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Parametric four-wave mixing toolbox for superconducting resonators
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We study a superconducting circuit that can act as a toolbox to generate various Bogoliubov linear and nonlinear
quantum operations on the microwave photon modes of superconducting resonators within one single circuit.
The quantum operations are generated by exploring dispersive four-wave mixing (FWM) processes involving the
resonator modes. Different FWM geometries can be realized by adjusting the circuit parameters and by applying
appropriate microwave drivings. We illustrate this scheme using a circuit made of two superconducting qubits
that couple with each other. Each qubit couples with one superconducting resonator. We also discuss main sources
of quantum errors in this system and study the fidelity of the quantum operations by numerical simulation. Our
scheme provides a practical approach to realize quantum information protocols on superconducting resonators.
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I. INTRODUCTION

Superconducting quantum circuits have been inten-
sively studied as building blocks for quantum information
processing.1–13 Among these devices, superconducting mi-
crowave resonators have demonstrated relatively high quality
factors and strong coupling with various superconducting
qubits.14 Various quantum optical phenomena and quantum
many-body effects involving microwave photons, in particular,
circuit quantum electrodynamics, have been observed in the
superconducting resonators.15

The generation of nonclassical states such as Fock states,
entangled states, and NOON states in the superconducting
resonators has been studied in recent experiments and the-
oretical proposals.16–29 In most of these schemes, quantum
state manipulation is achieved via the coupling between su-
perconducting resonators and superconducting qubits. Several
schemes have been proposed to generate unitary transfor-
mations on the microwave photons by engineering effective
interaction Hamiltonians between the resonator modes, includ-
ing Kerr and cross-Kerr interactions, beam-splitter operation,
and squeezing operation.30–34 In these schemes, the proposed
circuits can only realize specific quantum operation on the
resonator modes. In a recent work, Langford and coauthors
studied an interesting idea of generating quantum operations
starting from a nonlinear Kerr interaction between different
optical (or microwave) modes.35 By applying selected classical
pumps, a full set of quantum operations can be generated
between selected modes.

All of the quantum operations that are crucial for imple-
menting quantum information protocols on resonator modes
can be constructed from a basic set of quantum operations.
For both discrete-state and continuous variable quantum
information protocols on the resonator modes, these basic
operations include the Bogoliubov linear operations such as
the beam-splitter operation, the squeezing operation, and the
phase shifter and nonlinear operations such as the cross-Kerr
interaction.36,37 A discussion of these operations can be found
in the Appendix. In this work, we present a scheme that
can generate all of these basic operations using one single
circuit. This toolbox is made of two superconducting qubits
coupled with each other to form a quantum four-level system.
Each qubit interacts with one superconducting resonator. By

adjusting the parameters of the toolbox, we design dispersive
four-wave mixing (FWM) processes to generate effective
quantum operations on the resonator modes, as is illustrated in
Fig. 1. During the operations, the quantum four-level system is
always preserved in its quantum ground state by large detun-
ings, and hence this scheme is a parametric scheme. Using
numerical simulation, we show that high-fidelity quantum
operations can be achieved with realistic circuit parameters.
In particular, we demonstrate the realization of a controlled
phase gate using the proposed scheme and show that fidelity
higher than 99% can be achieved. Compared with previous
schemes,30–34 our proposal provides a switchable circuit that
can generate all of the basic quantum operations by adjusting
the parameters of the toolbox. Hence, the proposed scheme
can advance the scalability of quantum information protocols
on superconducting resonators by connecting a network of
resonators with such toolboxes.

The paper is organized as follows. In Sec. II, we present
the general idea of the toolbox and illustrate the idea with a
specific circuit made of two coupled superconducting charge
qubits. In Sec. III, we describe the dispersive FWM processes
for generating effective Hamiltonians on the resonator modes
using the toolbox. The realizations of four quantum operations
are presented in detail in Sec. IV. In Sec. V, we discuss the
main sources of quantum errors in this scheme and present
our numerical simulation of the controlled phase gate using
the effective cross-Kerr interaction. Conclusions are given in
Sec. VI. In the Appendix, we briefly discuss all of the basic
quantum operations and their roles in the quantum information
processing for the resonator modes.

II. CIRCUIT

The central element of the toolbox is a quantum four-level
system that couples with the superconducting resonators and
can be constructed in many ways. For the discussion in this
paper, we will consider a circuit for the toolbox that is made
of two superconducting qubits coupling with each other. The
Hamiltonian for the total system has the form

Htot = Hq + Hr + Hp, (1)

which includes the Hamiltonian for the four-level system
Hq = ∑

j Ej |j 〉〈j | with eigenstates |j 〉 and eigenenergies
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â1 â2

FIG. 1. (Color online) Schematic illustration of the dispersive
FWM toolbox with a dial plate. Two resonator modes â1 and â2 are
connected to the toolbox. The toolbox is made of a superconducting
circuit with controllable parameters (�,�1,�2) and classical drivings
with Rabi frequencies (�1,�2). By adjusting the parameters and
drivings to appropriate values, the toolbox is switched on to perform
selected quantum operation on the resonator modes as labeled on the
dial plate.

Ej (j = a, b, c, d); the Hamiltonian for the resonators and
their couplings to the qubits,

Hr =
∑

i

h̄ωai
â
†
i âi + h̄giσxi(â

†
i + âi), (2)

with resonator frequencies ωai
and coupling constants gi ;

and the Hamiltonian for the classical drivings on the qubits
Hp = ∑

h̄�i(t)σxi with driving amplitudes �i . Without loss
of generality, we have assumed that each resonator couples
only with one qubit via the σxi operator and the classical
driving is also on the σxi operator. Other forms of coupling
and driving could also be considered for the toolbox.

The coupling terms in Hr (the driving terms in Hp) generate
transitions between the eigenstates of the four-level system
which involve absorption or emission of resonator photons
(classical field). The transition matrix elements induced by
these terms can be derived by projecting the σxi operator in
the eigenbasis |j 〉.

Superconducting qubits in various parameter regimes and
circuit geometries have been studied, including flux qubits,
phase qubits, charge qubits, and transmon qubits.1,2 The qubits
can be controlled by external electromagnetic fields such as
the magnetic flux in the loop of a superconducting quantum
interference device and the bias voltage on a superconducting
island, depending on specific circuit design. Different coupling
mechanisms between superconducting qubits have also been
studied, such as capacitive coupling, Josephson coupling,
and inductive coupling.38–42 Decoherence in superconducting
qubits has improved greatly in the past few years with T �

2
exceeding 95 μs recently observed.43–46

To illustrate our scheme, we study a toolbox made of
two superconducting charge qubits.1 We want to emphasize,
however, that the FWM approach studied here is a general
scheme that can be applied to other superconducting qubits
with different forms of coupling. As is shown in Fig. 2, the
charge qubits couple with each other via a tunable Josephson
junction where the effective Josephson energy EJm can be

FIG. 2. (Color online) Schematic circuit for the toolbox. The
resonators are labeled by capacitances Cri and inductances Lri .

adjusted by varying the magnetic flux � in the loop. The
Josephson energies EJi of the qubit junctions can be adjusted
by changing the magnetic flux �1,2 in the qubit loops. The
Hamiltonian for the coupled qubits can be derived using a
Lagrangian approach with

Hq = (EJ1/2)σz1 + (EJ2/2)σz2 + Hint, (3)

Hint = Emx(σx1σx2 + b0σy1σy2 + b0σz1σz2), (4)

where Emx is the charging energy of the capacitance Cm of the
coupling junction and b0 = EJm/4Emx is the ratio between
the Josephson energy and the charging energy. Note that the
coupling junction is a larger junction with its Josephson energy
larger than its charging energy, in contrast to the junctions
of the charge qubits. Here, we assume the qubits are biased
to have zero charging energy so that the qubit energies are
the Josephson energies EJi .47 We define the total capacitance
connected to the superconducting island of the ith qubit as
C�i = CJi + Cgi + Cm and the total capacitance connected
to the ith resonator as C�ri = Cri + Cgi + C0i , where Cgi is
the capacitance that couples a resonator to its corresponding
qubit, CJi is the Josephson capacitance, Cri is the resonator
capacitance, and C0i is the capacitance that couples to the
external circuit, as labeled in Fig. 2. With the capacitances
satisfying C�ri � C�i � Cm, the capacitive coupling Emx

can be derived as

Emx ≈ Cme2
/[

C�1C�2 − C2
m

]
. (5)

The eigenenergies of the Hamiltonian Hq are

Ea = Emxb0 − Es+/2, (6a)

Eb = −Emxb0 − Es−/2, (6b)

Ec = −Emxb0 + Es−/2, (6c)

Ed = Emxb0 + Es+/2, (6d)

where Es± = √
(EJ1 ± EJ2)2 + 4E2

mx(1 ∓ b0)2 can be ad-
justed by varying the qubit energies EJi and the Josephson
coupling EJm. The eigenstates are

|a〉 = − sin θ+|0102〉 + cos θ+|1112〉, (7a)

|b〉 = cos θ−|0112〉 − sin θ−|1102〉, (7b)
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|c〉 = sin θ−|0112〉 + cos θ−|1102〉, (7c)

|d〉 = cos θ+|0102〉 + sin θ+|1112〉, (7d)

where |0i〉 and |1i〉 are the single-qubit eigenstates in the σzi

basis and sin θ± = √
[Es± ± (EJ1 ± EJ2)]/2Es±.

The resonator-qubit coupling gi for the ith resonator in
Eq. (2) can also be derived using the Lagrangian approach with

gi =
(

CgiC�ī

C�1C�2 − C2
m

)(
e2

2C�ri

h̄ωai

)1/2

, (8)

where C�ī is the total capacitance of the īth qubit with the
index ī referring to the qubit in the opposite side of the toolbox
from the ith resonator. We also find that the ith resonator
couples with the īth qubit as well as the īth resonator in
the opposite side of the toolbox due to the cross-talk of the
circuit elements. These indirect couplings have the forms of
h̄g

(2)
i σxi(â

†
ī
+ âī) and h̄g(3)(â1 + â

†
1)(â2 + â

†
2) with coupling

constants much weaker than the dominant couplings gi in
Eq. (8), as will be discussed in Sec. V.

Both the resonator-qubit coupling and the classical driving
Hp are associated with the qubit operators σxi . In the eigenbasis
in Eqs. (7a)–(7d), we have

σx1 = cos(θ+ − θ−)(σab + σdc)

+ sin(θ+ − θ−)(σdb − σac) + H.c., (9a)

σx2 = − sin(θ+ + θ−)(σab − σdc)

+ cos(θ+ + θ−)(σac + σdb) + H.c., (9b)

where σij = |i〉〈j | defines the transition operator connecting
the eigenstates |i〉 and |j 〉. From these expressions, it follows
that each resonator (and classical driving) generally couples
to four transitions. For example, the σx1 term includes the
σab,σdc transitions with amplitude g1 cos(θ+ − θ−) and the
σac,σdb transitions with amplitude ±g1 sin(θ+ − θ−).

In the following sections, we will show how to engineer
the energy levels of the quantum four-level system to have the
resonators couple only with selected transitions by adjusting
the circuit parameters.

III. DISPERSIVE FWM SCHEME

The effective Hamiltonians to implement quantum oper-
ations on the resonators can be realized via the resonator-
qubit coupling and classical driving in the circuit studied
above. Here, we exploit four-photon processes,48–53 in which
single-photon transitions and two-photon processes are in the
dispersive regime with large detunings while the designated
four-photon processes are nearly at resonance. As an example,
in Fig. 4(a), consider a classical driving of frequency ω1

generating the transition σac with Rabi frequency �1 and
the resonator mode â1 generating the transition σdc with
effective transition matrix element g̃1. For the single-photon
transition induced by the classical driving, the dispersive
condition requires that |	1| = |ω1 − Eca/h̄| � �1; for the
single-photon transition induced by mode â1, it requires
that |ωa1 − Edc/h̄| � g̃1

√
n1 with Eij = Ei − Ej and n1

being the average photon number in â1. For the two-photon
process involving these two transitions, it requires that
|	1δ| � �1g̃1

√
n1 with |δ| = |ω1 + ωa1 − Eda/h̄| being the

b0

E
i/

2π
(G

H
z)

FIG. 3. Eigenenergies of the quantum four-level system with cir-
cles for Ea , up-triangles for Eb, squares for Ec, and diamonds for Ed .
The parameters are EJ1/2πh̄ = 8.45 GHz, EJ2/2πh̄ = 13.95 GHz,
and Emx/2πh̄ = 4 GHz (same parameters as used in the cross-Kerr
operation in Sec. IV B).

two-photon detuning. Under the dispersive conditions, the
dominant physical processes in this scheme are four-photon
processes which can generate effective coupling between the
resonator modes. Because the dispersive conditions prevent
real transitions, the quantum four-level system is preserved
in its ground state during the operation. The processes studied
here are hence parametric schemes where the four-level system
is subject to a “quantum” energy shift.48

To implement a quantum operation, we need to adjust the
parameters of the superconducting circuit to find appropriate
effective coupling constants and energy separations between
the eigenstates. For the circuit in Fig. 2, we adopt two
approaches to determine the circuit parameters. The first
approach uses the relation in Eqs. (9a) and (9b) to tune the
effective transition matrix elements by adjusting the angles θ±.
By adjusting the circuit parameters EJ1,EJ2,b0, the angles can
be varied in a large range. The second approach exploits the
controllability of the energy levels to engineer large detunings
to suppress unwanted transitions. As an example, in Fig. 3, we
plot the eigenenergies as functions of the ratio b0 (defined in
Sec. II). As b0 varies, the state |a〉 (|c〉) can be either above
or below the state |b〉 (|d〉), which provides the possibility
to arrange both the order and the energy separation of the
eigenstates. To make, e.g., the mode â1 only couple strongly
to the σab transition, we choose the parameters to have
(1) cos(θ+ − θ−) � sin(θ+ − θ−) and (2) |ωa1 − Eba/h̄| �
|ωa1 − Edc/h̄|. The first condition significantly reduces the
effective coupling between â1 and the σac,σdb transitions
and the second condition suppresses the â1σdc term by large
detuning. Now, mode â1 couples mainly with the σab transition.
In general, by combining the above two approaches, all
quantum operations described in the Appendix can be realized
with the FWM scheme within one single circuit.

IV. REALIZATION OF OPERATIONS

In this section, we present the realization of four quantum
operations described in the Appendix using the quantum tool-
box. The system parameters are chosen as follows: ωa1/2π =
10 GHz and ωa2/2π = 16 GHz for the resonator frequencies,
g1/2π = g2/2π = 0.3 GHz for the coupling constants, and
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FIG. 4. (Color online) Energy diagram for the FWM schemes of
(a) beam-splitter operation, (b) cross-Kerr interaction, (c) two-mode
squeezing, and (d) single-mode squeezing. The labels are detuning
	i for single-photon transition, detuning δ for two-photon process,
detuning 	F for four-photon process, Rabi frequency �i for classical
driving (red arrows), and operator âi for resonator mode (light and
dark blue arrows).

Emx/2πh̄ = 4 GHz for the capacitive coupling defined in
Eq. (5). The effective Josephson energies EJ1, EJ2, and EJm

can be adjusted by tuning the magnetic flux �1, �2, and
�, respectively. The energy diagrams of the dispersive FWM
schemes for the operations are shown in Fig. 4.

A. Beam-splitter operation

Consider the energy diagram in Fig. 4(a), where the de-
tunings are defined as 	1 = ω1 − Eca/h̄, 	2 = ω2 − Eba/h̄,
and δ = ω1 + ωa1 − Eda/h̄ with ωi being the frequency of the
classical driving. In the energy diagram, the resonator modes
only couple with the upper transitions σdb, σdc and the classical
drivings only couple with the lower transitions σab, σac. This
can be achieved by choosing the parameters b0 = −0.68,
EJ1/2πh̄ = 8 GHz, and EJ2/2πh̄ = 15 GHz so that the large
separation between the ground state and the excited states
provides energy selection for the transitions. Under these
parameters and appropriate classical driving frequencies, the
detunings for the desired single-photon and two-photon pro-
cesses as labeled in the energy diagram are 	i/2π = −4 GHz
and δ/2π = 3.49 GHz. The detunings for the unwanted tran-
sitions, e.g., ωa1 − Eba/h̄,ωa2 − Eca/h̄, ∼ 9 GHz, are much
larger so that the unwanted transitions are suppressed. These
parameters also give | cos(θ+ − θ−)| � | sin(θ+ − θ−)| so that
the coupling between the mode â1 (â2) and the transition σdb

(σdc) is much weaker than the coupling between the mode
â1 (â2) and the transition σdc (σdb). As a result, the mode
â1 mainly couples with the σdc transition. Similar arguments
apply to other transitions in the energy diagram.

We divide the total Hamiltonian into two parts: Htot = H0 +
V where

H0/h̄ = ω1σcc+ ω2σbb+(ω1+ωa1 )σdd +
∑

i

ωai
â
†
i âi , (10)

σii = |i〉〈i|, and V includes all remaining terms in the total
Hamiltonian. Here, the ground-state energy is set to zero.
The Hamiltonian in the interaction picture of H0 can be
written as eiH0t/h̄V e−iH0t/h̄ ≈ HI0 + VI under the rotating
wave approximation with HI0/h̄ = −	1σcc − 	2σbb − δσdd

and

VI/h̄ = �1σca + �2σba + g̃1â1σdc + g̃2e
i	F t â2σdb + H.c.

(11)

The effective couplings g̃1 = g1 cos(θ+ − θ−) and g̃2 =
g2 cos(θ+ + θ−) are derived from Eqs. (9a) and (9b). And
	F = ω1 + ωa1 − ω2 − ωa2 is a small detuning for the four-
photon process designed to balance the extra terms in the
effective Hamiltonian for the resonators.

Given the dispersive conditions discussed in Sec. III, we
treat VI as a perturbation to the Hamiltonian HI0. Assume that
the toolbox is initially prepared in its ground state |a〉. It can be
shown that the dominant correction to HI0 by the perturbation
VI is a fourth-order term that generates a “quantum” energy
shift in the ground state in the form of σaaHbm where

Hbm/h̄ =
∑

i

δεbm
i â

†
i âi + (χbmâ

†
1â2e

i	F t + H.c.), (12)

with the energy shifts δεbm
i = �2

i g̃
2
i /	

2
i δ, the effective cou-

pling constant

χbm = �1�2g̃1g̃2/	1	2δ, (13)

and the four-photon detuning 	F = δεbm
2 − δεbm

1 . The small
four-photon detuning is chosen to balance the effect of the
mode shifts δεbm

i . The above effective Hamiltonian performs
the beam-splitter operation on the resonators while the toolbox
is preserved in the ground state during the operation. The
beam-splitter operation can perform a swap gate on the
resonators after applied for a gate time tg = π/2|χbm|.36 With
the parameters given above and with �i/2π = 1.5 GHz, the
effective coupling is |χbm|/2π = 6.2 MHz and the swap gate
has a gate time of 40.5 ns.

B. Cross-Kerr nonlinearity

The energy diagram for the cross-Kerr operation is shown
in Fig. 4(b) with the detunings defined as 	1 = ωa1 − Eba/h̄,
	2 = ωa2 − Eca/h̄, and δ = ωa1 + ωa2 − Eda/h̄. Compared
with the beam-splitter operation, the asymmetry in the energy
levels is reduced and no classical driving needs to be applied.
The parameters are chosen to be b0 = −0.61, EJ1/2πh̄ =
8.45 GHz, and EJ2/2πh̄ = 13.95 GHz, which give 	1/2π =
−4.59 GHz, 	2/2π = −4.93 GHz, and δ/2π = 0.17 GHz.
Under these parameters, the effective coupling constant for
the desired couplings â1σdc,â1σab is g̃1/2π ≈ 0.3 GHz, while
the unwanted couplings â1σdb,â1σac are strongly suppressed
with g̃1/2π ≈ 0.01 GHz. The unwanted coupling â2σdc has a
detuning of |ωa2 − Edc/h̄|/2π ≈ 11 GHz and is suppressed by
the large detuning.
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We divide the total Hamiltonian as Htot = H0 + V with

H0/h̄ = ωa1σbb + ωa2σcc + ωtσdd +
∑

i

ωai
â
†
i âi (14)

and ωt = ωa1 + ωa2 . The Hamiltonian in the interaction picture
of H0 is eiH0t/h̄V e−iH0t/h̄ ≈ HI0 + VI under the rotating wave
approximation where HI0/h̄ = −	1σbb − 	2σcc − δσdd and

VI/h̄ = g̃1â1(σdc + σba) + g̃2â2(σdb + σca) + H.c., (15)

with the effective couplings g̃1 = g1 cos(θ+ − θ−) and g̃2 =
g2 cos(θ+ + θ−). With the same perturbation-theory approach
as used in the previous subsection, we derive the fourth-order
perturbation correction to the ground-state energy σaaHck.
Here,

Hck/h̄ =
∑

i

δεck
i â

†
i âi + χ ckâ

†
1â

†
2â2â1, (16)

with the energy shifts δεck
i = g̃2

i /	i and the effective coupling

χ ck = (1/	1 + 1/	2)2
(
g̃2

1 g̃
2
2/δ

)
. (17)

With the above parameters, |χ ck|/2π = 6.3 MHz.
Given the effective cross-Kerr interaction in Eq. (16), the

controlled phase gate can be realized on the resonator modes
which generates the following transformations:

|0102〉 → |0102〉, (18a)

|0112〉 → e−iδεck
2 t |0112〉, (18b)

|1102〉 → e−iδεck
1 t |1102〉, (18c)

|1112〉 → e−iδεck
1 t−iδεck

2 t−iχ ckt |1112〉, (18d)

on the corresponding resonator states. At tg = π/|χ ck|, the
nonlinear term generates a phase π on the state |1112〉. With
the above parameters, we find that the gate time is tg = 79.4 ns.
To test the above results, we simulate the time evolution of
the combined resonator-toolbox system under the Hamiltonian
HI0 + VI given in Eq. (15). Consider the initial state

|a〉(|01〉 + |11〉)(|02〉 + |12〉)/2, (19)

where the toolbox is in the ground state |a〉. The target state
at time tg can be derived by substituting time t with tg in
Eqs. (18a)–(18d) while keeping the toolbox in the state |a〉.
In Fig. 5, we plot |〈ψi |ψ(t)〉| for different states |ψi〉. After
the evolution starts, the amplitude of the initial state starts to
decrease. At the target time tg , the amplitude of the target state
nearly reaches unity, which demonstrates that the final state
of the system has successfully evolved to become the target
state. The amplitude of the state |a〉|0102〉 stays at 0.5 with
no significant transition to other states during the evolution.
Meanwhile, the amplitude of the state |a〉|1112〉 shows small
deviation from 0.5 due to leakage to the excited states of the
toolbox during the evolution, which can reduce the fidelity of
the controlled phase gate.

C. Two-mode squeezing

In Fig. 4(c), we present an energy diagram that can realize
the two-mode squeezing operation with the detunings defined
as 	1 = ω1 − Eab/h̄, 	2 = ω2 − Edb/h̄, and δ = ω2 − ωa1 −
Ecb/h̄. Here, the order of the eigenstates is switched with Ea >

Eb; i.e., the state |b〉 is now the ground state of the toolbox.

t(ns)

|ψ
i|ψ

(t
)
|

FIG. 5. Time evolution of |〈ψi |ψ(t)〉| under the cross-Kerr
interaction. Solid curve: |ψi〉 is the target state at time tg . Dashed
curve: |ψi〉 is the initial state given in Eq. (19). Thin-solid curve:
|ψi〉 = |a〉|0102〉. Dotted curve: |ψi〉 = |a〉|1112〉.

The circuit parameters are chosen to be b0 = 1.2, EJ1/2πh̄ =
8 GHz, and EJ2/2πh̄ = 14 GHz. Under these parameters, we
tune the classical driving frequencies to give 	1/2π = 3 GHz,
	2/2π = −5 GHz, and δ/2π = −3.67 GHz. The classical
drivings induce the σab,σdb transitions in the energy diagram.
It can also be shown that the mode â1 mainly couples with
the σdc transition and the mode â2 mainly couples with the
σac transition. With these parameters, the driving frequencies
are ω1/2π = 10.9 GHz and ω2/2π = 24.9 GHz. Note that
at high driving frequency the microwave driving can induce
quasiparticle excitations in the superconductor. This effect can
be avoided by considering a two-photon process for the σdb

transition.
Using the approach in the previous subsections with

H0/h̄ = ω1σaa + ωsσcc + ω2σdd +
∑

i

ωai
â
†
i âi (20)

and ωs = ω2 − ωa1 , we derive that HI0/h̄ = −	1σaa −
	2σdd − δσcc and

VI/h̄ = �1σab + �2σdb + g̃1â1σdc + g̃2e
i	F t â2σac + H.c.,

(21)

with the effective couplings g̃1 = g1 cos(θ+ − θ−) and g̃2 =
g2 cos(θ+ + θ−) and a small four-photon detuning 	F = ω2 −
ω1 − ωa1 − ωa2 . The fourth-order perturbation correction to
the ground-state energy is σaaHsq with

Hsq/h̄ =
∑

i

δε
sq
i â

†
i âi + (χ sqâ

†
1â

†
2e

i	F t + H.c.), (22)

where the energy shifts are δε
sq
i = �2

ī
g̃2

i /	
2
ī
δ with the index ī

referring to the circuit elements in the opposite side of the ith
resonator (e.g., for i = 1, ī = 2), the effective coupling is

χ sq = �1�2g̃1g̃2/	1	2δ, (23)

and the four-photon detuning is 	F = −δε
sq
1 − δε

sq
2 . The

nonzero four-photon detuning balances the effect of the energy
shifts and makes the squeezing operation possible. With the
parameters given above and with �i/2π = 2 GHz, we have
|χ sq|/2π = 4.3 MHz.
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D. Single-mode squeezing

The single-mode squeezing operation can be realized with
the energy diagram in Fig. 4(d) with the detunings defined as
	1 = ωa1 − Eab/h̄, 	2 = ω2 − Edb/h̄, and δ = ω2 − ωa1 −
Ecb/h̄. The circuit parameters are chosen to be b0 = 1.2,
EJ1/2πh̄ = 6 GHz, and EJ2/2πh̄ = 15 GHz. Tuning the fre-
quencies of the classical drivings, we have 	1/2π = 3 GHz,
	2/2π = −5 GHz, and δ/2π = −4.75 GHz. The circuit pa-
rameters are chosen to have the energy separation Eab close
to the frequency of mode â1. Hence, â1 couples strongly with
the σab transition as well as the σdc transition. Meanwhile,
the energy levels are adjusted so that the frequency of mode
â2 is largely detuned from all possible transitions and is
effectively decoupled from the toolbox. The classical drivings
generate the σac,σdb transitions. With the above parameters,
ω1/2π = 12.0 GHz and ω2/2π = 25.0 GHz.

With the Hamiltonian

H0/h̄ = ωa1σaa + ωsσcc + ω2σdd +
∑

i

ωai
â
†
i âi (24)

and ωs = ω2 − ωa1 , we have HI0/h̄ = −	1σaa − 	2σdd −
δσcc and

VI/h̄ = �1σcae
i	F t + �2σdb + g̃1â1(σdc + σab) + H.c.,

(25)

with the effective coupling constant g̃1 = g1 cos(θ+ − θ−)
and the four-photon detuning 	F = ω2 − ω1 − 2ωa1 . Then,
we derive the fourth-order perturbation correction to the
ground-state energy σaaHsq1 with

Hsq1/h̄ = δε
sq1
1 â

†
1â1 + (χ sq1â

†
1â

†
1e

−i	F t + H.c.), (26)

where the energy shifts are

δε
sq1
1 = (

δ/	1 + �2
1/	

2
1 + �2

2/	
2
2

)(
g̃2

1/δ
)
, (27)

the effective coupling constant is

χ sq1 = �1�2g̃
2
1/	1	2δ, (28)

and the four-photon detuning is 	F = 2δε
sq1
1 . With the

parameters given above and with �i/2π = 1 GHz, we have
|χ sq1|/2π = 11.1 MHz.

V. ERROR SOURCES

Quantum errors can affect the effective quantum operations
on the superconducting resonators. In our system, the main
sources of quantum errors include (1) unwanted transitions
induced by resonator-qubit coupling and classical driving, (2)
indirect coupling due to the cross-talk between different circuit
elements, and (3) decoherence of the qubits and resonators.

We first study the effect of unwanted transitions on the ef-
fective quantum operations studied in Sec. IV. In the proposed
scheme, the circuit parameters can be adjusted to suppress the
unwanted transitions either by reducing the coupling matrix
element of the unwanted transitions or by varying the energy
levels of the unwanted transitions to produce large detuning. To
test the effectiveness of our approach, we numerically simulate
the quantum operations using the full Hamiltonian in Eq. (1)
which includes all of the nonzero transition matrix elements.
In Fig. 6, we present our result for the fidelity of the controlled

Emx/2π (GHz)

Emx/2π (GHz)

FIG. 6. Fidelity and gate time vs Emx for the controlled phase
gate using parameters in Sec. IV B.

phase gate which is demonstrated in Sec. IV B. The initial
state for the simulation is given in Eq. (19). For each value of
the coupling energy Emx with Emx/2π ∈ (3.5,4.5) GHz, we
search for the maximum fidelity by varying EJi , b0, and the
gate time. The maximum fidelity and the corresponding gate
time are then plotted in Fig. 6. We show that the maximum
fidelity can exceed 0.99 at Emx/2π = 4 GHz. Our simulation
hence shows that high fidelity can be achieved for effective
quantum operations by choosing appropriate parameters. In
Fig. 6, the fidelity fluctuates “randomly” within a narrow
range as Emx varies. This is because the time evolution of the
total system includes small but fast oscillations resulted from
multiple unwanted off-resonant transitions, as can be seen in
Fig. 5. Such oscillations affect the optimal gate time and the
fidelity by a small magnitude in a nearly “random” way.

Another source of quantum errors is the circuit cross-talk
between different circuit elements. In Eqs. (2) and (8), the
direct coupling between the resonator and its neighboring qubit
is presented. However, due to the cross-talk, each resonator
also couples with the qubit in the opposite side of the circuit in
the form of h̄g

(2)
i σxi(â

†
ī
+ âī). The coupling constant for this

indirect coupling is

g
(2)
i =

(
CgiCm

C�1C�2 − C2
m

)(
e2

2C�ri

h̄ωai

)1/2

, (29)

with g
(2)
i /gi = Cm/C�ī � 1. Another indirect coupling is the

coupling between the two resonators in the form of g(3)(a1 +
a
†
1)(a2 + a

†
2) with the coupling constant

g(3) =
√

Cg1Cg2Cm

C�1C�2 − C2
m

√
Cg1Cg2

4C�r1C�r2

√
h̄ωa1h̄ωa2 . (30)

It can be shown that

g(3)/gi ∼ Cm

C�ī

√
Cgi

4C�ri

√
h̄ωai

e2/2Cgi

� 1. (31)

These indirect coupling terms can hence be neglected.
Decoherence of the superconducting qubits and resonators

is one of the key barriers for scalable quantum information
processing and has been intensively studied in the past two
decades.44,46 The quantum toolbox studied here is made of
two coupled superconducting qubits and can be subject to
both single-qubit and two-qubit decoherence. However, for the
dispersive FWM scheme proposed in this work, the quantum
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toolbox is largely preserved in its ground state during the
quantum operations and, hence, is not affected by either single-
qubit or two-qubit decoherence. Only small leakage to the
excited states can be induced by the unwanted transitions as is
studied above. Given the small amplitude of the leakage as is
shown in Fig. 5, qubit decoherence will not affect the effective
quantum operations significantly. Superconducting resonators
can have relatively high Q factors. With Q exceeding 106, it
corresponds to a damping time of ∼ 100 μs. Meanwhile, our
study in the previous section shows that the time scale for
the quantum operations, ∼ π/|χα| for operation α, is below
100 ns, which is shorter than the decoherence time by two to
three orders of magnitude.

VI. CONCLUSIONS

To conclude, we presented a superconducting quantum
toolbox that can perform various quantum operations on
superconducting resonators in one single circuit. The scheme
exploits the dispersive FWM approach to generate effective
couplings between the resonator modes. By adjusting the
circuit parameters, the energy levels and coupling con-
stants can be varied to generate specific quantum operation.
We discussed the main error sources in the schemes and
numerically simulated the controlled phase gate on Fock states.
Our results showed that high-fidelity quantum operations can
be achieved in this circuit. One advantage of this scheme
is that nearly all quantum operations for both discrete-state
and continuous variable quantum protocols can be realized
in one single circuit.36,37,54 Our scheme can advance the
implementation of quantum information processing on the
microwave modes in the superconducting circuits.
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APPENDIX

Quantum information processing with photons has been
widely studied either with discrete states or continuous
variable states.36,37 Here, we briefly summarize the basic
quantum operations for the photon modes.54 Two categories
of quantum operations are considered: the Bogoliubov linear
operations and the nonlinear interactions. The photon modes
are represented by the annihilation (creation) operators â1 and
â2 (â†

1 and â
†
2).

1. Bogoliubov linear operations

The Bogoliubov linear operations perform the following
transformation:

âi →
∑

j

Aij âj + Bij â
†
j + Ci, (A1)

with coefficients Aij , Bij , and Ci . An arbitrary Bogoliubov
linear operation can be constructed using the basic elements:
the beam-splitter operation, the squeezing operation, and the
phase shifter.

The beam-splitter operation can be realized by Hbm =
h̄χbmeiφâ

†
1â2 + H.c. with coupling amplitude χbm. Under this

Hamiltonian, the operators evolve as(
â1(t)
â2(t)

)
=

(
cos ϕ −eiφ sin ϕ

−e−iφ sin ϕ cos ϕ

)(
â1(0)
â2(0)

)
, (A2)

with ϕ = χbmt . At ϕ = π/2, the beam-splitter operation swaps
the states of the two modes up to a phase factor. In discrete-state
quantum computing schemes, this operation can generate a
single-qubit Hadamard gate.

The squeezing operation can be realized by Hsq =
ih̄χ sqâ

†
1â

†
2 + H.c. with coupling amplitude χ sq. Under this

Hamiltonian, the operators evolve as(
â1(t)
â
†
2(t)

)
=

(
cosh ϕ sinh ϕ

sinh ϕ cosh ϕ

)(
â1(0)
â
†
2(0)

)
, (A3)

with ϕ = χ sqt , which describes the parametric amplification
process that generates two-mode squeezing.54 When applied
to the vacuum state, it generates two-mode squeezed vacuum
state and continuous variable entanglement. When combined
with the beam-splitter operation, it can generate squeezing
on an individual mode. A related operation is the single-
mode squeezing operation which can be generated by Hsq1 =
ih̄χ sq1(â†)2

i + H.c. on mode âi .
The phase shifter operation can be realized by Hph =

h̄	phâ
†
i âi which creates a shift in the resonator frequency.

The above quantum operations can be combined to generate
arbitrary linear transformations in Eq. (A1).

2. Cross-Kerr nonlinearity

One nonlinear operation is the cross-Kerr interaction given
by Hck = h̄χ ckâ

†
1â1â

†
2â2 between two modes with interaction

amplitude χ ck. This interaction can lead to controlled gates
on photon qubits.36 For continuous variable schemes, this
operation together with the linear operations can generate
operations that are arbitrary polynomials of the quadrature
variables.36,37,48 This operation can also be exploited for
quantum nondemolition measurement on photon states.
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