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First-principles modeling of temperature- and concentration-dependent solubility
in the phase-separating alloy FexCu1−x
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We present a cluster expansion (CE) approach for the first-principles modeling of temperature and
concentration-dependent alloy properties. While the standard CE method includes temperature effects only via
the configurational entropy in Monte Carlo simulations, our strategy also covers the first-principles free energies
of lattice vibrations. To this end, the effective cluster interactions of the CE have been rendered genuinely
temperature dependent, so that they can include the vibrational free energies of the input structures. As a model
system, we use the phase-separating alloy Fe-Cu with our focus on the Fe-rich side. There, the solubility is
derived from Monte Carlo simulations, whose precision had to be increased by averaging multiple CEs. We
show that including the vibrational free energy is absolutely vital for the correct first-principles prediction of Cu
solubility in the bcc Fe matrix: the solubility tremendously increases and is now in quantitative agreement with
experimental findings.
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First-principles modeling of phase stabilities of alloys is of
scientific and technological importance. A major progress for-
ward was made by the cluster expansion (CE) that is based on
an Ising-like concept.1–4 The power of CE consists in modeling
concentration-dependent properties of coherent alloy phases
based on first-principles input information. For a system,
the energy ECE(σ ) for a particular atomic configuration σ

with N atoms is expanded in terms of hierarchical atomic
arrangements such as points, pairs, triangles, and higher-order
objects. Those arrangements are called figures f, and the
selected figure set is denoted by F . The CE then reads

ECE(σ ) = N
∑

f∈F
DfJf�f(σ ), (1)

in which the geometrically determined correlations �f(σ )
and the symmetry degeneracy Df are known for the given
underlying parental crystal lattice. The unknown effective
cluster interaction energies (ECIs) Jf , which are independent of
σ , have to be extracted from some suitable input information,
such as a set of density functional theory (DFT) structures,
which are denoted by σ ∈ input. For those ordered structures
the DFT calculations provide the ground-state total energies
E0,DFT(σ ). Fitting the CE to the DFT results determines the
unknown Jf . This is performed by a least-squares minimization
of the residuals,5 which in a simplified formulation3,4 reads

∑

σ∈input

|ECE(σ ) − E0,DFT(σ )|2 → min. (2)

The fit is validated by a (leave one out) cross validation score
(CVS),6 which in turn drives a genetic algorithm (GA) in
order to select the optimal figure set F for the given input.4,7,8

Additional input is provided until the CE is converged in a self-
consistent way. If the CE in Eq. (1) converges reasonably fast
and the fit in Eq. (2) is sufficiently accurate then DFT accuracy
can be carried over to a configuration space much larger than
the one defined by the DFT input. Finally, the combination of
CE with Monte Carlo (MC) simulations allows a temperature-
dependent treatment of phase stabilities and related properties
for a very large number of interacting atoms.9

So far, the temperature only entered via the configurational
entropy modeled by the MC simulation; other temperature-
dependent contributions were left out, e.g., the important
vibrational free energies. In the following paragraphs, the
present study will include the contributions from lattice
vibrations and will demonstrate their strong influence on the
phase stability. Without the inclusion of vibrational effects, in
general, wrong phase transition temperatures are derived, see,
e.g., Ref. 17.

Formally, it is obvious that the CE becomes temperature
dependent when the ECIs become temperature dependent:
Jf → Jf (T ). This is the result when the ECIs in Eq. (2)
are fitted to temperature-dependent input energies. In the
present case, those are obtained by summing the temperature-
dependent vibrational free energy Fvib,DFT(σ,T ) to the ground-
state total energy,

EDFT(σ,T ) = E0,DFT(σ ) + Fvib,DFT(σ,T ) , (3)

in which E0,DFT(σ ) is the outcome of a standard DFT
calculation strictly valid only at T = 0 K. The label “DFT”
for Fvib,DFT(σ,T ) indicates that it can be derived by the same
DFT approach and accuracy as used for the total energy (see
below for details). Other temperature-dependent properties
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may be included by adding the corresponding temperature-
dependent terms, such as the magnetic ordering energy.
However, such contributions are not included in the present
study and—regarding the magnetic ordering—we assume
perfect ferromagnetic ordering in terms of spin polarization.
In order to include these temperature-dependent effects, the
CE is rewritten as

ECE(σ ) → ECE(σ,T ) = N
∑

f∈F(T )

DfJf (T )�f(σ ). (4)

Note that the optimal set of figures has also become tempera-
ture dependent: F → F (T ).

In the following, we will perform and discuss the
temperature-dependent form of the CE where the additionally
included vibrational free energy is, in general, important for
the phase stability of alloys and compounds.10–12 For this
purpose, the phase separating binary Fe1−xCux alloy system
at the Fe-rich side of the phase diagram is considered.13 For
such a system, the application of CE needs particular care
because no ground state line of ordered compounds exists,
i.e., all formation energies are positive. Furthermore, besides
the technological interest of hardening steel by alloying Fe
with Cu, a previous study based on isolated single-atom and
pairwise defects indicated that vibrational free energies are
indeed influential on the solubility of Cu in an Fe matrix.14

Including vibrational contributions to CE has been previously
discussed15 and applied in very few cases.16,17 The actual
procedure, how to include the vibrational free energy is not
unique. In the present work, an approach is presented which—
in combination with an accurate procedure for deriving the
phonon spectra—can be used in a convenient way for doing a
CE and subsequent MC calculations.

The DFT calculations for the total energies were done by the
Vienna ab initio simulation package (VASP) with the pseudopo-
tential construction according to the projector augmented wave
method.18–20 The exchange-correlation functional was treated
within the generalized gradient approximation as parametrized
by Perdew, Burke, and Ernzerhof.21 All calculations were
done spin polarized assuming ferromagnetic ordering of the
Fe atoms. Very good convergency of total energies and
forces with respect to energy cutoffs, �k-point integration
and residual forces (less than 10−4 eV/Å) per atom) was
ensured. Accurate forces from sufficiently large supercells
were derived for calculating the phonon spectra and vibrational
free energies by a direct force-constant method within the
harmonic approximation as implemented in our program
package FPHON, which is an extension for general symmetries
to PHON.22

All the CE and DFT calculations were made for Fe-Cu
alloys with a bcc parental lattice, since the main interest is
in the Fe-rich part of the phase diagram below the ferrite to
austenite transition. For pure Cu, also the fcc ground state total
energy was calculated as a reference. For the CE, our universal
cluster expansion (UNCLE) program package4 was applied.

Initially, a standard CE for a bcc parental lattice was made
utilizing only the DFT total energies for T = 0 K. The results
in Fig. 1 reveal that no stable binary phase for any composition
exists, as it is expressed by the positive formation energies.
As expected,13,14 the configurations with the lowest formation
enthalpies (and the form of the ground-state line) correspond

FIG. 1. (Color online) Enthalpy of formation derived from
ECE/DFT(σ,T ). DFT input values (various symbols) and CE predic-
tions (black crosses) are compared. For the phonon calculations of
each structure the percentage of imaginary frequencies is indicated.
The random mixing energies are shown for T = 0 K (standard CE,
black dashed curve) and for T = 1200 K (CE with vibrational free
energy; blue/dark gray dashed curve).

to phase separating atomic arrangements, which consist of
slabs of pure Cu and Fe. In total, an input DFT set of 51
configurations up to eight-atoms large was taken into account
resulting in a CVS of 3.7 meV/atom at T = 0 K. The input
set includes the energetically favorable structures as well as
configurationally excited states in order to get reliable MC
results, cf. Ref. 23. In Fig. 1, we let the CE predict the
formation enthalpies of all 631 configurations σ with unit cells
up to eight-atoms large.24 The random mixing energy shown in
Fig. 1 for T = 0 K (no vibrational free energy included) agrees
well with the result of Liu et al..25 With increasing temperature
(i.e., including Fvib,DFT(σ,T ) in the CE) the random energy is
lowered and its maximum shifts to higher Cu concentrations,
as shown in Fig. 1 for T = 1200 K.

Including now Fvib,DFT(σ,T ) for all 51 structures, Fig-
ure 1 reveals that a considerable number of configurations
have phonon spectra with imaginary frequencies, which
indicates dynamical instability. Since all configurations are
not thermodynamically stable anyway (they have positive
formation enthalpies), this is not surprising. Anharmonic
coupling of phonon modes might possibly stabilize some of
the phonon modes,26 but taking into account such a coupling
is forbiddingly expensive. Therefore the usual assumption of
neglecting non-vibrating modes in the vibrational free energy
is made.

According to Eq. (4), different temperatures yield different
F (T ). However, one finds that the temperature dependence of
the solubility is not as smooth a function of the temperature
as expected, when only one single CE is considered for each
temperature. This is a direct effect of the stochastic GA4,7

selecting the figure setF (T ), and it can indeed be likened to that
kind of arbitrariness that enters even at a single temperature:
n different runs of the GA yield n different Fi(T ). All of
them are equally capable to map the input data onto the
CE [see Eq. (4)] but yield slightly different results in MC
simulations. For the usual CE applications, this does not pose a
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FIG. 2. (Color online) Cross section through the 50 × 50 × 50
Monte Carlo simulation cell (Fe atoms: black, Cu: red/gray). The
initial setup of pure Cu and Fe blocks as shown on the left panel is
brought into thermodynamical equilibrium for a fixed temperature
(right part). The volume in the Fe block in which the dissolved Cu
atoms are counted, is indicated by two green borders, which are three
layers away from the interface. This ensures that no Cu atom of the
Cu slab is erroneously counted as dissolved. The rightmost panel
demonstrates the concentration of dissolved Cu solubility per layer
with and without Fvib,DFT(T ). CE and MC calculations were made for
the merged figure set using averaged ECIs (see text).

problem: the precision needed for MC simulations with respect
to concentration is not as strict as needed here for the Cu
solubility in Fe (<1 at.%), because the overall solubility is
so low that even minor deviations result in a large relative
error in predictions, as we will see later on. In our case, we
need a strategy that allows us both to find the expected smooth
behavior of the solubility and to increase the precision of the
prediction.

We provide the following solution: an averaging proce-
dure either of the results (i.e., the solubilities) or—more
physically—of the CEs themselves. For each temperature,
n = 10 different CEs were constructed, with correspond-
ing temperature-dependent figure sets Fi(T ) and energies
ECE,i(σ,T ). For each CE i, a separate MC run was performed,
where the simulation took place in a 50 × 50 × 50 supercell,
starting with the phase-separated system by dividing the MC
cell into blocks of pure Fe and Cu (see Fig. 2).

Regarding the equilibrium solubility, this symmetric dis-
tribution of Cu and Fe ensures a proper description of bulk
properties. After the initial setup of the cell, we allow for an
exchange of atoms between the two slabs using the Metropolis
algorithm. Having reached thermal equilibrium at a given
temperature, the solubility—i.e., the equilibrium concentration
xs(Fi(T )) of dissolved Cu which depends slightly on the figure
set Fi(T ) used—is determined by counting the dissolved Cu
atoms in bulk Fe as sketched in Fig. 2. For the different
CEs, the solubility scatters around the averaged value x̄s(Fi) =∑n

i=1 xs(Fi)/n. Table I shows in the column x̄s(Fi(T )) that the
fluctuations become sizable at elevated temperatures because a
high precision of the CE is needed to determine the Cu solubil-
ity at rather dilute concentrations. Therefore small fluctuations
of the CE have a significant impact on the solubility.

Instead of running one MC simulation for each of the n

CEs, the averaging scheme can also be applied to the CE
sums. We note that averaging the results—i.e., determining
x̄s(Fi(T ))—is indeed different from averaging the CEs. The n

single CEs [all with their own Fi(T ) and, consequently, their

TABLE I. Results of 10 temperature-dependent CE + MC runs
and of one CE + MC with the merged figure set (see text). Nf is the
number of figures in the merged figure set F̄(T ) [see Eq. (5)]. The last
two columns show the Cu solubility as an average value x̄s(Fi(T )) of
ten separate MC runs and as derived from averaged ECIs xs(F̄(T ))
[see Eq. (5)].

T x̄s(Fi(T )) xs(F̄(T ))
[K] Nf Cu at.% Cu at.%

no Fvib,DFT(T ): 1150 137 0.19 ± 0.04 0.18

with Fvib,DFT(T ): 850 130 0.08 ± 0.03 0.06
1000 125 0.46 ± 0.10 0.43
1150 118 1.58 ± 0.23 1.58

own ECIs] are averaged:

ĒCE(σ,T ) = 1

n

n∑

i=1

ECE,i(σ,T ) =: N
∑

f∈F̄(T )

Df J̄f(T )�f(σ ) .

(5)
On the right-hand side, we introduced the merged figure
set F̄(T ) = F1(T ) ∪ · · · ∪ Fn(T ) with its corresponding
temperature dependent averaged ECIs J̄f(T ). Obviously, F̄(T )
will comprise a larger number of figures (more than 100 in
the present case, see Table I) than any individual CE (about
40 in the present case). It should be noted that the value of
the ECIs J̄f(T ) is not the result of the CE fitting procedure in
Eq. (2) but of the described merging after the fitting, thus no
overfitting occurs.

FIG. 3. (Color online) Phase boundaries of Fe-rich Fe1−xCux

alloys. First-principles results of 10 CEs and one MC without
(triangles, red/gray line) and with vibrational free energies, utilizing
temperature-dependent ECIs (diamonds, red/gray line) and merged
figure sets. Shown are results averaged over ten corresponding MCs
(dark red/dark gray circles, dotted line) including error bars and
results of a first-principles calculation with single atom and pairwise
Cu defects (blue/dark gray dashed line).14 Semiempirical CALPHAD

data13 are indicated as a solid black line.
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FIG. 4. (Color online) Distribution of Cu cluster sizes given as
percentage of the total number of dissolved Cu atoms for the point-
defect model14 (blue/dark gray bars) and the temperature-dependent
CE + MC calculation (red/gray bars) with the merged figure set
strategy (see text).

Table I compares the Cu solubilities averaged over n =
10 MC runs with the result xs(F̄(T )) of one MC run using the
merged figure set F̄ (T ) and the averaged ECIs of Eq. (5). While
both values agree very well within the error bars of x̄s(Fi(T )),
it is clear that the two approaches do not yield absolutely the
same results, as already pointed out.

Figure 3 presents the phase boundaries at the Fe-rich side.
By comparing the results without and with contributions from
the vibrational free energies the very striking difference is
obvious: without Fvib,DFT(σ,T ) the solubility is much too small
compared to semiempirical CALPHAD data.13 Obviously, vibra-
tional entropies are responsible for this effect. A comparison of
the CE + MC derived phase boundaries to the isolated defect
model14 reveals a perfect agreement at lower temperatures. But

at higher temperatures, larger defect clusters of Cu atoms enter
the stage, as demonstrated by Fig. 4. The CE + MC simulation
at 1000 K finds most of the dissolved Cu as single-atom
and pair-wise defects mirroring the isolated defect model.
Increasing the temperature to 1200 K, CE + MC produces
a substantial percentage of larger sized Cu clusters thus
demonstrating the concentration dependence of this approach
and the deficiency of the isolated defect model.

In summary, we have presented a combination of CE and
temperature-dependent properties in terms of vibrational free
energies. With the averaged CEs [see Eq. (5)] a single set of
ECIs J̄f (T ) within a merged figure set F̄ (T ) has been derived by
which one can further study, for example, the growth kinetics
of precipitates. The presented concept for a temperature-
dependent CE is in principle straightforward and also feasible,
in particular, if the strategy of the merged figure sets is utilized.
Clearly, there is still need for future improvement: in particular,
one should aim at reducing the number of figures in the
merged figure set in order to reduce the computational cost
of MC simulations. In the case of Fe-rich Fe1−xCux , we have
demonstrated that the inclusion of vibrational free energies
in the CE+MC simulations is absolutely vital: only then are
realistic values obtained for the solubility of Cu in an bcc-Fe
matrix and only then do our results agree with experimental
data. The main physics behind this surprisingly large solubility
of Cu in Fe is effectively described by a concentration- and
temperature-dependent and purely first-principles approach
which also includes vibrational free energies.
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