + μ

) (
U

−V

)
= En

(
U

−V

)
(14)

for non-negative eigenvalues En. It is clear from Eq. (12) that
the state |0̃〉 = ∏

r c
†
r↓|0〉 is a vacuum of both the operators γn↑

and γ
†
n↓, where |0〉 is the vacuum of the crσ operators. The

ground state of the Hamiltonian thus can be constructed as

|�〉 =
∏
n

γn↓|0̃〉. (15)

Using this last relation, and the inverse of Eq. (12), one readily
obtains

〈�i |�j 〉 = det(UiU
†
j + ViV

†
j ). (16)

Results. We first consider the important special case of
Eq. (1) with μ = 0, or half filling. In this case the Hamiltonian
is invariant under the antiunitary charge conjugation operator
defined via CcrσC = (−1)rc

†
rσ , and the unique ground state |�〉

is then invariant under C as well (up to a phase that can be made
trivial). It then follows directly from Eq. (11) that eiγ = ±1.
The first immediate conclusion from this is that as long as
vortices are moved along contractible paths, the Berry phase
must be +1 for continuity reasons. If vortices were hard-core
particles, this would, in principle, still leave the possibility
of fermionic statistics. However, careful examination shows
that the Hamiltonian can be analytically continued without
difficulty into configurations were two vortices fuse into a
double vortex at a given location. Exchange paths are thus
contractible, and hence vortices must satisfy bosonic statistics.
We have tested this for various lattice sizes and exchange
paths. The model does, however, become singular when vortex
positions are formally approaching lattice sites [see Eq. (7)].
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It is thus possible that lattice sites carry an effective π flux felt
by vortices encircling such sites. We have carefully checked
that this is not the case in our model. Hence at half filling, all
Berry phases are unity. The above observations also hold for
the s-wave case.

The observation that vortices are bosonic is nontrivial, since
time reversal symmetry is absent, and hence generically in two
spatial dimensions even non-Abelian statistics are possible,
as is the case if the pairing symmetry is p + ip.22 Indeed,
when we move away from half filling, there is no longer any
symmetry that requires the Berry phase to be trivial. We will
now show that this situation leads to a very intricate landscape
of nontrivial quantum curvature.

The Berry curvature is defined as the Berry phase around
an infinitesimal area, divided by the size of this area. In the
following, we consider a lattice containing only two vortices in
the presence of the periodic boundary condition. One vortex
remains fixed, while for any point within the unit cell, we
calculate the Berry curvature associated with the motion of the
other vortex according to Eq. (11). The Berry phase around
arbitrary loops can be obtained as the integral of the Berry
curvature over the enclosed area. The result for a 12 × 10
lattice at μ = 0.05 is presented in Fig. 1(a). It is apparent
that the Berry curvature in this model is a highly nontrivial
function of position for any μ �= 0. One observes that the
curvature is conspicuously concentrated on the links and the
sites of the lattice, even though the vortex positions themselves
are formally not tied to the discrete lattice. Singular structures
form in particular around the lattice sites. These are described
by B(r) ∼ aiδ(r − ri) + fi(θ )/r , where B(r) is the curvature,
and θ ,r refer to polar coordinates with the lattice site ri at
the origin. The parameters ai and the functions fi depend
sensitively on details such as the lattice size, μ, the site index
i, and the position of the other, fixed vortex. Yet another
interesting feature is the structure seen in the vicinity of the
fixed vortex, which is somewhat reminiscent of the shape of
a dx2−y2 orbital. However, this structure does not seem to
be reflective of by the pairing symmetry, but rather more the
lattice symmetry, as similar calculations for the s-wave case
show. We note that again no singularity indicative of a flux tube
carried by the fixed vortex appears in Fig. 1(b) at the position
of this vortex. This implies that we should still think of these
vortices as bosons, which move in an effective background
magnetic field.

The complex nature of these features and the strong
sensitivity on model parameters are likely yet another facet
of the fractal nature of the physics of the Hofstadter model. To
wit, in view of the fractal nature of the wave-vector dependence
of spectral features of the Hofstadter model, it is reasonable
to expect that the response to a spatially inhomogeneous
perturbation (coupling to many different wave vectors) is
characterized by complicated and possibly chaotic spatial
modulations. The addition of a pairing order parameter with
vortices clearly represents such a perturbation. Here we are
mostly interested in how to reconcile the complex features
seen at μ �= 0 with the trivial ones seen at μ = 0. It is clear
that our ability to precisely define the vortex position on scales
below the lattice constant is dependent on conventions, even
though in the present case a natural convention is available,
since our ground states are naturally parametrized by the
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FIG. 1. (Color online) Berry curvature for 12 × 10 lattice in the
presence of two vortices, for μ = 0.05. The calculated curvature at
a given location is associated with the motion of one of the vortices
at this location, while the position of other vortex is held fixed.
(a) Three-dimensional (3D) view of the Berry curvature in the vicinity
of one plaquette. Lattice sites and links are clearly visible, since
the curvature is chiefly concentrated on the latter, with singularities
at the sites. The remaining space within the plaquettes is nearly
flat. (b) Top view of the lattice. The position of the fixed vortex
is noted by an asterisk. No singularity is present at this position.
However, an interesting structure reminiscent of the shape of a dx2−y2

orbital appears in the vicinity. (c) 3D view of the entire lattice.
Detailed features appear highly irregular, except for the fact that
the curvature is everywhere concentrated on the sites and the links of
the lattice, and on the structure seen around the position of the fixed
vortex.

vortex positions in the continuum field (6) used to define
the Hamiltonian. We have, however, tested the robustness of
the qualitative features shown in Fig. 1 by varying the precise
form of the pairing order parameter Eq. (3). In particular, we
have varied the core parameter ξ in Eq. (8), and tested various
alternative forms for Eq. (5). We also introduced variations in
the boundary conditions described above. In all cases we found
that the qualitative features of the Berry curvature remained
unaltered. Although we believe that the curvature landscape of
Fig. 1(c) is interesting in its own right, it is appropriate to make
this landscape subject to some coarse graining procedure. It
is interesting to ask whether such coarse graining leads to a
recovery of one of the basic facts suggested by conventional
wisdom about vortex-boson duality, namely, that the curvature
discussed above is directly tied to particle (here, Cooper-pair)
density. We will show in the following that this statement
is recovered when the Berry curvature is averaged over the
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magnetic unit cell (as opposed to the, typically much smaller,
lattice unit cell). To this end, we again consider a lattice
containing only two vortices within a single magnetic unit
cell, subject to the boundary conditions (9).

Let the coordinates of the “moving” vortex be r = (x,y).
As remarked initially, a formal shift of x by lx changes
the Hamiltonian by a gauge transformation. We have H →
U

†
xHUx with Ux = eiπ(1−y/ly )N̂/2, where N̂ is the particle

number operator. Analogous relations hold for y → y + ly ,
with Uy = eiπ(1+x/lx )N̂/2. We now calculate the Berry phase
associated with a rectangular path of dimensions lx ,ly around
the lattice. We may then choose a ground state phase
convention |�(r)〉 along the path satisfying

|�(r + ly ŷ)〉 = U †
y |�(r)〉,

(17)
|�(r + lx x̂)〉 = U †

x |�(r)〉,
along the horizontal and vertical path segments, respectively.
The consistency of Eq. (17) with the continuity of |�(r)〉 along
the path follows from the observation that for any ground state,
U

†
yU

†
xUyUx |�〉 = |�〉. The latter holds because U

†
yU

†
xUyUx =

exp(iπN̂ ) and because the ground state Eq. (15) always has
even particle number parity. We determine the Berry phase for
the rectangular path as the integral over the Berry connection,
〈�(r)|∇|�(r)〉, where we observe that

〈�(r + lx x̂)|∇|�(r + lx x̂)〉

= 〈�(r)|Ux∇U †
x |�(r)〉

= 〈�(r)|∇|�(r)〉 + iπ

2ly
〈N̂〉ŷ. (18)

It is clear that only the last term survives a cancellation
between the vertical path segments, giving iπ〈N̂〉/2. The same
contribution is obtained from the horizontal segment. We thus
obtain γ = π〈N̂〉, or 2π times the number of Cooper pairs in
the system, in agreement with general expectations based on
duality arguments applied to Cooper pairs.16 It is worth noting
that the quantity γ , when expressed as an integral of the Berry
curvature over the entire lattice, is formally reminiscent of a

Chern number. It is not truly a Chern number, though, since
the boundary conditions (17) do not quite allow one to make
contact with one-dimensional vector bundles over the torus.
Indeed, γ is not quantized, as 〈N̂〉 may take on arbitrary values
in [0,2lx ly]. We note that the derivation above is independent
of the pairing symmetry.

Conclusion. The present study establishes several aspects of
Berry phases associated with vortex motion in a microscopic
model of superconducting lattice fermions. It is shown that
these vortices behave as bosons which, away from half filling,
are subject to a nontrivial effective magnetic field. In an
average sense, it has been shown that this effective field is
tied to the density of Cooper pairs. This is expected based
on boson-vortex duality, and was seen to emerge here in a
microscopic model of fermions. We emphasize that the simple
relation between Cooper-pair density and effective field is
only seen to emerge after averaging over a magnetic unit
cell. This may be used to justify a direct proportionality
between Cooper-pair density and Berry curvature in the long
wavelength effective theory. However, our results also indicate
that care must be used in order to justify such a relationship in
general. On the one hand, this is true because of the relatively
large nonuniformity of the observed Berry curvature within
the magnetic unit cell. Moreover, in the presence of particle
hole symmetry we have found that the Berry phase associated
with closed paths is always zero, and thus corresponds to
π times the average enclosed particle number only for such
paths that happen to enclose an even number of lattice sites.
In this case, the background field appearing in the effective
theory should clearly be zero, and should not follow the
total Cooper-pair density. This result will be robust to small
perturbations respecting particle hole symmetry, and is thus
true for a wide class of microscopic models. We conjecture
that the complex landscape of the Berry curvature away
from half filling is a facet of the fractal properties of the
Hofstadter model, and believe that it is worthy of further
investigation.
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