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microscopy and scanning SQUID microscopy
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The working principle of magnetic force microscopy and scanning SQUID microscopy is introducing a
magnetic source near a superconductor and measuring the magnetic field distribution near the superconductor,
from which one can obtain the penetration depth. We investigate the magnetic field distribution near the surface
of a magnetic superconductor when a magnetic source is placed close to the superconductor, which can be used
to extract both the penetration depth λL and magnetic susceptibility χ by magnetic force microscopy or scanning
SQUID microscopy. When the magnetic moments are parallel to the surface, one extracts λL/

√
1 − 4πχ . When

the moments are perpendicular to the surface, one obtains λL. By changing the orientation of the crystal, one thus
is able to extract both χ and λL.
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I. INTRODUCTION

Superconductivity is well characterized by two length
scales. The coherence length ξ describes the rigidity of the
phase coherence and the penetration depth λL characterizes
the response to electromagnetic fields. The penetration depth
is directly connected to the superfluid density and the pairing
symmetry, thus its measurement is crucial for the understand-
ing of new discovered superconductors. The coherence length
can be measured from the upper critical field Hc2 for type-II
superconductors. There are many well-developed methods to
measure the penetration depth,1 such as the magnetic force
microscopy (MFM) and scanning SQUID microscopy (SSM),
which are the main focus of this study.

In MFM and SSM, a magnetic source is placed near
a superconductor.2–4 In MFM, the source magnetic field is
generated by a small magnetic tip, which can be modeled as
a point dipole. In SSM, the source field is generated by a
current loop. Due to the exclusion of magnetic field by the
superconductor, the magnetic field outside the superconductor
is modified compared to that without the superconductor. The
exclusion thus causes repulsion between the magnetic source
and superconductor. In MFM, the resulting magnetic field
distribution is measured by the force between the MFM tip and
superconductor. In SSM, the magnetic field is measured by a
SQUID. From the measured magnetic field, one can extract
the penetration depth by fitting to theoretical expressions. For
nonmagnetic superconductors, the magnetic field distribution
was calculated in Refs. 5–9 for isotropic superconductors and
in Ref. 10 for anistropic superconductors.

Recently, there is growing interest to apply both MFM and
SSM to magnetic superconductors, where magnetic ordering
coexists with superconductivity.11–13 When a magnetic field
induced by a source is applied to the magnetic superconduc-
tors, it polarizes the magnetic moments near the surface of the
superconductors, which gives additional contribution to the
magnetic field outside the superconductors. The polarization
is characterized by the magnetic susceptibility χ in the
linear response approximation. For instance, in MFM, the
polarization lowers the energy of the whole system, thus
giving attraction contribution between the MFM tip and
superconductor in addition to repulsion due to the screening

of magnetic field by superconductors. The magnetic field
distribution outside the magnetic superconductor thus depends
on χ and λL. It is still an open question as to what
information can be extracted by MFM and SSM in the case of
magnetic superconductors. Recently, Kirtley et al. studied the
SSM response in isotropic paramagnetic superconductors.14

The effects of the isotropic paramagnet in this case are
twofold. First, it reduces the penetration depth according to
λL

√
1 − 4πχ . Second, it changes the boundary condition. In

isotropic paramagnetic superconductors, the magnetic field
outside depends on λL/

√
1 − 4πχ , and one can not extract

both λL and χ from SSM measurements.
The magnetic superconductors usually have anisotropy in

magnetic structure. The polarization depends on the orienta-
tion of the magnetic source with respect to the anisotropy of the
magnetic structure. By changing the orientation of the crystal,
it is possible to obtain both λL and χ .

In this work, we investigate the magnetic response in
magnetic superconductors based on the London approach
both in the Meissner state and the mixed state. For the mag-
netic moments parallel to the surface of the superconductor,
the magnetic field outside the superconductor depends on
λL/

√
1 − 4πχ when the separation between the magnetic

source and superconductor is much larger than λL. For the
moments perpendicular to the surface, it depends only on
λL. By changing the orientation of the crystal, one thus
can obtain both the bare penetration depth and the magnetic
susceptibility.

II. MODEL

In this section, we derive the magnetic field distribution
inside and outside the magnetic superconductor. A schematic
view of the setup is shown in Fig. 1. To be specific, we
consider the case with an easy-axis anisotropy in magnetic
structure, which is most commonly encountered in magnetic
superconductors.11,13 The penetration depth is assumed to
be isotropic. We consider two cases with magnetic moment
parallel to the surface [Fig. 1(a)] and perpendicular to the
surface [Fig. 1(b)].

014518-11098-0121/2012/86(1)/014518(5) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.86.014518


SHI-ZENG LIN AND LEV N. BULAEVSKII PHYSICAL REVIEW B 86, 014518 (2012)

FIG. 1. (Color online) Schematic view of a magnetic source
placed on top of a magnetic superconductor. The magnetic subsystem
has easy-axis anisotropy. The easy axis is parallel to the surface in
(a) or perpendicular to the surface in (b).

The magnetic field outside the superconductor is given by

∇ × (B − 4πMs) = 0, (1)

where Ms is the magnetization in the source. Using ∇ · B = 0,
we can rewrite Eq. (1) as

∇2B = −4π∇ × ∇ × Ms . (2)

Inside the superconductor, we use the London approximation,
which is valid when the penetration length is much larger
than the coherence length as realized in most magnetic
superconductors:11,15–17

λ2
L∇ × ∇ × (B − 4πM) + B = �0δ(x)δ(y)ẑ, (3)

where ẑ is the unit vector along the z axis and �0 = hc/(2e) is
the flux quantum. We assume the vortex density is small when
the applied magnetic field is much smaller than Hc2, and we
only consider a single vortex at (x,y) = (0,0).

The magnetic field outside and inside the superconductor is
connected through the boundary conditions at the interface z =
0. The normal component of B is continuous at the interface

Bz(z = 0−) = Bz(z = 0+). (4)

As the induced surface supercurrent is finite at the interface,
from the Maxwell equations we have the boundary condition
for the tangential component Bx,y :

(
Bx(z = 0−)
By(z = 0−)

)
− 4π

(
Mx(z = 0−)
My(z = 0−)

)
=

(
Bx(z = 0+)
By(z = 0+)

)
.

(5)

The general solution to Eq. (2) can be written as B = B1 +
B2, where B1 and B2 are solutions of Eq. (2) with Ms and
without Ms , respectively. B2(r) can be written as

B2(r) = 1

(2π )3/2

∫
dkxdkyB2(k) exp [ik2d · r2d − k2dz] ,

(6)

where k2d = (kx,ky) and r2d = (x,y). To solve the London
equation (3), we need to know the magnetic structure of
the magnetic superconductor. In the following sections, we
treat the cases with magnetic moments perpendicular and

parallel to the interface separately using the linear response
approximation for the magnetization.

A. Magnetic moments parallel to the interface

We assume the easy axis is along the x direction. The
magnetization can be written as Mx = χBx , which is valid
when Mx � M0 with M0 being the saturation magnetization.
The solution to Eq. (3) can be written as B = B3 + B4 with
B3 accounting for the magnetic fields induced by the vortex
and B4 being the solution to Eq. (3) in the absence of vortices.
Since the vortex is along the z axis, we have B3,x = B3,y = 0
and

B3,z(kx,ky) = �0

2π
(
k2

2dλ
2
L + 1

) . (7)

B4 in the Fourier space is given by(
k2λ2

L + 1
)
B4,x − 4πλ2

L

(
k2
y + k2

z

)
χB4,x = 0, (8)

(
k2λ2

L + 1
) (

B4,y

B4,z

)
+ 4πλ2

Lkx

(
ky

kz

)
χB4,x = 0. (9)

From Eq. (8), we obtain

k2
z = 4πχk2

y − λ−2
L − k2

2d

1 − 4πχ
. (10)

From Eq. (9), we obtain

B4,y = − kxky

k2
y + k2

z

B4,x and B4,z = − kxkz

k2
y + k2

z

B4,x . (11)

Using the boundary conditions (4) and (5), we have for
B(k2d ,z = 0)

− 1√
2π

kxkz

k2
y + k2

z

B4,x + �0

2π
(
k2

2dλ
2
L + 1

) = B1,z + B2,z, (12)

− 1√
2π

kxky

k2
y + k2

z

B4,x = B1,y + B2,y, (13)

1 − 4πχ√
2π

B4,x = B1,x + B2,x . (14)

Using ∇ · B2 = 0, we can derive the field B4,x from Eqs. (12)–
(14). Substituting the results back into Eq. (12), we have the
magnetic fields outside the superconductor B2,z = Bs,z + Bv,z,
with the contribution from the magnetic source

Bs,z(k2d ,z = 0)

= −α

[(
k2d + 1

α

)
B1,z − ikxB1,x − ikyB1,y

]
, (15)

and the contribution from the vortex

Bv,z(k2d ,z = 0) = (αk2d + 1)
�0

2π
(
k2

2dλ
2
L + 1

) , (16)

with

α(kx,ky) = −kz

[
kzk2d + ik2

z − i4πχ
(
k2
y + k2

z

)]−1
. (17)

The magnetic field outside the superconductor then is given
by

B2,z(r) =
∫

d2k2d

2π
B2,z(k2d ,z = 0) exp(−k2dz + ik2d · r2d ).

(18)
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Since the magnetic moments couple directly to the magnetic
induction B, we use the definition that χ = Mx/Bx . In
literatures (for examples see Refs. 14–16), another definition
χ ′ = Mx/Hx was used, where H = B − 4πM is the external
field “seen” by the magnetic moments. The relation between
χ and χ ′ is χ ′ = χ/(1 − 4πχ ). If χ ′ is introduced, one should
replace

√
1 − 4πχ in the results of this work by 1/

√
1 + 4πχ ′.

Please note that the magnetic susceptibility χ = Mx/Bx is
smaller than 1/(4π ), i.e., χ < 1/(4π ). The magnetic fluctu-
ations 〈MxMx〉 ∼ χ/(1 − 4πχ ) diverge when χ → 1/(4π ),
which indicates that the magnetic system becomes unstable.18

B. Magnetic moment perpendicular to the interface

The calculations in this case are in parallel to those in the
previous section. Here, we skip the detailed calculations and
only present the final results. The results can be obtained from
Eqs. (15) and (16) by replacing α and kz with

α(kx,ky) = − (k2d + ikz)
−1 , (19)

k2
z = −λ−2

L − k2
2d (1 − 4πχ ). (20)

III. APPLYING TO MFM AND SSM

We have derived the general expressions for the magnetic
field distribution B2,z outside the superconductor in response
to the source field B1,z. In the following section, we consider
the cases of MFM and SSM, respectively. For MFM, the
magnetic source is modeled as a point dipole or monopole,
and we then calculate the force between the MFM tip and
superconductors. For SSM, the source is modeled as a current
loop and we calculate B2,z. In both cases, the source magnetic
field is extremely weak, thus no additional vortex is induced
by the source.

A. Magnetic force microscopy

In MFM, the force between the magnetic tip and the su-
perconductor is measured as function of the distance between
them.19 To calculate the force, one needs to know the magnetic
field distribution inside the tip. Theoretical modeling of the tip
is challenging since the magnetic field distribution and shape
of the tip are generally unknown. In most treatments, one
assumes a single cylindrical magnetic domain with spatially
uniformly distributed moments perpendicular to the sample
surface.20,21 If the length of the cylinder is much larger than its
radius, one can approximate the tip as a magnetic monopole.
Otherwise, the tip behaviors as a dipole. First, we model the
MFM tip by a point dipole along the z direction:

Ms = m0δ (x) δ (y) δ(z − a)ẑ, (21)

where a is the separation between the MFM tip and the
superconductor. The approximation of the tip by a point dipole
is valid when the size of the tip is much smaller than a. The
typical size of the tip is tens of nanometers. For a 
 λL, it
was shown that the shape of the MFM tip will not affect the

results substantially.5 B1 then can be expressed as

B1,z(k2d ,z = 0) = m0 exp(−ak2d )k2d, (22)
(

B1,x(k2d ,z = 0)
B1,y(k2d ,z = 0)

)
= im0 exp(−ak2d )

(
kx

ky

)
. (23)

The interaction between the tip and magnetic field is

U (a) = −
∫

d3r Mz(B1,z + B2,z)

= −m0[B1,z(0,0,a) + B2,z(0,0,a)]. (24)

The force then is given by F = −∂aU (a) = Fs + Fv with the
contribution from the source

Fs = m2
0

π

∫
(2αk2d + 1) exp(−2ak2d )k2

2dd
2k2d , (25)

and the contribution from the vortex

Fv = m0�0

(2π )2

∫
αk2

2d + k2d

k2
2dλ

2
L + 1

exp (−ak2d ) d2k2d . (26)

Analytical expression for the force can be obtained when
a 
 λL. In this case, only small k2d contributes to the
integration. For the magnetic moments parallel to the interface,
we obtain

F‖,s = 3m2
0

4λ4
L

(
λ4

L

a4
− 4

λ5
L

a5
√

1 − 4πχ

)
, (27)

F‖,v = m0�0

λ3
Lπ

(
3λ4

L

a4
√

1 − 4πχ
− λ3

L

a3

)
. (28)

For the magnetic moments perpendicular to the interface, we
have

F⊥,s = 3m2
0

4λ4
L

(
λ4

L

a4
− 4

λ5
L

a5

)
, (29)

F⊥,v = m0�0

λ3
Lπ

(
3λ4

L

a4
− λ3

L

a3

)
. (30)

The exclusion of the magnetic flux by the superconductor
gives rise to repulsion between the tip and superconductor,
which is described by the first term in Eqs. (27) and (29). The
force does not depend on the direction of the point dipole.
For a magnetic superconductor, the polarization of magnetic
moment reduces energy and causes attraction, as described by
the second term in Eqs. (27) and (29). When the separation a

reduces, the attraction may be even larger than the repulsion,
as shown by direct numerical integration of Eqs. (25) in
Figs. 2 and 3. The attraction increases with χ .

The interaction between the vortex and tip depends on the
direction of the dipole and it is attractive at large separation
a 
 λL when they are parallel. To visualize a vortex, one scans
the tip in experiments, and the force depends on the vortex
position relative to the tip. The position dependence of the force
can be readily evaluated by replacing �0 ← �0 exp[i(kxxv +
kyyv]. Here, rv = (xv,yv) is the coordinate of the vortex core.
For a 
 λL, the vortex-position-dependent force is

F (rv = 0) − F (rv) = −3m0�0

π2

λ2
L

a5
r2
v . (31)
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FIG. 2. (Color online) Force between a magnetic tip and magnetic
superconductor in the absence of vortices obtained by numerical
integration of Eq. (25) when the magnetic moments are parallel to
the surface. For small a/λL, the interaction becomes attractive for
nonzero χ as shown in the inset. At large a/λL 
 1, the curves are
described by Eq. (27).

To extract the penetration depth in experiments, one
measures the force as a function of a in the absence of vortex.
One then obtains the penetration depth by fitting to theoretical
expressions, such as Eq. (25). In the magnetic superconductors,
the force depends on the orientation of the magnetic moments
with respect to the surface. For the magnetic moments parallel
to the surface, one extracts an effective penetration depth
λL/

√
1 − 4πχ [see Eq. (27)]. For the moments perpendicular

to the surface, the bare penetration depth λL is extracted [see
Eq. (29)]. By measuring the force in two different orientations,
one can extract both χ and λL.

FIG. 3. (Color online) The same as Fig. 2 but for the magnetic
moments perpendicular to the surface. Results are obtained by
numerical integration of Eq. (25).

We proceed to model the magnetic tip as a monopole and
calculate the interaction force. The magnetic field outside the
superconductor is given by

∇ · B = 4πn0δ(x)δ(y)δ(z − a), ∇ × B = 0. (32)

Here, n0 is a magnetic charge. The magnetic field distribution
outside B2,z can still be calculated with Eqs. (15) and (18)
with α and kz given by Eqs. (10), (17), (19), and (20)
depending on the orientation of the magnetic moments inside
the superconductor. B1 in this case is given by

B1,z(k2d ,z = 0) = −n0 exp(−ak2d ), (33)
(

B1,x(k2d ,z = 0)
B1,y(k2d ,z = 0)

)
= −in0

exp(−ak2d )

k2d

(
kx

ky

)
. (34)

The z-component force is given by F = n0B2,z(0,0,a).
When the magnetic moments are parallel to the surface, we
obtain the force due to the source F‖,s and the force due to
vortex F‖,v in the limit a 
 λL:

F‖,s = n2
0

λ2
L

(
λ2

L

4a2
− λ3

L

2a3
√

1 − 4πχ

)
, (35)

F‖,v = n0�0

2πλ2
L

(
λ2

L

a2
− 4λ3

L

a3
√

1 − 4πχ

)
. (36)

For the magnetic moments perpendicular to the surface, we
have

F⊥,s = n2
0

λ2
L

(
λ2

L

4a2
− λ3

L

2a3

)
, (37)

F⊥,v = n0�0

2πλ2
L

(
λ2

L

a2
− 4λ3

L

a3

)
. (38)

In the limits χ → 0 and λL → 0, one can model the supercon-
ductor as a perfect magnetic conductor and the magnetic field
outside the superconductor can be obtained with the image
method. If one models the MFM tip as a magnetic dipole, the
repulsion between the image dipole and tip is 3m2

0/(4a4). If the
tip is treated as a monopole, the repulsion force is n2

0/(4a2).
Both Eqs. (27) and (35) reproduce the limiting results.

B. Scanning SQUID microscopy

In SSM, one applies external magnetic field through a
field coil and then measures the magnetic field above the
superconductor through a pickup loop.4,14 We model the field
coil by a loop with current I and radius r0. Please note that
when a 
 r0, the magnetic field induced by the current loop is
reduced to the point dipole discussed in the previous section.
The source magnetic field due to the current loop is then given
by B1 = ∇ϕ with the magnetic potential10

ϕ(r) =
∫

d2k2dϕ(k2d ) exp [ik2d · r2d + k2dz] , (39)

ϕ (k2d ) = r0I

ck2d

exp (−k2da) J1 (k2dr0) . (40)
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In this case, the magnetic field outside the superconductor due
to the source field is

Bs,z(k2d ,z = 0) = −α

(
2k2d + 1

α

)
2πIa

c

× J1 (k2dr0) exp (−k2da) (41)

and the vortex contribution is the same as Eq. (16). Here, α

depends on the orientation of the magnetic moments. For the
moments parallel to the surface, α is given by Eq. (17) and
for the moments perpendicular to the surface it is given by
Eq. (19). When the magnetic moments are parallel to the
surface, the magnetic field at the center of the pickup loop
is given by (for a 
 λL)

Bs,z = πIr2
0

4ca3

(
−1 + 3λL

a
√

1 − 4πχ

)
, (42)

Bv,z = �0

2πa2

(
1 − 2λL

a
√

1 − 4πχ

)
. (43)

For the moments perpendicular to the surface, the results are
the same as those in Eqs. (42) and (43), but without the factor√

1 − 4πχ , similar to the case of MFM.
In the case of a magnetic superconductor with isotropic

magnetic structure as studied in Ref. 14, the magnetic field
outside the superconductor is given by Eqs. (42) and (43).

The extracted penetration depth from SSM measurements is
λL/

√
1 − 4πχ , which is larger than the bare λL. This is dif-

ferent from the effective penetration depth in magnetic super-
conductors λL

√
1 − 4πχ , which is smaller than the bare λL.

IV. CONCLUSION

We have calculated the magnetic fields outside a magnetic
superconductor when a magnetic source is placed on top of
the superconductor. For the magnetic moments parallel to the
surface, the resulting magnetic field distribution depends on an
effective penetration depth λL/

√
1 − 4πχ when the distance

between the magnetic source and superconductor is much
larger than λL, while for the moments perpendicular to the
surface, it depends on λL. The results in this work can be
used to measure both the susceptibility χ and the penetration
depth λL in magnetic superconductor by the magnetic force
microscopy or scanning SQUID microscopy. This can be
achieved by changing the orientation of the crystal.
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