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Hall effect in superconducting films
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Near the superconducting phase transition, fluctuations significantly modify the electronic transport properties.
Here we study the fluctuation corrections to the Hall conductivity in disordered films, extending previous
derivations to a broader range of temperatures and magnetic fields, including the vicinity of the magnetic field
induced quantum critical point. In the process, we found a new contribution to the Hall conductivity that was not
considered before. Recently, our theory has been used to fit measurements of the Hall resistance in amorphous

TaN films.
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Measurements of the Hall effect in classically weak
magnetic fields provide useful information about the density
of the current carriers as well as the sign of their charge.
According to the Drude formulas, the ratio between the Hall
(0xy) and longitudinal (oyc) conductivities is w.t, where
w. = |eH/m*c| is the cyclotron frequency of the quasipar-
ticles (electrons or holes) and t is the elastic scattering time.
The appearance of the cyclotron frequency in the expression
for o, manifests the fact that, for the Hall effect to be finite,
particle-hole asymmetry is required. As is well known, within
the Drude model the Hall coefficient is independent of t and
w., and is only a function of the charge carrier density n,
Ry = pyy/H = 1/nec. Weak localization corrections arising
due to the interference effects, although modifying both o,
and oy,, leave Ry unchanged. In contrast, electron-electron
interactions affect the transverse and longitudinal components
of the conductivity tensor in a way that violates the delicate
balance between them and, therefore, Ry is no longer univer-
sal. In particular, a significant change in the Hall coefficient
occurs near the superconducting transition as a result of the
fluctuations induced by electron-electron interaction in the
Cooper channel. As we show here, the corrections to the Hall
conductivity due to superconducting fluctuations diverge more
strongly than the longitudinal ones. Furthermore, the particle-
hole asymmetry factor w,t is multiplied by ¢, which makes
it parametrically larger. The parameter ¢ is proportional to
the derivative of the density of states with respect to the
energy at the chemical potential p. The only other transport
property that is sensitive to this quantity is the thermoelectric
coefficient.!

Close to the superconducting phase transition, yet in the
normal metallic phase, the fluctuations of the superconducting
order parameter form a new branch of collective excitations.
Since these excitations are charged, they create a new
channel for the electric current. As a result, the electric
conductivity is determined not only by the single-particle
excitations (quasiparticles), but also by the current carried
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by the fluctuations. The direct contribution of the supercon-
ducting fluctuations to the longitudinal electric conductivity
is described by the Aslamazov-Larkin term.? In the vicinity
of the transition, this contribution can be interpreted as the
Drude conductivity of the fluctuating Cooper pairs. Besides,
the fluctuations affect strongly the quasiparticles, and thereby
influence the conductivity. The scattering of the current-
carrying quasiparticles by the superconducting fluctuations
is described by the Maki-Thompson term.>* Another ef-
fect can be attributed to the modification of the quasipar-
ticle density of states by the long-living superconducting
fluctuations.’

Similar to the Hall conductivity of free electrons, the cor-
rections to oy, generated by the superconducting fluctuations
vanish in the absence of particle-hole asymmetry. To demon-
strate the dependence of the conductivity on the particle-hole
asymmetry, we shall use the Aslamazov-Larkin corrections
as an example. Close to T, the superconducting fluctuations
can be described using the time-dependent Ginzburg-Landau
(TDGL)®8 equation:
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Here A(r,t) is a complex field describing the order parameter
fluctuating in time and space (a detailed discussion of the
TDGL theory can be found in Ref. 5). The coefficient a is
known from microscopic calculations to be equal to 7/8,
and e = —|e| is the electron charge. The first term on the
right-hand side corresponds to the finite energy needed to
create a fluctuation of the superconducting order parameter
above the transition temperature. We can look at the semi-
phenomenological equation presented in Eq. (1) as describing
2e-charged particles with a lifetime 7o ~ (T — T.)~!. The
conductivity associated with these particles is simply their

(4V—kmﬂAmu (1)
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Drude conductivity, oy = (2e)’nata/mgr ~ e*T /(T — T,).
A comparison with the microscopic calculations shows that
the Aslamazov-Larkin contribution to the longitudinal con-
ductivity coincides with the one obtained using the semi-
phenomenological equation. However, the correction to the
Hall conductivity cannot be captured by Eq. (1).

The TDGL equation can be derived directly from the mi-
croscopic theory by integrating out the single-particle degrees
of freedom. Then, under the assumption that the quasiparticles
have a constant density of states, one arrives at Eq. (1). Since no
particle-hole asymmetry has been introduced, the excitations
associated with the superconducting fluctuations, as described
by Eq. (1), are invariant under particle-hole transformation.
Therefore, it should not be surprising that the contribution
of the superconducting fluctuations to the Hall conductivity
vanishes in the framework of this equation. It was first pointed
out by Fukuyama et al.’ that the Aslamazov-Larkin correction
vanishes unless the derivative of the density of states with
respect to the energy is taken into account. In other words,
this contribution to the Hall conductivity depends on the
particle-hole asymmetry. This important observation was the
basis for subsequent studies of the Hall effect in conventional
and high-T, superconductors'%'# as well as in superfluid Fermi
systems. '>16

Aronov et al.'”' incorporated the particle-hole asymmetry
into the TDGL equation by adding a new term:
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This equation was used to derive the Aslamazov-Larkin
correction to the Hall conductivity. The authors of Ref. 18
claimed that the new parameter can be related to the
derivative of the critical temperature with respect to the
chemical potential, ¢ = —0.5d InT,/du ~ —x~"v/ () /v(w).
Here A is the dimensional coupling constant determining
T, = wpexp(—1/1), and v(u) is the density of states at the
Fermi energy while v'(w) is its derivative with respect to the
energy. Hence, the corrections to the Hall conductivity, being
proportional to ¢, can provide information on the dependence
of the density of states on the energy. Microscopic calculation
presented in Appendix A confirms that for three-dimensional
electrons ¢ is proportional to 1/(Aefr). (Throughout the entire
paper we consider a not-too-thin film in which the electrons
are three-dimensional while the superconducting fluctuations
are two-dimensional.) Analysis of Eq. (2) reveals that in
the diffusive regime the cyclotron frequency corresponding
to the charged field A is equal to Q2. = |[4eH D/c|, where
Q. X (erT)w, > w,.. In Q, the effective charge is equal to
2e and the diffusion coefficient D replaces 1/2m, because
in the fluctuation propagators the kinetic energy p2/2m is
replaced with Dg?. Consequently, the Drude-like contribution
of the superconducting fluctuations to the Hall conductivity is
proportional to ¢€2,.

In this paper we extend previous theoretical analysis
of the corrections to the Hall conductivity for various
temperatures and magnetic fields. We concentrate on the
superconducting fluctuation corrections in the normal state

9,17,18
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where the fluctuations can be treated in the Gaussian ap-
proximation. (In the superconducting phase the Hall effect
is caused by the motion of vortices rather than by fluctuations
of the order parameter.) Although the diagonal component of
the magnetoresistance has been studied for the entire phase
diagram including the vicinity of the quantum critical point,
induced by magnetic field,'® to date there has been no similar
systematic analysis of the Hall resistance. The results for
the leading corrections to the Hall conductivity generated by
the superconducting fluctuations are summarized in Fig. 3.
This work was inspired by recent measurements of the Hall
conductivity in disordered tantalum nitride (TaN,) films.?°
Some of the results presented here were used in Ref. 20 for
the analysis of Hall conductivity measurements.

As we explained above, the particle-hole asymmetry enters
the Hall conductivity either via the quasiparticle mass (or
equivalently, the cyclotron frequency w.) or the derivative
of the density of states. While the former appears when
the Lorentz force acts on the quasiparticles in order to
turn the current from the longitudinal to the transverse
direction, the latter appears when the Lorentz force acts on
the superconducting fluctuations. Thus, in general, there are
two distinct types of corrections to the Hall conductivity: one
proportional to w,t and the other to ¢Q2. ~ w,T/A. Since
the coupling constant for the superconducting interaction
is usually much smaller than unity, one may expect only
the second kind of contributions to be important. However,
the two contributions also differ in their dependence on the
distance from the superconducting transition, In7/7.(H) or
In H/H(T). Moreover, we have found a new term which,
although it is not enhanced by the inverse coupling constant
1/X, contributes to the transverse conductivity in a broad
range of temperatures and magnetic fields. In particular, this
contribution, unique to the Hall conductivity, gives the most
dominant fluctuation correction to o, far from the transition at
T>T.

The rest of the paper is organized as follows: The derivation
of the Hall conductivity using the quantum kinetic equation
is discussed in Sec. I and Appendix B. The results of the
calculation for the different regions of the 7- H phase diagram
are given in Sec. II.

I. DERIVATION OF THE HALL CONDUCTIVITY

For the derivation of the Hall conductivity we apply the
quantum kinetic technique,”'~>* but the same result can be
obtained using the Kubo formula. The details of the derivation
are described in Appendix B. For the purpose of illustration, we
use diagrammatic representation for the different contributions
to the transport coefficient. The well known set of diagrams
corresponding to the fluctuation corrections to the longitudinal
conductivity is presented in Fig. 1. In general all these
diagrams may contribute to the leading correction to the
transverse conductivity, but actually this is not the case. It
was shown in Ref. 9 that the anomalous Maki-Thompson

correction [illustrated in Fig. 1(a)] is simply equal to o 3" =

—2w, T8 AMT

> (H,T). Therefore, we do not have to dwell on
the derivation of this contribution. Furthermore, we found
that, out of the remaining ten diagrams contributing to do,

only a few give nonzero contribution to §o,,. These are the
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FIG. 1. The eleven diagrams contributing to the superconducting
fluctuations corrections to the longitudinal conductivity do,,. (a)
The anomalous Maki-Thompson corrections. The analytical struc-
ture of the Green’s functions are indicated by R (retarded) and
A (advanced). (b)—(d) The regular Maki-Thompson corrections.
(e)—(j) The density of states corrections. (k) The Aslamazov-Larkin
term.

Aslamazov-Larkin term, Fig. 1(k), and two of the density
of states terms, Figs. 1(g) and 1(h). Although each of the
other diagrams gives a nonzero contribution to 8oy, their sum
vanishes. In addition, we have discovered a new contribution to
the Hall current, which is presented in Fig. 2. The contribution
of this term to o, is smaller by a factor of 7't than those from
the set of ten diagrams in Fig. 1. In contrast, its contribution
to the Hall conductivity is of the same order as the rest of the
terms.

The entire dependence on the magnetic field is incorporated
through the propagators of the quasiparticles, superconducting
fluctuations, and Cooperons (which describe the multiple
scattering of two quasiparticles by impurities). Since we
are interested in the linear response to the electric field, all
propagators entering the diagrams are calculated at thermal
equilibrium. The equation for the quasiparticles Green’s
function at equilibrium in the presence of a magnetic field is

1 ie ? RAq. o
€+ V——Aw0 ) — Vigp(®)+p (g5, €)
2m c

— /dr,EeRq’A(r,rl;e)gR’A(rl,r/,e) =48(r—r). 3)

3

S

FIG. 2. The new contribution to the Hall conductivity.
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Here, X, is the quasiparticle self-energy at equilibrium. The
Green’s function depends on the two spatial coordinates and
not only on the relative one due to the impurities potential
Vimp(r) and the vector potential A(r,t). The equilibrium
Green’s function can be written as a product of the phase
factor, exp{ie frr, A(r,)dr,/c}, and the gauge invariant Green’s

function, Geq. In the presence of a uniform (and constant
in time) magnetic field, this representation of the Green’s
function takes the following simple form:

grr'se) = g(r,rse)e BTN g

Then, the retarded and advanced components of g satisfy the
equation

1 .eB / ? SR.A
€+% V—zzx(r—r) _Vimp(r)_zgq +u

xgRhAr ' e) =8(r — ), ®)

where the product of the Green’s function and the self-energy
should be understood as a convolution in real space. Now
the entire dependence of the gauge invariant Green’s function
on the center-of-mass coordinate is due to the impurities.
After averaging over disorder, the gauge-invariant part of the
Green’s function ¢ becomes translational invariant, i.e., it is
a function of the relative coordinate p =r —r’ alone (see
Ref. 24 and references therein):

1 (3> (eBxp) “RA i
| — -7 ) _ 3k + —
I:E + 2m (8/)2 4¢? ) e TH 21:|
xg®4(p,€) = 8(p). ©)

We restrict the calculation to the limit w.t < 1. Therefore,
we may neglect the dependence of G on the magnetic field
entering through the Landau quantization of the quasiparticles
states. Then, the only dependence of the quasiparticle Green’s
functions on the magnetic field is through the phase as
described in Eq. (4). We wish to point out that, in the normal
state, the permeability is close to unity and, correspondingly,
we do not distinguish between B (the magnetic flux density)
and the magnetic field H.

Unlike the quasiparticles, the Landau quantization of the
collective modes (the fluctuations of the superconducting order
parameter) cannot be neglected. The equilibrium propagator
of the superconducting fluctuations, like the quasiparticle
Green’s functions, can be separated into the phase factor
exp{2ie frr A(r))dr,/c} and the gauge invariant part L. The
gauge invariant part, L, can be written using the Landau
level quantization, LEA(r,r';w) ="\ on.or — r)Ly(w),

where
#R,A 1 T -
Ly (w) = v|:1ﬂ<T)+1ﬁRA(w N)— W( )—i—gw} ,
(7a)
_ 1 iw QAN +1/2)
Vel N) = (5 F oo L ) . (7b)

Here, v(x) is the digamma function, N is the index of the
Landau level, and gy ,(r) is the wave function of a particle
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in the Nth Landau level solved in the symmetric gauge. As
we have already discussed, the appearance of the parameter
¢ in Eq. (7a) introduces the particle-hole asymmetry into the
propagator of the superconducting fluctuations. In a similar
way, the gauge invariant part of the Cooperon can be written
in terms of the Landau levels:

1
Fi(2e — )T + Qet(N +1/2)°

CRAEe,w—e) =

®)

onp(w)

.y
JaL =

i usgmﬂ)/lho§:uv+1)

N>0

x [Yr(@,N) — Yr(w,N + DI[LY (@) LY, (@)

LR (w)

x [Yr(w,N) — Yr(w,N + DI [

and the density of states contribution is

—i Inp(w)

- - e*E
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In the derivation of the Aslamazov-Larkin, Fig. 1(k), and
density of states diagrams, Figs. 1(g) and 1(h), we can neglect
the dependence of the quasiparticles on the magnetic field.
This is because the contributions from the phase associated
with the quasiparticle Green’s functions [see Eq. (4)] add to
Zero.

Then the integration over the quasiparticle degrees of
freedom is trivial. As a result, the Aslamazov-Larkin term
becomes (¢ < 0)

[Vr(w,N) + Y a(w,N) — Yr(w,N + 1) — Yu(w,N + 1)]

N vzsgn(H)/da) Z(N + Dnp(w)
N=0

LY (@) -

Jw ©)

(a)):| + c.c.

QN +1)— QN

ey
Jbos = T ——5 v sgn(H) / dw Z(N +1 {

N=0

Jw

+¥r(@,N) = Yr(w.N + 1) -

LR (w) [ Yr(@,N)

dnT

dn T
Q.(N +1)— QN
dn T

|

In the above equations we denote the Bose distribution function
by np(w). The notation N <> N + 1 means that N is replaced
by N + 1 and the other way around in all the terms inside
the curly brackets. In both terms some of the propagators of
the collective modes (the superconducting fluctuations and
Cooperons) are functions of the Nth Landau level while the
index for the others propagators is N + 1. This is due to the
Lorentz force turning the collective modes from the x into
the y direction. For more details of the derivation see
Appendix B. At low H for which Q. <« 47T, the discrete

&2E,
3272

V(1)
v(w)

2

“|

—i

Jnew = c

i anp(a))
87T dw

In the above expression all collective mode propagators have
the same Landau level index. Although it is not evident,
this contribution is proportional to the cyclotron frequency
of the quasiparticles. Comparison with the correction to the
longitudinal conductivity arising from the modification of the
tunneling density of states by the fluctuations?>? shows that
the new term describes how the tunneling density of states
reveals itself in the transverse conductivity.

Y (@,N) + ¥4 (@,N) — ) (w,N + 1)] —(N< N+ 1)} +c.c.

o [

LR @)W (. N)— (o, N)]} I

Ya(@.N) = Ya(@,N) + a0, N + 1)}

(10)

sum over the Landau levels can be replaced by an integral (the
continuum limit).

In contrast to the Aslamazov-Larkin and the density of
states corrections, in the derivation of the new contribution
illustrated in Fig. 2 the Lorentz force acts on the quasiparticles
in order to turn the current. Hence, we cannot ignore the mag-
netic field entering their phase. Consequently, the integration
over the quasiparticle degrees of freedom is more subtle than
in the derivation of the previous terms; see Appendix B for
details. The result of integrating out the quasiparticles is

2
ym T) np(@)Liy(@)y)(w,N)

N=0

an

II. FLUCTUATION CORRECTIONS
TO THE HALL EFFECT

We now present the leading corrections to the Hall conduc-
tivity in the different regions of the phase diagram plotted in
Fig. 3. A similar phase diagram has been previously discussed
in a study of the Nernst effect in amorphous superconducting
films.?"?> As shown in Fig. 3, the phase diagram is divided
into many subregions. This is because the magnetic field plays
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T/T.

InT/T.(H) = Q./47T.

0.25 0.5
Q. /47T,

FIG. 3. (Color online) The phase diagram for the corrections to
the Hall conductivity doy,. The equations indicated on the phase
diagram correspond to the expressions for §o,, written in the text.
Q. =4eHD/c is the cyclotron frequency corresponding to the
superconducting fluctuations in the diffusive regime.

a double role: not only does it drive the transition between
the metallic normal state and the superconducting one, it
also quantizes the collective modes in the Cooper channel
(both the superconducting fluctuations and Cooperons). The
shaded area corresponds to the superconducting phase which
is bounded by the line 7 = T.(H). There are two crossover
lines in the vicinity of the transition. In the area below the
line n7T/T,(H) = Q./4xT the Landau level quantization
of the superconducting fluctuations becomes essential. The
other line, In H/H.»(T) = 4n T/ 2., separates the regions of
classical and quantum fluctuations at low temperatures. The
low-H and high-T region is separated from the high-H and
low-T region by the line 2, = 4n T.

As we explained in the previous section, different contribu-
tions to the Hall conductivity are characterized by the way the
magnetic field deflects the current to the transverse direction.
The magnetic field can turn the current via the collective
modes or the quasiparticles. The first case yields contributions
proportional to ¢2, ~ w.7 /A, where A is the dimensionless
coupling constant of the attractive electron-electron interaction
in the Cooper channel. The other possibility results in
corrections that do not contain the large factor 1/A.

Close to the line of phase transition, T 2 T.(H), and for
a small magnetic field, Q. < 47T, the leading correction to
0,y 1s given by the Aslamazov-Larkin term

2e2cTv [L,(0) — L,11(0)]
T Sgn(H) ;(n - 1) [I:n+1(0) + I‘:n(o)]2 .

12)

Oy =

The above equation is derived from Eq. (9) by expanding
to the first order in ¢7. In addition, we integrated over
the frequency w only up to T (accounting for the classical
fluctuations alone). This correction to the Hall conductivity,
just like the Drude term, is negative, because ¢ < 0. Note
that here, and in what follows, we consider negative charge
carriers e < 0. As we show in Fig. 4, for T > T.(H = 0), the
correction to the Hall conductivity is a nonmonotonic function
of the magnetic field. In the close vicinity of T.(H = 0), §o,

has a peak at H* = 1.3%“22””, which up to a factor of 1.3
coincides with the ghost field observed in measurements of the

Nernst effect?”” (here £2 = w D/8T,). The above expression
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Oy
e,

H
H, c2

FIG. 4. (Color online) Corrections to the Hall conductivity 8oy,
as described by Eq. (12) for T = 1.017, (red curve), T = 1.027T,
(blue curve), and T = 1.057, (green curve). The Hall conductivity is
given in units of €?|¢|T..

has been successfully used to fit the data obtained in recent
measurements of the Hall conductivity in amorphous tantalum
nitride films (see Ref. 20).

As the magnetic field goes to zero and 7 > T.(H = 0),
the discrete sum over the Landau levels can be replaced
by a continuous integral. Then the correction to the Hall
conductivity from Eq. (12) becomes

252 (LY 13
96 ¢ )<lnT/n<H>> W

Curiously, close to the transition the divergence of the Hall
conductivity, 8oy, ~ 1/ In*(T/T,), is stronger than the one
known for the longitudinal conductivity,” 8o, ~ 1/1In(T/T,).
When T < T.(H = 0), the Landau level quantization is
essential. Moreover, below the line In7T/T.(H) = Q2./4nT
only the lowest Landau level contributes to the sum, and one
gets

doyy =e

2e%¢T,
gn(H)

(14)

doy = InT/T.(H)
Note that this expression does not contain the magnetic field
as a prefactor.

At T > T, but still at a small magnetic field, the process
described by the new contribution introduced in this paper
(see Fig. 2) dominates:

.t H1 Inl/Tz (15)
—F—Sgn n{ ——— ).
42 8 InT/T,

The new term, and therefore also the leading correction
to the Hall conductivity at T > T,, is proportional to w,,
because in this case the Lorentz force turning the current
from the longitudinal to the transverse direction acts on the
quasiparticles rather than the superconducting fluctuations.
Comparing Eq. (15) with the correction to the longitudinal
conductivity in this region,”® one may observe that 8o, =
— 80,

In the vicinity of the magnetic field driven quantum critical
point, H = H,(T = 0), all three terms discussed in the
previous section as well as the anomalous Maki-Thompson

doyy A
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term contribute comparably to the Hall conductivity. In the
classical regime where In H/H(T) <4nT/Q. K 1, the
Hall conductivity is

2¢? 21T
sgnH (T —— ). (16)

S0y, N
7 H/H,. 8ck

Here the Hall conductivity depends on the magnetic field only
via In H/ H,,, which measures the distance to the phase tran-
sition. In the quantum regime, 477/, < In H/H»(T) < 1,
the Hall conductivity acquires the form

2692,
— n .
3 InH/H:

25onH
NL< (17

Sy & 272

Note that the correction to the Hall conductivity changes
its sign at low magnetic field when the temperature is raised
from T~ T, to T > T, [i.e., when the dominant correction
switches between Egs. (13) and (15)]. Similarly, we expect
a change of sign when the magnetic field is increased
[see Egs. (17) and (16)]. This change in sign of the corrections
cannot explain the change in sign of the Hall coefficient
observed in various superconductors in the mixed state>*=3 as
the analysis in terms of Gaussian fluctuations is not applicable
in this regime.

Finally, we wish to emphasize how the Landau quantization
of the collective modes enters the Hall conductivity. In general,
to obtain the fluctuation corrections to oy, one must sum over
all Landau levels. However, there are limiting cases in which
the sum can be simplified: (i) H — O and (ii)) In T/ T.(H) <
Q./4nxT. In the first case, the sum over N can be replaced
by an integral. This simplification has been used to obtain
Egs. (13) and (15). In the second case, the critical behavior
is determined by the contribution from the lowest Landau
level. Consequently, in deriving Eqs. (14), (16), and (17) we
neglected terms with N > 0.

In conclusion, we extended the previous calculations
of the Hall conductivity®'® to a broader range of tem-
peratures and magnetic fields. The fluctuations corrections
can be divided into two groups. The first contains terms
proportional to ¢€2. and includes the Aslamazov-Larkin
contribution [Fig. 1(k)] and part of the density of states
corrections [Figs. 1(g) and 1(h)]. The other group includes
the new contribution so\"V (Fig. 2) that was not con-
sidered before, and the anomalous Maki-Thompson term
[Fig. 1(a)]. These corrections are proportional to w.t. Unlike
the anomalous Maki-Thompson correction, the new contri-
bution modifies the Hall resistivity. This becomes obvious
if we rewrite the Hall resistivity in terms of the two
components of the conductivity tensor, py, = —0y, /(02 +
07) & —0yy /oy, and extract the fluctuation correction to

xx°
the resistivity, §p, = —80y, /Uxe + 20,00, /ojx,with Oxy =
—wT0y. Since So)\M' = —2w.180 M, the anomalous
Maki-Thompson correction to py, vanishes, while the cor-
rection from §o " remains. Recently, the part of our result
which is proportional to ¢€2. has been reproduced using the
Usadel equation.?®
Our results for the different regimes of the phase diagram
are summarized in Fig. 3.
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APPENDIX A: PARTICLE-HOLE ASYMMETRY
AND SUPERCONDUCTING FLUCTUATIONS

Here we will explain the mechanism of appearance of the
parameter ¢ in the propagator of superconducting fluctuations
given in Eq. (7a). For that we calculate L, taking into account
the dependence of the density of states and velocity of the
quasiparticles on energy. In the normal state, the quasiparticles
are described in terms of the Fermi liquid theory, where the
standard approximation is to consider the density of states and
velocity in the vicinity of the Fermi energy as constants. The
dependence of the Fermi liquid parameters on energy leads
only to small corrections and can be usually ignored. However,
under this approximation the propagator of superconducting
fluctuations satisfies L*(w) = L4 (—w) and, consequently, the
fluctuation corrections to the Hall effect vanish. Therefore,
when studying the Hall effect, we have to go beyond the Fermi
liquid approximation. Note that although the fluctuations in
superconducting films are effectively two-dimensional, the
quasiparticles in a not-too-thin film are still three-dimensional
and, hence, the density of states v is not a constant.

The propagator of superconducting fluctuations at equilib-
rium satisfies the following equation:

1
LBAw 0ty = —[—A7" + TR A0 )]
Vo

(AD)

In this work we study effects of superconducting fluctuations in
the Gaussian approximation. After averaging over disorder, the
polarization operator can be written in terms of the Cooperon
and the quasiparticle Green’s functions:

[(r,;r ,t)

1 N
= _/drldtlg(r,tﬂ'l»tl)g(r,t;rl,tl)C(rI,ﬁ;r/»t/)- (A2)
Vo

It will be enough to find IT in the absence of magnetic field, and
reintroduce the magnetic field in the end. Then, the calculation
can be done in momentum and frequency space, and the
Cooperon becomes

CR(q,e,a) —€)

2 dk  , A -1
=|1- Vimp/ (27_’:)3g (kse)g (q - kvw - 6) . (A3)

The particle-hole asymmetry enters the calculation of the
Cooperon in numerous ways. First of all, the nonconstant
density of states affects the elastic scattering time, and hence
modifies the quasiparticle Green’s function:

ghAke) = [e — & £ in V2 v(e)] . (A4)
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For a parabolic spectrum of three-dimensional quasiparticles,
v(e) =~ vo(1 + €/2¢eF). Similarly, the integration over the mo-
mentum in Eq. (A3) is sensitive to the energy dependence of the
density of states and velocity. In practice, however, the analysis
of the leading contribution shows that only the modification
of the quasiparticle Green’s functions is important. Then,
expanding the density of states in the Green’s functions, one
gets

1 4
CRA(que.w — ) = +o/ter (A3)
Fi(2e — w)T + Dg*t’

where T = (27 V2, pV0)” !'is the elastic scattering time at the
Fermi energy calculated in the Born approximation.

We can see that the particle-hole asymmetry modifies the
Cooperon by the factor (1 + w/4eF). Correspondingly, the
polarization operator becomes

Fiw + Dq2)

A = — (14 -2 ) [ (% +
G@)= der 2T dar
¥ ! +1 r_1 (A6)
— — n———|.
2 . X
Not too far from the superconducting transition, e.g., when

T > T., we can write the propagator L*-4(q,w) to the leading
corrections due to the particle-hole asymmetry as

(1 ® T
LRAQw) = ——] - (1 —) In —
@) UO{AJF Tt

1  TFiw+ Dg? 1 M-
w3 mrt) v (3) -]

1 T :Fiw+Dq2
In — et
vo[nTer( 4T )

w 17!
RIS

Defining ¢ = —1/4er), we get the expression for the
propagator of the superconducting fluctuations used in the
main text [see Eq. (7a)]. The asymmetry parameter ¢ can
be rewritten as ¢ = —0.5d InT,/d In u, in accordance with
Ref. 18. Furthermore, in the presence of magnetic field, the
term Dg? in the propagator L (as well as in the Cooperon)
is quantized into the Landau levels, Dg> — Q.(N + 1/2).
One may still use the obtained value for the parameter ¢ in the
propagator L as given in Eq. (7a) for the analysis of fluctuation
effects in the Hall conductivity in the whole region 7-H of the
superconducting transition, 7 = T.(H).

Finally, let us remark that, although the asymmetry affects
also the Cooperon, in the derivation of the corrections to the
Hall conductivity we neglected it. Including the dependence
of the Cooperon on the particle-hole asymmetry leads to
corrections which are smaller by a factor Tt < lor 1 /ept K
1 than the terms discussed in this paper.

APPENDIX B: DERIVATION OF THE
HALL CONDUCTIVITY

We apply here the quantum kinetic technique as described
in Refs. 21-23. In the presence of superconducting fluctuations

PHYSICAL REVIEW B 86, 014515 (2012)

we describe the system using two fields: the quasiparticle field
and the fluctuations of the superconducting order parameter.
The matrix functions G(r,r’,¢) and £(r,r,w) written in the
Keldysh form,34-3¢

FR(r,t;r,t)

K R
F(r,t;r’,t’):( . F “’”’”) ®B1)

FA(r,t;1,t)

(where F can be either G or L) describe the propagation
of these two fields, respectively. The Keldysh components
of the propagators correspond to the generalized distribution
functions. According to the quantum kinetic approach the
current can be written in terms of the generalized distribution
functions. For this purpose, we express the charge density
in terms of the propagators of the quasiparticles, G, and
superconducting fluctuations, £. Since both the quasiparticles
and the superconducting fluctuations carry charge, they both
enter the continuity equation. Extracting the electric current
from the continuity equation we get

i) = iefdr/dt/[ﬁ(r,t;r’,t’)é(r/,t/;r,t)]<

+ie/dr’dt’[f)(r,t;r’,t’)/f(r’,t’;r,t)]< +h.c.
(B2)

Each of the terms in the current is a product of the renor-
malized velocity and propagator. The matrix ¥(r,#;1’,t’) is the
velocity of the quasiparticles renormalized by the self-energy
Srr, )

V(r,;r t)——%<V——A()—V/ A(r’))

x 8(r — Y —i(r =021,

(B3)

-1

where A(r) is the vector potential. Similarly, we define
V(r,i;r,t") = —i(r — r)II(r,z;r,¢') to be the “renormalized
velocity” of the superconducting fluctuations. Here IT is the
polarization operator in the Cooper channel (note that in fact
V does not have the dimension of velocity). In general, all
quantities in the equation for the current depend on the external
electric and magnetic fields.

Next, we derive the kinetic equation for the two propagators
in the presence of electric and magnetic fields. We consider
the linear response to the electric field while keeping the
entire dependence on the magnetic field. Then the E-dependent
quasiparticle Green’s function is

Ge(r,r'€) = g(6)Sg(e)g(e)
_ieE [ag(e)

Veq(€)g(€) — g(€)Veq(e)

g(e)}
2 de

(B4)

The product of matrices should be understood as a convolution
of the spatial coordinates. In addition, we used the fact that
we are interested in the stationary solution for the Green’s
function in the presence of a dc electric field. Hence, all Green’s
functions and self-energies are function of the time difference
t —t’, and it was possible to Fourier transform the equation
from the relative time coordinate to the frequency €. In the
above equation £ is the equilibrium Green’s function and 9., is
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I'4

FIG. 5. Detailed description of one of the new terms presented in
Fig. 5.

the quasiparticle velocity at equilibrium. Note that the equation
for the field dependent Green’s function is a self-consistent
equation, as it contains the E-dependent self-energy which is
itself a function of Gg. In addition, £ may depend on the
electric field through the propagator of the superconducting
fluctuations. The equation for the E-dependent part of L takes
a form similar to Eq. (B4) for Gy:

Lp@) = —LAgL +icE [% Vey(@)L (@)
. oL
— L)V (@) ai)w)]' (B5)

Here f/eq is the velocity of the superconducting fluctuations
at equilibrium, and Ilg is the electric field dependent polar-
ization operator which depends on Gg. The discussion of
the equilibrium propagators ¢ and L appears in the main
text. In the following, we neglect the particle-hole asymmetry
in ng as well as in all the terms except £ since they
result in less singular contributions than those discussed
here.

The next step in the derivation of the current is to insert the
expression for the E-dependent propagators and velocities into

dedw

;- ..dr9
47(1)1,/27152 /(271)2 de

JNew -

a
nF(E)e_,q:.
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FIG. 6. The Aslamazov-Larkin correction.

Eq. (B2). Up to now we have only made two assumptions: (i)
we restricted the calculation to the regime of linear response
to the electric field, and (ii) we considered a classically
weak magnetic field for which the cyclotron frequency of
the quasiparticles satisfies w.t <« 1. As we are interested
in the Gaussian fluctuations, we will make further simpli-
fication by expanding with respect to the superconducting
fluctuations. Below we give a diagrammatic interpretation
for the dominant contributions to the Hall conductivity. The
expression for the vertices and the analytical structure of
these diagrams have been found from the quantum kinetic
equation. The quantum kinetic approach provides a simple
and clear derivation of the Hall conductivity; however,
one can reach the same result using the standard Kubo
formula.

As we already explained, we can classify the contributions
to the Hall conductivity according to the way the current is
deflected by the Lorentz force. The first group containing the
anomalous Maki-Thompson and the new contribution includes
terms in which the quasiparticles are used in order to turn the
current, while the current in the second group [Figs. 1(g), 1(h),
and 1(k)] is deflected using the collective modes. Let us first
use, as an example, one of the new terms presented in Fig. 2 and
Fig. 5 to demonstrate how the magnetic field enters these kind
of contributions. Decomposing all propagators in the diagram
shown in Fig. 5 into the phase and gauge invariant parts [see
Egs. (4), (7a), and (8)], we get

(T, 1), (r7,r8)g4 (rs — ra; €)g* (rs — ro;€)

X gR(ry = 11 0F 0y — 1w — g — 1w — OFR (s — 1750 Y o2 — 16)[CRe.0 — O]

x [L(@)np@) +np@ — )]+ Ly@np(@)] +c.c.

N
(B6)

Here £y = /c/2eH is the magnetic length for the 2e excitations in the Cooper channel,

U, (ro,ry) = rgin; [V’f/2m +ieH(y, — y2)/4mc — V§/2m —ieH (ys — yg)/4mc]
—r

is the velocity written in its gauge invariant form, and n p(w) is the Bose distribution function. The phase @ is the flux enclosed

by the paths of all charged excitations:

® = eH[(r4y —ry) x (ry —r2) + (rg — r7) X (r7 —ry) +2(rg — ry) x (rg —rz)]/2c.

(B7)
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All propagators of the collective modes (L as well as C) have the same Landau level index. As we show later, this is not always
the case. Since all terms in the above equation are translational invariant (functions of the relative coordinates alone), we can
rewrite the integral in terms of the relative momenta. Then, the spatial coordinates appearing in the flux ® and diamagnetic term
become derivatives with respect to the momenta:

y . e*E, dedw dK; - - - dkgdq onr(e)
Jew = —i =) Gy 2k — ks — Ke)dlks + ks — @d(ks + ke — @)
4yt /2wy N
e eH[d 0 9 0 9 0 ik eHa+zk‘+eHa
X —l— — + — — — - —
P E)kz ok; ok 0k, ks ok, 2m  4mc 0k3 dmce 9k;

ikf eH 0 iky eH 0\ _, A R A A R
e+ o —— — ) 2 (k07 (ka3 )3 (ks )2 (ks 0 — )3 (kss 0 — )" (ke
X<2m 4mcak{+2m+4mcak>>g('6)g(26)g(36)g(4w €)8" (ks;w — €)g" (Kg; €)

< Y ono@ICK (€0 — OP[LE(@)np() + nr(@ — )] + Ly(@np()] + c.c. (B8)
N

The magnetic field enters L and C as Q./T, which is not necessarily small and, hence, we cannot expand in this parameter.
In contrast, the flux can be expanded in powers of the magnetic field. Since each power introduces an additional derivative with
respect to the quasiparticle momentum which can act either on the velocity vertex or the Green’s functions, the small parameter
emerging from the expansion is w7 <« 1. Similar smallness is associated with the diamagnetic term. Nevertheless, the magnetic
field entering via ® cannot be neglected, as the zero-order term vanishes. Actually, extracting the magnetic field from the flux is
the reason why the new contribution is of the same order as the contribution corresponding to the diagram in Fig. 1. In contrast, the
contribution from Fig. 5 to the longitudinal conductivity (obtained by replacing v, by v, in the vertex) is smaller by a factor of T't
than all other terms described in Fig. 1. Following Ref. 24, we can obtain all nonzero contributions arising from expansion of the
flux to the first order in H. Then, we can integrate over the quasiparticle momenta k; and frequency €. Under the approximation
of constant density of states and velocity in the vicinity of the Fermi energy the integral vanishes. Keeping corrections to this
approximation, v(§) ~ v + V'(ep)& and v(§) = vp(l + &/ef), results in a nonvanishing contribution to the Hall conductivity.
Despite the smallness usually associated with these corrections, here it gives a contribution to o, comparable to all others:

SE.H de dw v? Vv
.y _ ¢ b 3 3 v
INEW = l47r£%,c 2/ 27 d <8F + v0>

N>0
onp(w)
Jw

x {[C,’@(e,w - e)]2 [[np(e — ) —np(e)] LR (w) — np(w) Fe( )Lg(w)“ —c.c. (B9)
Further integration over the Bosonic frequency w and summation over the Landau level N is standard, and analytical solutions
can be obtained in several limiting cases. The other part of the new contribution presented in Fig. 2 gives exactly the same result.
In the same way, we can derive the contributions from the two-Cooperon diagrams shown in Figs. 1(b), 1(e), 1(f), 1(i), and 1(j).
While the expression corresponding to Fig. 1(b) is identically zero, the rest of the terms are nonzero and their contributions are
proportional to w.t. However, the sum of these four diagrams vanishes.

As a representative example of the terms in the second group, we present the derivation of the Aslamazov-Larkin correction
(see Fig. 6). To keep our demonstration as simple as possible, we consider only part of the term (only contributions in which one
propagator L is retarded and the other is advanced):

o 2E de de'dw e B B .
J,XL(rl) = _47TE£1 / (27[)3 1%:4/0’!'2 <-drpe <I>vy(r12arl)Ux(rénr7)gR(r1 - rZae)gA(rll —T,,0—€)
X gR(rll - r1276)gR(r5 - rme/)~A(r5 - Psﬁé/)gR(IH - l’g,é/)(pN o(ry — r5)@aro(rs — ryy)
X CN(E w — e)CM(e w — e)L (w)L4 (w)CN(e w—€ )CM(e o — €)F(e,€,w). (B10)

Here, F(e,€’,w) = [tanh(e/2T) — tanh ((¢ — w)/2T)] tanh ((w — €")/2T)dnp(w)/dw, and the gauge invariant velocity ¥ was
already defined in the previous example. The phase @ is

= eZ_H [(ry—r) X (r, —1) + (s —1s) X (rs — 1) +2(r, —r5) X (rs —rg) +2(rs —ry,) x (r;, —r,)]. (B11)
C

The first two terms in Eq. (B11) correspond to the magnetic fluxes accumulated in the triangles (r,,r,,r,;) and (rs,rq,r),
respectively. One may check that the contributions to the transverse current obtained by expanding the fluxes from these two
triangles or the diamagnetic terms vanish. Therefore, the integration over the coordinates of the two triangles can be done with
the quasiparticle Green’s functions taken at H = 0. After integrating over the quasiparticles degrees of freedom, the triangles
(r,,r,,r,;) and (rs,r,,rs) become proportional to gradients acting on the propagators in the particle-particle channel. Using the
remaining two fluxes, corresponding to the triangles (r,,r;,r;) and (r,,r,,r,,), the expression for the current can be written in the
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following way:

2 .
Ly e“E, 2 4 , 0 ieHx 0
Jar = _Snzﬂfqv T /de de da)/dr NEM |:2D (5 - onoT) | |2D P +

x CR(e,0 — €)CR(e,0 — ) LR (w) L4 (w)CR(e' 0 — €NCR (€, 0 — €)F (€,€ ,w).

e H
ey )WO&)}
C

(B12)

Let us define the velocity operator, V; = 2D[V; —ie(H x r);/c], of an auxiliary particle with a mass equal to 1/2D. The integral
over the coordinate corresponds to the matrix element of the velocity operators (N,0]V;V;|M,0), where |M,0) = @y is the
quantum state of the particle in the M Landau level and with zero angular momentum in the z direction. Using the known

properties of the Laguerre polynomials, the matrix element can be written as

(N,0|V;V;I1M,0) = 4ieD*H[(N + D)3y -1 + (=1 (M + Déy.n-11/c.

Finally, the contribution to the current acquires the form

y E.H

SR
Jar ZHZZ%_IC

In the derivation of the new contribution discussed previously,
we had to keep corrections to the constant density of states but
could set the other small parameter ¢ = 0. Here we must keep
¢ nonzero, while assuming v(€) to be constant. The vanishing
of 8o, when both v(e) = const and ¢ = 0 occurs because
the Hall conductivity is zero in a particle-hole symmetric
system. Consequently, we found that the Aslamazov-Larkin
contribution to 8oy, is proportional to Q..

(B13)

v2D*¢4 / dede dw Z(N + DCR(e,0 — )CR . \(e,0 —€)
N=0
x Cn(e,w—€NCR, (€ .w—eNLF (L, (0 — LY, (0)Ly(®)]F(e.€ o).

(B14)

In the same way, we can derive the remaining parts of
the Aslamazov-Larkin term, as well as the three-Cooperon
diagrams presented in Figs. 1(c) and 1(d). The contributions
of the first two to the Hall conductivity are given in Egs. (9)
and (10). Examining Fig. 1(c), one can see that it is a mirror
image of Fig. 1(d). Therefore, they acquire opposite signs as a
result of turning the current using the magnetic field, and their
sum is identical to zero.
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