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We have studied the Hall effect in superconducting tantalum nitride films. We find a large contribution to
the Hall conductivity near the superconducting transition, which we can track to temperatures well above Tc

and magnetic fields well above the upper critical field Hc2(0). This contribution arises from Aslamazov-Larkin
superconducting fluctuations, and we find quantitative agreement between our data and recent theoretical analysis
based on time-dependent Ginzburg-Landau theory.
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I. INTRODUCTION

Thin superconducting films are characterized by reduced
dimensionality and short coherence length, both of which
contribute to the enhancement of fluctuations of the super-
conducting order parameter above the transition temperature.
These fluctuations are expected to affect both thermodynamic
and transport measurements. Properties such as the specific
heat, magnetization and electrical conductivity in the vicinity
of the superconducting transition have been studied both
experimentally1 and theoretically.2 In particular, fluctuation
effects on the electrical conductivity were first discovered by
Glover,3 and the diagonal elements of the conductivity tensor
(or paraconductivity) are now well understood following
the original work of Aslamazov and Larkin,4 Maki,5 and
Thompson.6 However, comparable experimental studies of the
off diagonal (Hall) conductivity have been relatively limited
in scope.

In this paper we investigate the longitudinal and Hall con-
ductivities of ultrathin disordered tantalum nitride (TaNx) films
as a function of perpendicular magnetic field close to and above
the zero field critical temperature Tc0 = Tc(H = 0). Although
both the longitudinal (Rxx) and Hall (Rxy) resistances vanish in
the superconducting state, we find an enhanced Hall resistance
above the superconducting transition temperature Tc(H). Such
an enhanced resistance can be understood by considering
dominant contributions of time-dependent fluctuation effects
to the full conductivity tensor above Tc.

The Hall effect at temperatures near Tc has been studied
in thin films of conventional superconductors such as MoSi,
MoGe, NbGe, and amorphous InO,7–10 as well as in strongly
anisotropic cuprate superconductors.11–14 Nevertheless, it is
not well understood and continues to be a topic of active
research.15 For example, an unexpected sign reversal of the
Hall voltage near Tc has sparked considerable debate (see,
e.g., Refs. 11 and 12 and references therein). However, all of
these studies have been complicated by vortex physics below
Tc or by contributions from the normal state Hall effect. A
number of microscopic and phenomenological studies have
considered contributions due to vortices, pinning effects,16,17

and superconducting fluctuations.18–20 Efforts to reconcile
these studies have been hampered by the difficulty of probing
fluctuation effects in the Hall conductivity in conventional
superconducting films. Challenges include the combination
of high carrier concentration and large longitudinal resistance
typical for such systems. Thus, no conclusive picture for the
effect of fluctuations of the superconducting order parameter
on the Hall conductivity in the normal phase has been reached.
In this paper we study field-dependent fluctuation effects in
a regime where they may be unambiguously separated from
vortex physics and from distinct normal state contributions.
Thus, we provide a complete description of the Hall effect in
a thin disordered film close to the phase transition into the
superconducting state.

II. EXPERIMENTAL BACKGROUND

Tantalum nitride films were prepared using sputter depo-
sition onto a Si substrate. Sample composition was analyzed
using x-ray photoemission spectroscopy and determined to
be 50 ± 10 at.% N . Sample thicknesses were well controlled
using the sputtering time and confirmed via x-ray reflectivity
and TEM measurements; the sample thickness d is 4.9 nm.
X-ray diffraction analysis showed no sign of crystalline
order, and surface analyses showed no signs of granularity
or inhomogeneity. Samples were patterned into Hall bar
devices using standard optical photolithography techniques
and Ar-ion etching, and Ti-Au electrical contact pads were
deposited using electron beam evaporation. The active area
of the devices is 400 μm × 100 μm. Linear longitudinal and
Hall resistance were measured using standard four-point low
frequency lock-in techniques in perpendicular magnetic fields;
care was taken to ensure that all measurements were linear
in the excitation current. The Hall resistance was extracted
from the component of the Hall voltage antisymmetric in
the applied field, and was typically ∼100 times smaller than
the longitudinal contribution. Five devices fabricated from the
same film were measured and all demonstrated qualitatively
identical behavior; the results presented in this paper are from
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two representative devices. Throughout the paper the longitu-
dinal and Hall resistance and conductivity data and theoretical
expressions are given in two dimensional (sheet) quantities.

III. LONGITUDINAL RESISTANCE

To understand the Hall effect, it is important to first
understand the behavior of the longitudinal resistance. Outside
the superconducting phase and away from the transition,
the system is characterized by two types of low energy
degrees of freedom: quasiparticles that are described using
Fermi liquid theory and superconducting fluctuations. The
normal state conductivity σn far from Tc is attributed to the
quasiparticles. In the vicinity of the transition, the fluctua-
tions of the superconducting order parameter create a new
channel for the electric current. The main contribution of the
superconducting fluctuations to the electrical transport can be
formulated as the “Drude term” for these degrees of freedom.
This contribution corresponds to the Aslamazov-Larkin (AL)
term.2,4 To estimate the AL term one has to find the lifetime of
the superconducting fluctuations τsc, because the Drude-like
conductivity is proportional to it. The finite lifetime of the
superconducting fluctuations reflects the fact that outside
of the superconducting phase the creation of a Cooper
pair costs energy. Upon approaching the temperature-tuned
superconducting transition this energy becomes small, and τsc

grows as ln−1(T/Tc0). Consequently, the AL contribution to
the longitudinal conductivity4 is

δσ AL
xx = e2

16h̄
ln−1

(
T

Tc

)
. (1)

In amorphous films with moderate disorder, the interaction
between quasiparticles and superconducting fluctuations leads
to an additional singular contribution to the conductivity.
Similar to the AL term, this contribution, known as the Maki-
Thompson (MT) term,2,5,6 diverges as ln−1(T/Tc0). However,
the MT term depends also on the dephasing time τϕ :

δσ MT
xx = e2

8h̄
ln

(
ln T/Tc

h̄/kBT τϕ

)
ln−1

(
T

Tc

)
. (2)

This contribution is expected to be less significant in inhomo-
geneous systems.21 Note that the two expressions given above
correspond to films in which the superconducting fluctuations
are essentially two-dimensional (2D), while the quasiparticles
are three dimensional.

In Fig. 1 we present the zero-field superconducting tran-
sition of sample 1; the normal state sheet resistance at 10 K
is Rn

xx = 0.94 k�/�. Also shown in Fig. 1 is the resistance
measured in an applied field of 8 T, well above Hc2(0) ∼
5 T. The TaNx film studied in this work can be treated as
two dimensional with respect to superconducting fluctuations.
Dense measurements of the resistive transition as a function
of temperature and applied perpendicular magnetic field near
Tc on sample 2, shown in Fig. 2, were used to extract
dHc2/dT ≈ 1.7 T/K near Tc. The superconducting coherence
length ξ (0) ≈ 8.4 nm is larger than the film thickness, d = 4.9
nm. Hall measurements indicate a carrier density of n ≈ 9.1 ×
1022 cm−3 for both samples, from which we find that the
bulk penetration depth is ∼20 nm. In the presence of disorder
the penetration depth increases to λ ∼ 140 nm, while for

FIG. 1. (Color online) Resistance versus temperature of sample
1, a 4.9-nm-thick tantalum nitride film, in zero magnetic field and in
a field of 8 T. The continuous curve shows the expected Aslamsov-
Larkin enhancement in the conductivity above Tc0 ≈ 2.75 K. The
inset shows the measured fluctuation conductivity δσxx for this sample
plotted versus ln(T/Tc0) computed using three values of Tc0; the solid
line depicts a slope of −1.33 which is expected for an AL term that
is percolation dominated.

a 2D film the relevant magnetic screening length becomes
λ⊥ = λ2/2d ∼ 1970 nm. The mean free path is estimated to
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FIG. 2. (Color online) Resistive transitions in applied perpendic-
ular magnetic fields between 0 and 5 T for sample 2; circles are
the experimental data, and lines are a guide to the eye. Inset: Upper
critical field Hc2(T ) versus temperature; here Hc2(T ) was extracted
at the point where the resistance approaches 50% of its normal-state
value. The slope dHc2/dT ∼ 1.7 T/K is extracted from a linear fit
to the data, and the mean-field transition temperature Tc0 ≈ 2.8 K for
this sample.
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TABLE I. Measured and calculated TaNx film experimental parameters. The normal state sheet resistance Rxx and carrier density n are
measured at 10 K. The transition temperature Tc0 is extracted from analysis of the fluctuation conductivity. The slope of the upper critical field
dHc2/dT evaluated at Tc0 is extracted from analysis of the resistive transitions of sample 2 in an applied magnetic field. The Ginzburg-Landau
coherence length ξ (0), London penetration depth λL, in-plane penetration depth λ⊥, Ginzburg-Landau parameter κ , and diffusion coefficient
D, are calculated using dirty-limit expressions (Ref. 22).

d Rxx n Tc0 μ0 dHc2/dT ξ (0) λL λ⊥ D

Sample (nm) (k�/�) (cm−3) (K) (T/K) (nm) (nm) (nm) (cm2/s) κ

1 4.9 0.955 9 × 1022 ∼2.75 (1.7) 8.4 18 1980 0.51 100
2 4.9 0.944 9 × 1022 ∼2.8 1.7 8.5 18 1970 0.51 99

be 
 ≈ 0.2 nm. Measured and calculated film parameters for
both samples are summarized in Table I.

Adding the AL correction given in Eq. (1) to the nor-
mal state resistance (described in the Appendix), we fitted
the zero-field resistance as a function of temperature. In
the main panel of Fig. 1, we show that away from Tc the
AL contribution dominates as expected for this class of
dirty superconducting films. As the transition is approached,
however, the AL expression no longer fits the data. The
divergence of the conductivity is stronger than expected
from Eq. (1), suggesting that the system is inhomogeneous.
The inset of Fig. 1 shows that close to Tc the conductivity
diverges as σxx ∼ (ln T/Tc)−1.33, which corresponds to pure
AL contributions on a percolating cluster.21 (Note that we do
not expect the presence of any such inhomogeneity effects to
influence the Hall conductivity, as was previously shown by
Landauer23 from geometrical considerations and by Shimshoni
and Auerbach24 when quantum effects are included.) An
additional explanation for the departure from the AL term close
to Tc0 can be attributed to the onset of critical fluctuations. This
is because the reduced temperature ln T/Tc0 is comparable to
the Ginzburg-Levanyuk number2 Gi for this film:

Gi = 2πkBTc0κ
2

μ0Hc2(0)φ0d
∼ 0.06, (3)

where κ is the Ginzburg-Landau parameter.
Since in this film the superconducting transition is broad-

ened, unambiguous determination of the transition temperature
Tc0 is difficult. This large uncertainty draws into question
any quantitative analysis that relies on a precise value for
Tc0. For example, the inset of Fig. 1 shows the calculated
fluctuation conductivity δσxx = σxx − σn for three different
choices of Tc0. Although all three Tc0 values fall in the range
of temperatures in which the resistivity drops toward zero,
the behavior of δσxx as the temperature approaches Tc0 are
different in each case. Many studies use fits to AL theory to
extract Tc0,9,22 but the AL fits with Tc0 = 2.7 − 2.8 K shown
in Fig. 1 are inconsistent with the fluctuation conductivity in
our film, and we can only roughly determine that Tc0 is about
2.75 K for this sample. Our analysis of the field dependent Hall
effect that follows is acutely sensitive to Tc0, and this approach
may be a particularly useful probe of this parameter.

IV. HALL EFFECT

We turn now to the transverse resistance measurements.
Figure 3 shows the longitudinal resistance and Hall resistance
of sample 1 as a function of applied perpendicular magnetic

field, at temperatures close to and above Tc0. In the normal
phase of a homogeneously disordered film like TaNx , the Hall
conductivity is determined by the fluctuations of the order
parameter in addition to the quasiparticles, because vortex
physics is not relevant. Thus, it is reasonable to expect that at
temperatures above Tc0 the deviation of the Hall conductivity
from the normal state linear-magnetic-field dependence can be
attributed to the fluctuations of the order parameter alone.

Fluctuation contributions to the Hall conductivity have
been studied using a number of different formalisms. From
phenomenological considerations, Lobb et al.25 parametrize
the Hall conductivity at temperatures near Tc with terms
proportional to the magnetic field H and H−1:

σxy(H) = c1

H
+ c2H, (4)

which is intended to interpolate between the low-field region
where σ ∼ H−1 and high fields where σ ∼ H. We find that this
simple form does not account for the Hall conductivity seen in
TaNx above Tc0.

Recent theoretical studies of superconducting fluctuation
contributions to the Hall effect26,27 have extended previous
calculations of the Hall conductivity18,20 to a broader range

FIG. 3. (Color online) Hall resistance Rxy (left) and longitudinal
resistance Rxx (right) of TaNx sample 1 versus applied magnetic
field H at temperatures near and above the mean-field Tc0 ∼ 2.75 K.
The Hall resistance curves have been vertically offset for clarity. At
temperatures T � Tc the Hall resistance is only weakly temperature
dependent and is linear in the applied magnetic field, with a
slope of ≈0.014 �/T corresponding to a 3D carrier density of
∼9 × 1022 cm−3; this is shown in the thick gray lines.
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of temperatures and magnetic fields. Close to the critical tem-
perature, Ref. 26 shows that the fluctuation Hall conductivity
δσxy for a broad range of magnetic fields is

δσxy = 2e2kBT ς

πh̄
sign(H)

∞∑
N=0

(N + 1)(EN+1 − EN )3

ENEN+1(EN + EN+1)2

∣∣∣∣
ω=0

.

(5)

The function AN describes the superconducting fluctuations
in the diffusive regime:

EN (ω,H,T ) = ln

(
T

Tc0

)
+ �

(
1

2
+ −iω + �c(N + 1/2)

4πkBT

)

−�

(
1

2

)
+ ςω. (6)

The spectrum of these collective modes is determined by the
equation EN (ω,H,T ) = 0. Here, � is the digamma function,
and �c = 4|e|μ0HD is the energy of the cyclotron motion
corresponding to the collective modes (where D is the
diffusion coefficient and kB is Boltzmann’s constant). Since
the superconducting fluctuations carry charge, the magnetic
field quantizes their spectrum. This is reflected in the sum
over the index N appearing in Eq. (5). The parameter
ς = − 1

2∂ln Tc/∂μ ∝ 1/γ εF (where εF is the Fermi energy
and γ the dimensionless coupling constant of the attractive
electron-electron interaction that induces superconductivity)
describes the particle-hole asymmetry of the superconducting
fluctuations.20,26 For a film with three-dimensional electrons
and a simple electron spectrum ς is negative. This parameter,
which is essential for the Hall effect, is nonzero due to the
energy dependence of the quasiparticle density of states.

The expression given in Eq. (5) corresponds to the AL
contribution to the Hall conductivity in the region of classical
fluctuations, meaning that it is valid as long as E0(ω =
0,H,T ) � 1. The contributions of the MT kind18 to the Hall
conductivity are less singular and can be disregarded as
the transition is approached. In the limit H → 0, our result
coincides with the one found in Ref. 20:

δσxy = e2ς�c sign H

96h̄ ln2 T/Tc0
. (7)

To fit the experimental data collected at temperatures close
to Tc with Eq. (5), we calculated the Hall conductivity σxy =
−Rxy/(R2

xx + R2
xy). Far from the transition, at high magnetic

fields and/or temperatures, the measured Hall resistance is
linear in the applied magnetic field and weakly temperature
dependent. This behavior is expected at temperatures T �
Tc and/or high magnetic fields where the superconducting
fluctuations are insignificant. Subtracting the normal (linear
in magnetic field) component of the Hall conductivity, σn

xy ,
leaves only the fluctuation contribution δσxy that is sensitive
to the onset of superconductivity

δσxy = σxy − σn
xy. (8)

In the temperature range of interest the Hall resistance
measured at μ0H = 14 T changes by ∼1%; the analysis that
follows is insensitive to this slight temperature dependence. We
determine the normal state σn

xy(B) = σxy(B = 14 T)/(14 T).

FIG. 4. (Color online) Fluctuation Hall conductivity for TaNx

sample 1 at temperatures near Tc0; the data are offset vertically
for clarity. The continuous curves corresponding to Eq. (5) show
excellent agreement over a wide range of magnetic fields and
temperatures. The inset shows similar data and fits for sample 2.

(The analysis that follows is not sensitive to the exact descrip-
tion of the longitudinal normal state resistance, described in the
Appendix.) The fluctuation Hall conductivity δσxy calculated
for sample 1 is shown in Fig. 4, along with the fits to Eq. (5);
the inset shows similar data and best-fit curves for sample 2.
The theoretical calculations are in good agreement with the
data over a wide range of temperatures and fields.

In fitting Eq. (5) for each sample, three parameters are
used for the entire set of Hall conductivity curves: T fit

c0 , D (the
diffusion coefficient that enters �c), and kBς . For sample 1, the
best-fit parameters are (i) T fit

c0 = 2.60 ± .05 K, comparable to
that determined from the Rxx versus T analysis (Tc0 ∼ 2.75 K),
(ii) the diffusion coefficient D = 0.52 cm2/sec, and (iii) the
parameter kBς = −3.4 × 10−4 K−1. Note that with a
zero-temperature coherence length extracted from Hc2, we
expect D ∼ ξ 22kBTc0/h̄ ≈ 0.5 cm2/sec. Estimating ς from
the carrier density and taking γ ≈ 0.2 which is suitable for
this material, we obtain kBς ∼ −10−4 K−1, in agreement
with the values obtained from the fit. As is evident from Fig.
4, at T = 2.6 K ≈ Tc0 the magnitude of δσxy sharply increases
as the magnetic field decreases and the transition into the
superconducting state approaches. As shown in the inset
to Fig. 4 the calculated fluctuation conductivity and fits to
Eq. (5) for sample 2 are almost identical to sample 1. Best-fit
parameter values for both samples are listed in Table II.

The above fitting procedure is acutely sensitive to Tc0 due to
the stronger divergence of δσxy as the transition is approached
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TABLE II. Fluctuation Hall conductivity best fit parameters, T fit
c0 ,

D, and kBς , for both samples.

T fit
c0 D kBς

Sample (K) (cm2/s) (K−1)

1 2.60 ± 0.05 0.52 3.4 × 10−4

2 2.53 ± 0.05 0.59 4.6 × 10−4

[compare Eqs. (1) and (7)], and provides a precise and clear
route to extracting Tc0.

V. CONCLUSION

In summary, we have performed careful studies of the
longitudinal and Hall conductivities at temperatures near and
above the zero-field superconducting transition in disordered
films of TaNx . Studying fluctuation effects in the Hall
conductivity is an experimental challenge in systems with
high carrier concentration and large longitudinal resistance.
These measurements appear to be consistent with theoretical
analysis over a wide range of temperatures and magnetic
fields. Observation and verification of this effect may facilitate
more careful studies of superconducting contributions to the
Hall effect and provide a direct route to extract information
about the particle-hole asymmetry of the superconducting
fluctuations through the parameter ς . Finally, such an analysis
provides a more precise technique for estimation of the
temperature where the gap closes.
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APPENDIX: ESTIMATION OF THE NORMAL
STATE RESISTANCE

In many studies the normal state resistance is either weakly
temperature dependent9 or determined experimentally by
applying a large magnetic field to suppress superconductivity
and assuming a negligible normal-state magnetoresistance
(MR).22 In our samples, a large nonclassical MR prohibits
such an approach, and so we need a well defined procedure to
account for it. Figure 5 shows the resistance versus temperature
of sample 1 up to 30 K for various values of applied magnetic
field. The lower panel of this figure shows the MR, defined as

�R

R
(T ,H) = Rxx(T ,H) − Rxx(T ,0)

Rxx(T ,0)
, (A1)

calculated using these same data. According to Kohler’s rule,28

the classical normal state MR should be a universal function
of ωcτ , and in the low-field limit the MR �R/R ∼ (ωcτ )2,
where ωc = eB/m is the cyclotron frequency of the electrons,
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FIG. 5. (Color online) Magnetoresistance versus temperature for
TaNx sample 1. Panel (a) shows the measured resistance in applied
magnetic fields of 0, 2, 4, and 8 T. Panel (b) shows the calculated
magnetoresistance �R/R as described in the text; the continuous
curves are guides to the eye, and the vertical bar indicates the
approximate position of Tc0.

τ is their elastic scattering time, B = μ0H, and μ0 is the
magnetic permeability. For our samples (ωcτ )2 < 10−6, much
smaller than the measured MR shown in Fig. 5, and the low
temperature MR does not scale as a universal function of ωcτ .
While we expect superconductivity effects to give a large
MR close to the superconducting transition, this behavior
should decay to zero as the temperature or magnetic field
are increased. The measured MR at 30 K, well above Tc ∼
2.8 K, is still three orders of magnitude larger than (ωcτ )2, and
thus we must describe this large nonclassical MR. Our first
step in identifying the normal state resistance Rn is to fit the
data at 10 K < T < 30 K and various magnetic fields with the
following function:

�R

R
(T ,H) = A(H)exp[−T/T0(H)]. (A2)

By interpolation we can find the phenomenological parameters
A(H) and T0(H) for arbitrary fields, and hence, obtain an
expression for the normal state MR at all T and H. To now
determine the normal state resistance at zero field, Rn(T,H =
0), we use the expression for the normal state MR given in
Eq. (A2) and the resistance measured at 8 T:

Rn
xx(T ,H = 0) = Rxx(T ,μ0H = 8T)

�R
R

(T ,μ0H = 8T) + 1

= Rxx(T ,μ0H = 8T)

A(μ0H = 8T)exp[T/T0(μ0H = 8T)] + 1
.

(A3)
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This approach necessarily recovers the measured zero-
field resistance at high temperatures, assuming that de-
viations from the exponential temperature dependence of
the MR are low temperature arise from superconduct-
ing fluctuations. Now we are fully equipped to estimate
the normal-state resistance for any temperature and mag-
netic field Rn

xx(T ,H) both close and far away from the

transition

Rn
xx(T ,H) = Rn

xx(T ,0)

A(H)exp[−T/T0(H)] + 1
. (A4)

Recent studies29 of fluctuation phenomenon in high-Tc ma-
terials have used a similar approach to describe normal state
behavior.
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