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We performed transmission spectroscopy experiments on coplanar half-wavelength niobium resonators at
temperature T = 4.2 K. We observe not only a strong dependence of the quality factor Q and the resonance
frequency fres on an externally applied magnetic field but also on the magnetic history of our resonators, i.e., on
the spatial distribution of trapped Abrikosov vortices in the device. This is valid for a broad range of frequencies
and angles between the resonator plane and the magnetic field direction and holds for resonators with and
without antidots near the edges of the center conductor and the ground planes. In a detailed analysis, we show
that characteristic features of the experimental data can only be reproduced by calculations if we assume a highly
inhomogeneous rf current density and a flux density gradient with maxima at the edges of the superconductor.
We furthermore demonstrate that the hysteretic behavior of the resonator properties can be used to considerably
reduce the vortex-induced losses and to fine-tune the resonance frequency by the proper way of cycling to a
desired magnetic field value.
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I. INTRODUCTION

When Charles P. Bean introduced his model for the magne-
tization of hard superconductors in 1962,1,2 he probably had
not foreseen that related magnetic history effects may become
of importance for circuit quantum electrodynamics,3–5 quan-
tum information processing,6 or single-particle detection.7

Of particular importance in these highly topical branches of
research are superconducting coplanar microwave cavities. In
many cases, the cavity quality factor Q, which defines the
photon lifetime in the resonator and the sharpness of the
resonance, is demanded to be rather high. Thus, there are many
current efforts to identify and suppress the various energy-loss
mechanisms.8–11

Recently, advanced hybrid systems have been
proposed,12–16 consisting of ultracold atoms, molecules,
or electrons coupled to both superconducting microwave
cavities and artificial atoms based on superconducting circuits.
The magnetic fields required for trapping and manipulating the
atomic systems17,18 will lead to energy dissipating Abrikosov
vortices,19 adding a significant loss channel for the energy
stored in the resonator. Lately, there have been different
approaches to reduce the vortex-associated energy losses
in particular experimental situations. In some experiments
the magnetic field can be applied parallel to the plane of
the superconducting film, which reduces the flux in typical
coplanar resonators by orders of magnitude. This approach was
used in experiments with spin ensembles, which were coupled
to microwave photons in superconducting transmission
line cavities.20,21 For experiments requiring an out-of-plane
magnetic field component, it has been demonstrated that
losses due to vortices can effectively be reduced by trapping
and pinning the flux lines either in a slot in the center of the
resonator22 or in antidots patterned at the resonator edges23

and all over the chip.24 Patterning with antidots is particularly

suitable for zero-field cooling experimental conditions, when
the vortices enter the superconductor from the edges and
form a flux density gradient, called the Bean critical state.
Under zero-field cooling conditions there is also a number of
hysteresis effects, which on the mesoscopic scale are related
to the spatial distribution of Abrikosov vortices.25,26

In this paper we present experimental results concerning a
considerable hysteretic behavior of the characteristic quantities
of coplanar superconducting resonators (with and without
antidots), i.e., the quality factor Q, the loss factor 1/Q, and
the resonance frequency fres. We find that for fixed values
of a perpendicularly applied magnetic flux density B, the
resonator losses due to vortices 1/Qv(B) can be reduced
and fres(B) can be tuned by the proper choice of magnetic
history. A detailed analysis reveals strong indications that
essential features of the measured hysteresis effects are best
described by a combination of a highly inhomogeneous rf
current distribution and field penetration models for thin
films.27,28

The paper is organized as follows. After this introductory
Sec. I we describe the sample fabrication and characterization
techniques in Sec. II. In Sec. III we present and discuss our
experimental data, which show a hysteretic behavior of the
vortex-associated energy losses and the resonance frequency in
perpendicular magnetic fields. In Sec. IV we develop a simple
model to describe the dependence of the vortex-associated
losses on the rf-current and vortex distribution and compare
our measurements with numerical calculations. In Sec. V we
discuss the possibility of exploiting the hysteresis to improve
and tune the properties of the resonator in a specific magnetic
field. Hysteresis effects at higher modes of the resonator and
for nonperpendicular orientations between resonator plane and
magnetic field are presented and discussed in Sec. VI. Finally,
Sec. VII concludes the paper.
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FIG. 1. (Color online) (a) Layout of 12 × 4 mm2 chip with a
capacitively coupled 3.3 GHz transmission line resonator. Optical
images of resonators with (b) 0, (c) 1, and (d) 3 rows of antidots. The
parts of the feedlines, which are perforated with antidots are marked
with + (cf. Ref. 23).

II. RESONATOR FABRICATION AND
CHARACTERIZATION

We fabricated half-wavelength coplanar transmission line
resonators with a designed resonance frequency fres =
3.3 GHz. They are capacitively and symmetrically coupled
to feed lines via 90-μm-wide gaps at both ends. Due to
the small coupling capacitances Cc ≈ 1 fF29 the resonators
are undercoupled with an external quality factor Qc > 105.
Hence, the overall cavity losses in zero magnetic field and
at liquid helium temperature T = 4.2 K are dominated by
intrinsic, resistive losses. Figure 1(a) shows a sketch of the
resonator layout together with optical images of the resonators
without (b), with one row (c), and with three rows (d) of
antidots at the edges of the center conductor and the ground
planes. These resonators are denoted as Res 0, Res 1 + , and
Res 3 + , respectively, with a + indicating that also the feed
lines are partially perforated, cf. Fig. 1(a). The antidots have a
radius R = 1 μm and an antidot-antidot distance D = 4 μm.
For further design considerations of the antidots regarding size
and arrangement, see Ref. 23.

The structures were fabricated on a 330-μm-thick, 2-inch
sapphire wafer (r-cut) by optical lithography and subsequent
dc magnetron sputtering of a d = 300-nm-thick Nb film. After
sputtering, the wafer was cut into 12 × 4 mm2 chips with a
single resonator. Finally, the surplus Nb was lifted-off with
acetone. The transmission line has a characteristic impedance
Z0 ≈ 54 �, where the width of the center conductor is S =
50 μm and the gap to the ground plane is W = 30 μm. The
Nb film has a critical temperature Tc ≈ 9 K and a residual
resistance ratio R(300 K)/R(10 K) ≈ 3.6.

Each chip was mounted into a small brass box and the
transmission line was electrically connected to subminiature-A
(SMA) stripline connectors using indium as contact material.
All measurements were performed at T = 4.2 K in liquid
helium (helium-gas in the angle-dependent measurements).
A magnetic field perpendicular to the resonator plane could be
applied with a pair of Helmholtz coils. For angle-dependent
measurements, the sample was rotated in the field of a super-
conducting high-field split coil. We estimate the flux density
seen by the resonator to be one order of magnitude larger than
the applied external field due to flux-focusing effects. As we
are interested in the resonator properties at magnetic fields of

FIG. 2. (Color online) Measured transmitted power Ptrans vs.
frequency f of resonator 0 after zero-field cooling, when (a) the
applied magnetic field was increased from 0 in 0.48 mT steps, with
an additional curve at 4 mT and (b) B was decreased back to zero.
Adjacent curves are shifted by +2 dBm for better visibility, with
Ptrans(4 mT) being the unshifted reference. The applied microwave
power was Papp = −20 dBm.

some mT, no measures were taken to shield the samples from
the Earth’s magnetic field. Therefore, in all zero-field cooling
experiments, some residual field was present, but much smaller
than any field we applied (except for the angle-dependent
measurements). To characterize the resonators we applied a
microwave signal of power Papp = −20 dBm and frequency f

to one of the feed lines and measured the frequency-dependent
transmitted power Ptrans(f ) with a spectrum analyzer. No
attenuators or amplifiers were used. We estimate the effective
power at the resonator input to be about 5–10 dB lower than
Papp. Similarly, Ptrans is about 5–10 dB smaller than the power
directly at the resonator output.

III. HYSTERESIS EFFECTS

Figure 2(a) shows Ptrans(f ) around the fundamental mode
n = 1 of a resonator without antidots (Res 0) for different
values of applied magnetic field between B = 0 and B =
4 mT. As reported before, we find that with increasing B the
resonance frequency decreases and the resonance peak gets
smaller and broader, indicating increasing losses.19,22,23 When
we reduce the magnetic field from B = 4 mT back to B = 0,
we find a strong hysteresis in the resonance characteristics.
Figure 2(b) depicts the corresponding spectra [for the same
values of B as in (a)], showing that the original state of (a) is
not restored at B = 0. Interestingly, ∂fres/∂B changes sign at
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FIG. 3. (Color online) (a) Vortex associated energy losses
1/Qv(B) and (b) resonance frequency fres(B) of the fundamental
mode n = 1 of resonator 0 for a full cycle of B. Arrows indicate the
sweep direction of the field.

B ≈ 3 mT: After a first increase of the resonance frequency
with decreasing B, fres decreases again for B → 0.

We fitted the measured transmission spectra with a
Lorentzian and extracted the resonance frequency fres(B)
and the full width at half maximum �f (B) to quantitatively
analyze the hysteresis in the resonator properties. Using
fres(B) and �f (B) we calculate the magnetic field-dependent
quality factor Q(B) = fres(B)/�f (B) and the magnetic field
dependent losses 1/Q(B). In order to quantify the losses asso-
ciated with the magnetic field, i.e., the presence of Abrikosov
vortices, we define 1/Qv(B) ≡ 1/Q(B) − 1/Q(0), cf. Refs.
19, 22, and 23. Figure 3 shows (a) the vortex associated
losses 1/Qv(B) and (b) the resonance frequency fres(B) for
a full magnetic field cycle. Both 1/Qv(B) and fres(B) show
a pronounced hysteresis. Interestingly, immediately after the
sweep direction is reversed at B = 4 mT, the losses decrease
considerably and are significantly smaller than the losses for
the same field values, when coming from the virgin state. In
the following we indicate properties, that refer to the upsweep
(downsweep) of B with ↑ (↓). For the very first upsweep
from the virgin state we use ⇑. Over a considerable range of
applied magnetic field (B � 1.4 mT), 1/Q↓

v (B) < 1/Q⇑
v (B)

with a minimum of the losses 1/Q↓
v at B ≈ 2 mT. For negative

B we find a similar behavior and 1/Q↑
v (B) < 1/Q↓

v (B). When
we repeatedly sweep the magnetic field between ±Bmax =
±4 mT, 1/Qv(B) follows a butterfly like curve and never
returns to the virgin value. This indicates that during the field
cycles the sample does never return to the vortex-free state.

The resonance frequency in Fig. 3(b) shows a hysteretic
behavior very similar to the losses but inverted regarding

absolute values. Immediately after the sweep direction is
inverted, fres increases, and after reaching a local maximum
it decreases again with further decreasing magnetic field.
Note that the magnetic field values at the downsweep, where
1/Qv(B) reaches a minimum and fres(B) reaches a maximum,
are not equal. This discrepancy was observed for all resonators.
We believe that 1/Qv(B) and fres(B) have their extrema at
different field values because the frequency shift due to a
change in the kinetic inductance has not only contributions
from the normal conducting vortex cores but also from the
global and local screening currents, which have a slightly
different distribution than the vortex cores.

Remanent vortices in type-II superconductors, observed
and investigated in various studies,25 have been reported to
lead to hysteresis effects in the microwave properties of
superconducting structures.30–32 In the next section we will
show that by taking a closer look at the measured hysteresis
curves one can gain new insights into the underlying physics,
as the particular shape of these curves is intimately related to
the microwave current and vortex distribution in the resonator.

Before we proceed with the discussion and the analysis
of our results, we give a rough estimate for the circulating
power and the corresponding rf current density in the resonator
under our experimental conditions. The power circulating
in the resonator is given by Pcirc = 4Pinr(1 − r)Q/π with
r = √

Pout/Pin.33 Here, Pin (Pout) denotes the power at
the resonator input (output) in Watt. We estimate Pin =
2 · 10−6 W and Pout = 1.5 · 10−8 W for B = 0. With Q = 2 ·
104 we find Pcirc = 4 · 10−3 W for B = 0. Due to the high qual-
ity factor, Pcirc is predominantly reactive, so the corresponding
maximum current on resonance is I ≈ √

Pcirc/(2πfresL). The
total inductance L = 2L′l/π2 ≈ 1.66 nH can be calculated
with the line inductance L′ ≈ 424 nH/m and the resonator
length l ≈ 1.94 cm.34 With the center conductor cross section
A = 1.5 · 10−7 cm2 we find a current density j = I/A =
7 · 104Acm−2, which is almost two orders of magnitude
smaller than the critical current density of our Nb films at B =
0. Of course, due to uncertainties in Pin and Pout, this estimate
is not very precise. However, the order of magnitude seems to
be correct, as the first signs for a distortion of the Lorentzian
resonance curve (indicating significant nonlinearities) appear
for power levels exceeding the ones discussed here by a factor
of 103.

IV. THE RESONATOR LOSS MODEL

In this section we introduce a simplified model that allows
us to derive an approximate expression for the dependence of
the vortex-associated losses 1/Qv on a spatially varying flux
density B̃(x,B) and on the microwave current density j rf(x)
in a superconducting coplanar resonator, cf. Fig. 4(a). B still
denotes the externally applied field in y direction, and j rf(x)
points in z direction. For simplicity we only calculate the vortex
associated losses in the center conductor and discuss a possible
influence of the ground planes at the end of this section.

We treat an Abrikosov vortex in the superconducting
strip as a massless point-like particle under the influence of
a driving Lorentz force fL = j rf�0 with the sheet current
density j rf = j rf

0 sin(ωt) and a friction fF = ηv, which leads
to the one-dimensional equation of motion ηv = j rf�0. In
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FIG. 4. (Color online) (a) Sketch of a coplanar waveguide with
center conductor width S, ground-to-ground distance a, and thickness
d; (b) Microwave current density distribution j rf

0 (x) normalized to the
homogeneous distribution jhom = I/S (I is the total current on the
center conductor) of a coplanar waveguide for different values of
λeff/S, according to Eqs. (2) and (3).

this picture the amplitude of the vortex velocity v is directly
proportional to the amplitude of the alternating driving force,
and we find the energy dissipated per cycle �E to obey the
proportionality �E = ∫ T

0 fLvdt ∝ (j rf
0 )2 with T = 2π/ω. If

we have several vortices at different positions xi with local
current densities j rf

0 (xi) we must sum up over all �E(xi)
from single vortices to get the overall dissipation �Etotal =∑

i �E(xi) ∝ ∑
i j

rf
0 (xi)2.

The flux density B̃(x,B) (divided by the flux quantum
�0 = 2.07 × 10−15 Tm2) can approximately be treated as
a continuous representation of the vortex density in the
superconductor. With this we rewrite the total dissipated
energy per cycle and unit length in y direction as

�Etotal ∝
∫ S/2

−S/2
|B̃(x,B)|[j rf

0 (x)
]2

dx := δe(B), (1)

where |B̃(x,B)| reflects the independence of the dissipation
from the vortex polarity. δe(B) contains all information on
the spatial distributions of vortices and driving forces. It
allows for a qualitative analysis of the experimentally found
hysteresis curves. Within our approach, 1/Qv(B) ∝ δe(B) and
the proportionality factor is eliminated below, as we only
consider the normalized quantity δe(B)/δemax.

Another possibility to find the same proportionalities
between δe, j rf(x), and B̃(x,B) from an electrotechnical point
of view starts with the dissipated power density pd (x) =
Re[ρv(x)]j rf

0 (x)2, which must be integrated over the width S to

get the overall dissipation per unit length D = ∫ S/2
−S/2 pd (x)dx.

The hereby used real part of the vortex resistivity ρv(x) can
be obtained from the formulas given by different models.35–37

All of these models have the linear proportionality ρv(x) ∝
B̃(x,B) in common, which again leads us to the above
expression for δe(B). This argument is closely related to the

one given in Ref. 19 to obtain an expression for 1/Qv(B).
Interestingly, the expressions in these models are derived
by treating the vortices as a vortex crystallite and not as
individual particles and by adding a pinning potential. For
a complete model, which provides absolute values of losses
and which also considers the frequency response of the
vortices, a pinning potential has to be included. However,
as we are mainly interested in a qualitative understanding
of the shape of the hysteresis curves, we can neglect the
pinning force in the equation of motion without changing
the proportionalities between 1/Qv , j rf(x) and B̃(x). Note
that in all calculations below, we are treating j rf(x) and B̃(x)
as independent quantities and discuss the justification of this
assumption at the end of this section.

According to Ref. 26 and references therein, the microwave
current density distribution j rf

0 (x) in the center conductor of a
(flux-free) superconducting coplanar line can be approximated
by

j rf
0 (x) = I

K
(

S
a

)
S
√

ζ (x)
, (2)

where

ζ (x) =
{

λeff
S

[
1 − (

S
a

)2]
, 0 � S

2 − |x| < λeff,[
1 − (

2x
S

)2][
1 − (

2x
a

)2]
, |x| � S

2 − λeff .

(3)

Here, a = S + 2W denotes the distance between the ground
planes; in our case a = 110 μm. K is the complete elliptic
integral and I is the total current. λeff = λL coth(d/λL) is the
effective penetration depth and λL is the London penetration
depth.38,39 For λeff/S � 1, the current distribution Eq. (2)
is very inhomogeneous and has pronounced maxima at the
edges of the strip. However, with increasing λeff/S the max-
ima continuously decrease until j rf

0 (x) becomes completely
homogeneous, i.e., j rf

0 (x) = I/S = const. for λeff � S/2. For
our samples we find λeff ≈ λL = 100 nm and λeff/S ≈ 0.002.
Figure 4(b) shows the current distribution according to Eq. (2)
for four different ratios λeff/S. For d/S = 0.006, as in our
sample, these values correspond to λL/S = 0.002,0.006,0.02,
and 0.06. The discrete edge maxima (visible for λeff/S =
0.069) are due to the particular approximation Eq. (2) for the
current density: The current in the edge region of width λeff

is assumed to be distributed homogeneously, while the current
in the inside is independent of λeff . We have also done the
calculations shown below with a different, continuous current
distribution for a single superconducting strip. The results
looked very similar, seeming only to require maxima near
the edges. We decided to use the current distribution Eq. (2)
for two reasons. First, this approximates the current density
for a coplanar waveguide geometry and not only for a single
strip. Second, and more important, it has inherently incorpo-
rated the transition to a homogeneous current density with
increasing λeff .

To describe the magnetic flux density B̃(x) in the center
conductor of the resonator we start with the classical Bean
profile.1 The basic Bean model was the first model, which
explained the magnetization curves of type-II superconductors
on a macroscopic scale. It is thus the first choice for trying
to understand our data, although technically it applies to

014517-4



MAGNETIC HYSTERESIS EFFECTS IN . . . PHYSICAL REVIEW B 86, 014517 (2012)

infinite superconducting slabs in parallel fields. The idea
behind the model is that the interior of a superconductor
is shielded from external magnetic fields by a macroscopic
current of critical density, which continuously builds up from
the surface to the interior with increasing applied field until
the critical current density flows everywhere inside. Connected
to the shielding current is a flux density gradient inside the
superconducting sample, which according to Ampère’s law
is directly proportional to the critical current density. On the
mesoscopic scale, the flux gradient inside the superconductor
is quantized into Abrikosov vortices and the critical current
density is equivalent to the depinning current density of these
vortices, but this is not part of the macroscopic model. As any
change in the interior flux and current state due to a change
of the external fields is induced from the sample edges, the
overall state of the superconductor depends on its magnetic
history. During an upsweep from the virgin state, the flux
density decreases linearly from the edges of the strip and can
be expressed as

B̃⇑(x,B) =
{

2B∗
S

|x| − (B∗ − B), S
2 � |x| > S

2 b,

0, |x| � S
2 b,

(4)

where b = (1 − B
B∗ ), and B∗ represents the applied field, when

the flux fronts from both edges of the strip meet at x = 0. After
the virgin upsweep to Bmax, the flux profile for the downsweep
is given by

B̃↓(x,B) = B̃⇑(x,Bmax) − 2B̃⇑
(

x,
Bmax − B

2

)
. (5)

The flux density profiles B̃⇑(x,B) and B̃↓(x,B) are shown
in Figs. 5(a) and 5(b) for several values of B during (a) a
field upsweep to Bmax = B∗ and (b) during the downsweep
from B = B∗ to B = −B∗. Note, for each applied magnetic
field B, |B̃⇑(x,B)| � |B| and |B̃↓(x,B)| � |B̃⇑(x,B)|. The
aforementioned relation also affects the dissipation, i.e., for
the same values of applied magnetic field the losses during the
downsweep should be larger than in the upsweep.

The lower part of Fig. 5 shows the calculated quantity
δe/δemax for the Bean model flux profile with a homogeneous
[λeff/S > 1, (c)] as well as a highly inhomogeneous [λeff/S =
0.002, (d)] microwave current distribution. All calculations
of δe(B) were carried out numerically with a spatial res-
olution of �x = 2 nm. We repeated our calculations with
different spacings (1 nm � �x � 20 nm) and found relative
deviations <3%.

In case of a homogeneous microwave current density, the
dissipation only depends on the number of vortices in the
sample, not on their spatial distribution, cf. Eq. (1). Starting in
the virgin state, the total amount of flux increases quadratically
with applied field. Therefore, δe⇑(B) also has a positive
curvature. As expected for this field profile (see above),
δe↓ > δe⇑ and the minimum value of δe↓, which corresponds
to the smallest amount of flux in the sample, is reached for a
negative value of applied field.

In case of a highly inhomogeneous current distribution
[Fig. 5(d)] only a small region near the edges of the center
conductor is responsible for almost all of the dissipation, cf.
Fig. 4(b). The flux density in this area is almost identical to B,
hence the hysteresis is much smaller than in the homogeneous

FIG. 5. (Color online) Classical Bean model flux density B̃/B∗

in a superconducting strip of width S during (a) the upsweep to
B = B∗ (B/B∗ = 0.2,0.4,0.6,0.8, and 1) and (b) during downsweep
from B = B∗ to B = −B∗ (B/B∗ = 1,0.6,0.2,−0.2,−0.6, and −1);
calculated δe(B)/δemax during a magnetic field cycle B/B∗ =
0 → 1 → −1 → 0 assuming the classical Bean flux density and
(c) a homogeneous as well as (d) a highly inhomogeneous microwave
current density with λeff/S = 0.002. Arrows in (a) and (b) indicate
the progression of the subsequent flux profiles; arrows in (c) and (d)
indicate the sweep direction.

case. Although the hysteresis loop is significantly smaller,
certain characteristic features of δe(B) remain unchanged,
such as the positive curvature of δe⇑(B), the relation δe↓ >

δe⇑, and the fact that the position of the dissipation minimum
during the downsweep is found at B < 0. Consequently, the
classical Bean field profile does not properly describe the
hysteresis as observed in our experiments.

An alternative model of the flux density distribution in
thin film geometries was first considered by Norris27 and
later discussed by Brandt and Indenbom.28 It is basically the
aforementioned Bean model adapted to the geometry of thin
superconducting strips in perpendicular magnetic fields. In this
Norris-Brandt-Indenbom (NBI) model the flux density is given
by

B̃⇑(x,B) = Bc

{
tanh−1

√
(x−S ′)(x+S ′)

|x| tanh(B/Bc) , S
2 � |x| > S ′

0, |x| � S ′,
(6)

where S ′ = S/2 cosh(B/Bc), Bc = μ0djc/π is the charac-
teristic field,28 and jc is the critical current density of the
superconductor. Using the estimated jc ≈ 5 × 106 A/cm2 of
our Nb, we calculate Bc ≈ 6 mT. As can be seen from Eq. (6),
the NBI model leads to an excess flux density at the edges
of the strip compared to the classical Bean profile. The
downsweep flux density B̃↓(x,B) is again defined according to
Eq. (5).

The NBI flux density profile is shown in Fig. 6(a) for several
values of B during a field upsweep to B = 3Bc and in Fig. 6(b)
during the downsweep from B = 3Bc to B = −3Bc. B̃↓ shows
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FIG. 6. (Color online) NBI model flux density B̃/Bc in a
superconducting strip of width S during (a) the upsweep to B =
3Bc (B/Bc = 0.6,1.2,1.8,2.4, and 3) and (b) during downsweep
from B = 3Bc to −3Bc (B/Bc = 3,1.8,0.6,−0.6,−1.8, and −3).
Calculated δe(B)/δemax during a magnetic field cycle B/Bc = 0 →
1 → −1 → 0 assuming the NBI flux density and (c) a homogeneous
as well as (d) a highly inhomogeneous microwave current density
with λL/S = 0.002 and d/S = 0.006. Arrows in (a) and (b) indicate
the progression of the flux profile, arrows in (c) and (d) indicate the
sweep direction.

a remarkable behavior. For an externally applied field that is
still positive, the flux density close to the edge of the thin film
is already zero. When B is decreased further, B̃↓ at the film
edge becomes negative and the point of zero flux density moves
deeper into the sample, separating areas with antivortices from
those with vortices.

To achieve comparability with experimental results, where
Bmax = 4 mT, a field range of |B| � Bc ≈ 6 mT was cho-
sen for numerical calculations. Figures 6(c) and 6(d) show
δe(B)/δemax for (c) a homogeneous and (d) a highly inho-
mogeneous current density. In the calculations we avoided
the divergence of the NBI flux density at the strip edges
by positioning them between two integration points, i.e.,
by effectively introducing a cutoff for B̃ at �x/2 from
the conductor edges. In case of j rf

0 (x) = const., the NBI
and the classical Bean model lead to similar δe(B)/δemax

dependences, cf. Fig. 5(c), which—as already mentioned—
disagree with our experimental data. For the inhomogeneous rf
current distribution, however, δe(B)/δemax reproduces almost
all characteristic features of the measured curve, cf. Figs. 3(a)
and 6(d). In particular, the hysteresis loop has a butterfly like
shape, where δe↓(B) < δe⇑(B) for a considerable range of B.
Also, δe⇑(B) exhibits a predominantly negative curvature and
the minimum of δe↓(B) can be found at B > 0.

Yet, there is still a difference between experiment and
theory. The slow increase of the losses at very small fields
and the abrupt decrease immediately after the inversion of
the sweep direction is clearly visible in experiment, but not
in theory. Using the models described before, the curvatures

FIG. 7. (Color online) (a) δe(bffB)/δemax vs. external flux density
B/Bc calculated for the NBI model with different flux-focusing
factors bff . (b) δe(bffB)/δemax vs. cycled flux density B/Bc calculated
for the NBI model for different ratios λeff/S. Adjacent curves are
subsequently shifted by +0.6 for better visibility.

∂2B̃⇑(x)/∂B2 at B = 0 and ∂2B̃↓(x)/∂B2 at B = Bmax are
directly linked, cf. Eq. (5). Therefore, there is always a
symmetry between the first slow increase of the losses at
the beginning of the upsweep and the slow decrease at the
beginning of the downsweep. We believe that the asymmetry
in experiment originates from the small but nonzero lower
critical field Bc1 of the superconductor, which is not included
in the calculations. The existence of Bc1 inherently leads to an
asymmetry between the upsweep from the virgin state and
any following sweep. The critical field value, however, at
which the first vortex enters the superconductor, is not Bc1.
It is moreover determined by the geometry of the sample and
might be different for ground planes and center conductor. It
also may depend on the position along the resonator.

In Fig. 7 the dependence of the hysteresis loop on the
ratio λeff/S and the flux-focusing factor bff = Beff/B with the
effective flux density Beff is shown. Due to the ground planes,
the flux density seen by the center conductor Beff certainly
is larger than the applied B. This is approximately taken into
account by bff , where spatial variations of Beff are neglected.
Figure 7(a) shows δe(bffB)/δemax for bff = 1,2,5, and 10. All
curves exhibit the same essential features of the hysteresis with
some minor differences. With increasing bff , the field regions
around B = 0 and B = Bmax, where curvatures of δe⇑ and δe↓
change sign, become effectively compressed. Furthermore,
the position of the downsweep minimum shifts with bff .
By comparing calculations with experimental data, we find
best qualitative agreement for a flux-focusing factor between
bff ≈ 2 and 5. Although the estimated value of Bc ≈ 6 mT is
comparable to Bmax = 4 mT in experiment and a flux-focusing
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factor of bff ≈ 5 seems reasonable, we would like to emphasize
that the theoretical model presented in this paper is too simple
to be used for a quantitative analysis of our experimental data.

Besides the flux-focusing factor, the homogeneity of the
rf current distribution described by λeff/S determines the
shape of the hysteresis loop. Figure 7(b) shows δe(bffB)/δemax

for four different ratios λeff/S, corresponding to current
distributions shown in Fig. 4(b). Starting from λeff/S =
0.002, which corresponds to our experimental conditions, the
hysteresis loop becomes smaller with increasing homogeneity.
For λeff/S ≈ 0.069 hardly any hysteresis can be seen. When
λeff is increased further, up- and downsweep curves do not
even cross anymore.

In our calculations we have assumed that the microwave
current density and the flux profile (vortex density distribution)
can be treated independently from each other. In general,
however, the presence of a flux gradient leads to a redistribution
of the transport current and vice versa.28 Also, the oscillation
amplitude of the vortices δx is assumed to be smaller than
the length scale on which the current distribution varies, such
that j rf

0 (x ± δx) ≈ j rf
0 (x). We believe that both assumptions

are reasonable, as in experiment the vortex associated losses
1/Qv are almost independent of the applied microwave power,
as long as Papp < 0 dBm.23 If the microwave self-field would
significantly disturb and rearrange the static magnetic field
configuration, e.g., by introducing additional vortices, we
would expect nonlinearities,41 which would lead to a power
dependence of the losses.

Another simplification is the field-independent flux-
focusing factor. In reality bff depends on B, which is only
partially focused into the gaps of the coplanar waveguide;
some of the flux also penetrates the superconductor in the
form of Abrikosov vortices and this amount is field-dependent.
Moreover, due to the geometry of our samples with a
meandering resonator line, bff is expected to vary along the
resonator. Consequently, also the losses δe depend on the
position along the resonator.

Finally, we have not taken into account dissipation in the
ground planes. If the vortices symmetrically penetrate the
ground planes and the center conductor, the presence of ground
planes would not affect the shape of the hysteresis at all but
only increase the absolute values of the losses due to return
currents at their edges. If there is an asymmetry in vortex
penetration due to different demagnetizing factors of center
conductor and ground planes, this can be viewed as equivalent
to different flux-focusing factors for the ground planes and the
center conductor. The resulting hysteresis of the whole system
with ground planes would be a mixture of two slightly different
hysteretic curves like those in Fig. 7(a). The influence of the
ground plane losses, however, is in any case reduced by a factor
a/S ≈ 2.2 compared to the losses in the center conductor due
to the smaller current density.42

In the experiments all the above mentioned effects are
merged together, but we think that none of them fundamentally
changes the observed and analyzed hysteretic behavior.

V. DEMAGNETIZATION AND TUNABILITY

In order to explore the possibility to return to the virgin
state after magnetic cycling, we performed a demagnetization

FIG. 8. (Color online) (a) 1/Qv(B) of Res 0 (n = 1) during
demagnetization (line); solid and open squares indicate the virgin
field sweep and minimum values after virgin field sweep for B � 0,
respectively; (b) 1/Qv(B) of the resonators 3 + , 1 + (hifted by
+5 · 10−5), and 0 (shifted by +1 · 10−4) for the virgin field sweep
(full symbols) and the minimum values after virgin field sweep (open
symbols).

procedure, i.e., we repeatedly swept the magnetic field up and
down with decreasing Bmax and monitored the corresponding
resonances. The procedure slightly differs from commonly
used demagnetization cycles, as we kept the sweep rate ∂B/∂t

constant, i.e., the period for one field cycle decreases with
decreasing Bmax. The idea behind this procedure is based
on the Bean and NBI model. Repeatedly sweeping the field
up and down with decreasing Bmax creates a sawtooth-like
flux pattern in the superconductor, with a sawtooth amplitude,
which depends on the difference �Bmax = |+Bmax| − |−Bmax|
between consecutive extrema (here �Bmax = 0.16 mT). Dur-
ing each second half cycle of this procedure Abrikosov
antivortices are pushed into the sample almost as far as
the vortices from the half cycle before reach. The field
distribution at the end resembles narrow alternating regions
of vortices and antivortices, whose density is determined
by �Bmax.

Figure 8(a) shows the measured energy losses 1/Qv(B)
during demagnetization (solid line). As can be seen with
decreasing Bmax, the losses at B = 0 are decreasing and
approach the virgin state value. The small but finite value for
1/Qv after demagnetization is probably due to the presence of
remanent (anti-)vortices, which were not annihilated during
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the repeated cycles. To avoid nonequilibrium effects, we
waited about one minute after each field step, i.e., a full
demagnetization procedure took about one day.

The demagnetization curve in Fig. 8(a) shows that over
almost the whole magnetic field range (B � 1 mT) the en-
velope of the full curve after the virgin field sweep, i.e., the
minimum values of the vortex associated losses (open squares),
lie considerably below the values of the virgin field sweep
(full squares). This provides the opportunity to significantly
reduce the losses of resonators or other microwave circuitry
components operated in magnetic fields (e.g., when it comes
to trapping of an ultracold atom cloud in the vicinity of
a resonator) by proper choice of magnetic history. We are
aware that the achievable reduction is small compared to
other approaches such as using antidots or slots. However,
for resonators patterned with antidots our procedure can be
used to additionally improve the device performance as shown
in Fig. 8(b), where we plot the virgin sweep data as well as the
minimum values during demagnetization for the resonators 0,
1 + , and 3 + . Although the losses are already significantly
reduced in the resonators with antidots,23 cycling in magnetic
fields can further reduce 1/Qv up to 30%. As can be seen in
the next section, where we explicitly show data for resonator
3 + , also the shape of the hysteresis curves seems rather
independent of the presence of antidots. By consulting our
simple model, we can see how this somewhat surprising
independence might be explained. The reasonable assumption
that the antidots increase the mean pinning force acting on the
vortices, i.e., increase the critical current density jc, leads to a
higher characteristic flux density Bc in the NBI model. For the
calculated hysteresis curves, an increase of Bc is equivalent to a
decrease of bff , which does not considerably change the nature
of the hysteresis, as long as the change of bff is not too large,
cf. Fig. 7(a). In reality, of course, the situation is probably
more complicated, as the relatively large antidots will modify
the flux density profiles more than just globally increasing jc

and a detailed analysis would be much more difficult.
The evolution of the resonance frequency fres during

demagnetization is depicted in Fig. 9(a). The variation in fres

covers a range of ∼1 MHz. For a quantification, we define
the frequency tunability of the resonator as the difference
between the maximum and the minimum resonance frequency
tres ≡ fres,max − fres,min for each value of B. The resulting
tres(B) of the three resonators with and without antidots
is shown in Fig. 9(b) for B � 0. For all three resonators
tres(B) ≈ 1 MHz, almost independent of perforation and B,
with a small tendency to increase with the number of antidots.

A tunability like this might be useful, e.g., for fine-tuning
a superconducting cavity to the (fixed) transition frequencies
of ultracold atom clouds. As for any value of B, each fres

value within the tunability range is accessible by at least
two different histories, and as the maxima (minima) of the
frequency (loss) hysteresis are not at the same field values, one
has to check all possibilities to find the optimum combination
of desired frequency and losses. As the exact parameters of the
hysteresis slightly differ from device to device and probably
from setup to setup, we cannot give a common recipe for
finding the best working point here. Instead, each device
has to be precharacterized in the corresponding experimental
situation.

FIG. 9. (Color online) (a) Measured resonance frequency fres(B)
of Res 0 for a full demagnetization cycle (line) with maximum
values (full squares) and minimum values (open squares) for positive
magnetic fields; (b) Tunability tres(B) = fres,max(B) − fres,min(B) of
the resonators 3 + (triangles), 1 + (circles), and 0 (squares).

We emphasize that we do not propose to tune the properties
of planar superconducting microwave components by just
applying a magnetic field and introducing Abrikosov vortices
here. If one just would like to fabricate a frequency tunable
device for instance, other approaches with larger ranges and
tunability velocities seem more promising.43–45 However, if
the microwave components have to be operated in specific
magnetic fields anyway, magnetic history effects provide a
nice additional possibility to reduce the losses and tune the
resonance frequencies by spatially rearranging Abrikosov
vortices.

VI. HIGHER MODES AND OTHER ANGLES

So far we have only considered the fundamental mode of
our resonators and an operation in a perpendicular magnetic
field. In the following we will present measurement results
on higher modes and discuss the influence of the tilt angle α

(cf. Fig. 4) between resonator plane and magnetic field on the
hysteresis loop.

Figure 10 exemplarily shows the measured energy losses
1/Qv(B) of resonator 3 + for (a) the fundamental mode
n = 1 and (b), (c), (d) the first three harmonics n = 2,3,4
in perpendicular magnetic fields. Clearly, the characteristic
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FIG. 10. (Color online) Measured vortex associated energy loss
1/Qv(B) for the four lowest modes n = 1 to 4 of Res 3 + for a full
cycle of magnetic field.

features of the hysteresis loop can also be seen for higher
modes.

Interestingly, with increasing frequency a fine structure
within the hysteresis curves emerges; see, e.g., Fig. 10(d) at
B ≈ ±1.5 mT. This fine structure might be related to inhomo-
geneously distributed losses along the resonator. Depending on
the resonator mode n, nodes and antinodes of the microwave
current standing wave probe different parts of the resonator,
i.e., they contribute differently to the overall losses. As already
pointed out, there is a variation of the flux-focusing factor and,
thus, the effective flux density along the resonator due to its
geometry. The flux focusing is smaller in the meandering lines
than in the straight part at the midpoint of the resonator, as
the adjacent gaps of the meander allow for partial sharing
of flux. Consequently, for different flux-focusing factors the
downsweep minima might occur at different applied magnetic
fields and the superposition of the 1/Qv curves of several
antinodes (which is what we measure) might lead to a fine
structure on the hysteresis loop with multiple minima.

Figure 11 shows the measured Q(B) of the fundamen-
tal mode of resonator 3 + for three different angles. In
perpendicular field, α = 90◦, we find the already described
hysteresis with significantly increased Q (reduced 1/Qv) on
the downsweep branch; see Fig. 11(a). For α < 90◦, the
hysteresis loop hardly changes, as can exemplarily be seen
in Fig. 11(b), where α ≈ 15◦. Note that the field range is
about four times larger than compared to the measurement with
perpendicular orientation. The general shape of the hysteresis
and the downsweep improvement in Q are very similar for
both angles. As sin(15◦) ≈ 0.26, this strongly suggests that the
resonator losses are primarily determined by the component
of B perpendicular to the sample.

The situation changes dramatically for α ≈ 0◦, where the
magnetic field was swept between ±0.2 T, as can be seen in
Fig. 11(c). For B < 80 mT the decrease in Q is relatively small
and also reversible (not shown). When the magnetic field is
increased further, the quality factor rapidly decreases. After
sweep direction inversion, Q remains low until at B ≈ 50 mT

FIG. 11. (Color online) Typical measured hysteresis curves of
the quality factor Q of the fundamental mode n = 1 (resonator 3 + )
during a full cycle of the magnetic field for three different angles
(a) α = 90◦, (b) α ≈ 15◦, and (c) α ≈ 0◦ between resonator plane
and applied field.

the quality factor increases and almost completely recovers
to the original value of Q(0). For negative fields we observe
qualitatively the same behavior. It is also important to note that
Q↓ � Q⇑.

Interestingly, a comparison of measurement results with
the theoretical curves presented in Sec. IV shows the best
agreement with the prediction of the classical Bean model and
not the NBI model; cf. Fig. 5. Although at first sight one would
indeed expect the classical Bean model to be the adequate
description for the flux density profile in this experimental
situation (field parallel to a superconducting plane), one has to
be careful with this interpretation for two reasons. First, one has
to consider that the film thickness d = 300 nm is about three
times the penetration depth (λeff ≈ 100 nm) and, therefore,
only 1.5 times the diameter of one Abrikosov vortex. Hence,
the Bean model as a kind of a mean field theory might probably
need a modification to properly describe the resonator losses
in this case. The step-like structures in Q(B) (e.g., at B ≈
±0.1 T) might reflect some kind of a discrete and nonsmooth
flux entry into and exit out of the superconductor. Moreover, it
is likely that the measured hysteresis is also partly the result of a
small misalignment between the applied field and the resonator
plane. At flux densities of B ≈ 100 mT, an alignment error of
only 0.5◦ already introduces a field of ≈1 mT perpendicular to
the film, which is large enough to significantly reduce Q; cf.
Fig. 11(a). Obviously, the hysteresis loop seems not to allow for
reducing the microwave losses in the resonator if the magnetic
field is applied close to parallel to the superconducting
film.
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VII. CONCLUSIONS

We experimentally investigated the properties of 3.3 GHz
superconducting coplanar transmission line resonators in
magnetic fields. In particular, we focused on resonators that
were zero-field cooled to T = 4.2 K and then exposed to
magnetic field cycles in the milli-Tesla range. We measured the
resonance frequency fres and quality factor Q of the resonators
and found strong hysteresis effects, which on the mesoscopic
scale are due to the presence of Abrikosov vortices in the
superconducting film and their spatial redistribution during the
field cycles. By using a simple model for the vortex-associated
resonator losses, we shown that different combinations of
microwave current and flux density distributions lead to char-
acteristically different hysteresis loops. We find best agreement
between experiment and theory for a current distribution that
is strongly peaked at the resonator edges and with a modified
Bean flux gradient for thin films, as described by Norris,
Brandt, and Indenbom. We have also shown that the hysteresis
may be used to improve the resonator performance for fixed
values of applied magnetic field by proper choice of magnetic
history. Accordingly, the resonance frequency can be tuned
by about 1 MHz, i.e., for our resonators by a few zero-field
linewidths at liquid Helium temperature. Both the reduction of
the losses and the tunability of the frequency are found to be
possible for resonators with and without antidots. Furthermore,
we show that the hysteresis can also be found for higher modes
n = 2,3,4 of the resonators and for angles between 90◦ and

a few degrees between the field direction and the resonator
plane. In the parallel field orientation, the hysteresis showed
a very different behavior with presumably no possibility for a
resonator improvement with magnetic history.

For many experiments in circuit quantum electrodynamics,
superconducting resonators are operated in the Millikelvin and
single photon regime. Hence, the effects presented here have to
be investigated under these conditions in further studies. Still,
there are no obvious reasons why the reported hysteresis effects
should qualitatively change with decreasing temperature and
power. Other parameters that are expected to change the nature
of the hysteresis and that have to be considered for possible
applications are the geometric dimensions of the transmission
line and the thickness of the films, which together with the
magnetic penetration depth have a strong influence on current
distribution and flux density profile.
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34M. Göppl, A. Fragner, M. Baur, R. Bianchetti, S. Filipp, J. M. Fink,
P. J. Leek, G. Puebla, L. Steffen, and A. Wallraff, J. Appl. Phys.
104, 113904 (2008).

35J. I. Gittleman and B. Rosenblum, J. Appl. Phys. 39, 2617 (1968).
36E. H. Brandt, Phys. Rev. Lett. 67, 2219 (1991).
37M. W. Coffey and J. R. Clem, Phys. Rev. Lett. 67, 386 (1991).
38N. Klein, H. Chaloupka, G. Müller, S. Orbach, H. Piel, B. Rosa,

L. Schultz, U. Klein, and M. Peiniger, J. Appl. Phys. 67, 6940
(1990).

39A. I. Gubin, K. S. Ilin, S. A. Vitusevich, M. Siegel, and N. Klein,
Phys. Rev. B 72, 064503 (2005).

40A. G. Zaitsev, R. Schneider, R. Hott, Th. Schwarz, and J. Geerk,
Phys. Rev. B 75, 212505 (2007).

41M. A. Golosovsky, H. J. Snortland, and M. R. Beasley, Phys. Rev.
B 51, 6462 (1995).

42P. Lahl and R. Wördenweber, J. Appl. Phys. 97, 113911
(2005).

43J. E. Healey, T. Lindström, M. S. Colclough, C. M. Muirhead, and
A. Ya. Tzalenchuk, Appl. Phys. Lett. 93, 043513 (2008).

44A. Palacios-Laloy, F. Nguyen, F. Mallet, P. Bertet, D. Vion, and
D. Esteve, J. Low Temp. Phys. 151, 1034 (2008).

45M. Sandberg, C. M. Wilson, F. Persson, T. Bauch, G. Johansson,
V. Shumeiko, T. Duty, and P. Delsing, Appl. Phys. Lett. 92, 203501
(2008).

014517-11

http://dx.doi.org/10.1140/epjb/e2006-00320-9
http://dx.doi.org/10.1140/epjb/e2006-00381-8
http://dx.doi.org/10.1140/epjb/e2006-00381-8
http://dx.doi.org/10.1103/PhysRevLett.93.197001
http://dx.doi.org/10.1103/PhysRevLett.93.197001
http://dx.doi.org/10.1063/1.3010859
http://dx.doi.org/10.1063/1.3010859
http://dx.doi.org/10.1063/1.1656632
http://dx.doi.org/10.1103/PhysRevLett.67.2219
http://dx.doi.org/10.1103/PhysRevLett.67.386
http://dx.doi.org/10.1063/1.345037
http://dx.doi.org/10.1063/1.345037
http://dx.doi.org/10.1103/PhysRevB.72.064503
http://dx.doi.org/10.1103/PhysRevB.75.212505
http://dx.doi.org/10.1103/PhysRevB.51.6462
http://dx.doi.org/10.1103/PhysRevB.51.6462
http://dx.doi.org/10.1063/1.1929088
http://dx.doi.org/10.1063/1.1929088
http://dx.doi.org/10.1063/1.2959824
http://dx.doi.org/10.1007/s10909-008-9774-x
http://dx.doi.org/10.1063/1.2929367
http://dx.doi.org/10.1063/1.2929367



