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infrared active phonons in bilayer cuprate superconductors
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The formula frequently used to describe the c-axis infrared response of the coupled electron-phonon system
of bilayer cuprate superconductors and providing important insights into the physics of these materials has been
originally obtained at the level of the phenomenological multilayer model. Here we derive it using diagrammatic
perturbation theory.
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The phase diagram of underdoped high-Tc cuprate super-
conductors is divided into three regions: the superconducting
one below Tc, the pseudogap phase in the temperature range
Tc < T < T ∗, where T ∗ is the onset temperature of the
(high-energy) pseudogap, and the anomalous normal state
above T ∗.1,2 There is an interesting and important class of
physical properties that begin to develop/whose temperature
dependence changes its character at an onset temperature
much lower than T ∗ but at the same time considerably higher
than Tc.3 These include, for example, the NMR relaxation
rate (1/T1T ),4 amplitude of the transverse plasma mode
(also referred to as the 400 cm−1 mode) and some phonon
structures in the c-axis infrared conductivity of YBa2Cu3O7−δ

(Y-123),5–10 in-plane scattering rate and in-plane conductivity
below ∼700 cm−1,3,10 amplitude of the neutron resonance,11

Nernst signal,12 diamagnetic response,13 specific heat,14 some
features of the excitation gap,15,16 spectral weight at the
chemical potential,17 magnetic field dependence of the in-
plane resistivity,18 THz conductivity,19,20 and the quasiparticle
interference.21 The values of the onset temperature range from
∼15 K above Tc (THz conductivity) to more than 100 K above
Tc (transverse plasmon and the phonon structures, Nernst).
Some of the phenomena (increase of the THz conductivity
and quasiparticle interference) are almost certainly related to
superconducting fluctuations. Some others with a much higher
onset temperature (e.g., the transverse plasmon and the phonon
structures, Nernst) have also been attributed to a precursor
superconducting state (PSC) lacking the long-range phase
coherence. This exciting issue, however, is fairly controversial
and no consensus has been reached thus far. There are two
prerequisites for an ultimate understanding: (a) A detailed
knowledge of both doping (p) and temperature dependence of
the relevant quantities. (b) An understanding of the physical
contents of these quantities, in particular, the relation to
superconductivity.

Dubroka et al.10 have studied in detail the temperature
dependence of the phonon structures in the infrared c-axis
conductivity of Y-123 for a broad range of p of 0.03 < p <

0.17 and determined the p dependence of the corresponding
onset temperature T ons (for the precise definition, see Ref. 10).
The relation between the phonons and the electronic degrees of
freedom has been understood in terms of the phenomenolog-
ical, essentially classical, multilayer model,22,23 involving the
local conductivity of the bilayer units (denoted here as σbl) and

that of the spacing layers (σint), extended24,25 by including the
phonons. For a schematic representation of the electronic part
of the model and for definitions of the relevant quantities, see
Fig. 1(a). The model, as formulated in Refs. 24 and 25, involves
a set of self-consistent equations that allows one to express the
local quantities jbl, jint, Ebl, and Eint in terms of Eext and the
local conductivities σbl and σint. The total conductivity is given
by 〈j 〉/〈E〉, where 〈j 〉 is the volume averaged current density
〈j 〉 = (dbljbl + dintjint)/d and 〈E〉 is the volume averaged elec-
tric field 〈E〉 = (dblEbl + dintEint)/d. The lattice vibrations
enter the phenomenological model in two different ways:
(a) The local field driving the Lorentz oscillator representing
a particular phonon mode depends on the phonon eigenvector.
Due to the presence of the charged planes, different ions feel
different local fields. (b) The displacements of the ions, on
the other hand, modify the fields Ebl and Eint (a feedback
of the phonons). For a careful discussion and for the model
equations, see Ref. 25. The model has allowed the authors
of Ref. 10 to conclude that at T ons the spectral weight of the
low-energy component of σbl (the Drude peak in the analysis
of Fig. 1 of Ref. 10) begins to increase, signaling an increase
of coherence of the response. Several arguments have been
advanced suggesting that this is due to the formation of a PSC.

The importance of the topic of PSC and of other interesting
fields of application of the multilayer model27–30 calls for
developing a fully quantum mechanical description of the
response of the coupled electron-phonon system that would
support the phenomenological approach. Chaloupka et al.
have already constructed (see Ref. 26, CBM in the following)
a microscopic gauge-invariant theory of the c-axis infrared
response of bilayer cuprate superconductors, such as Y-123,
providing both a justification and limits of the electronic part
of the multilayer model and of a related earlier approach.31

The phonons, however, have not yet been incorporated. Here
we provide an extension of the theory of CBM, where they
are included at the Green’s function level. In contrast with
the phenomenological approach, both electronic and phonon
current densities are treated as operators and expressed in terms
of the quasiparticle creation and annihilation operators, the
conductivity is calculated with the help of the Kubo formula,
and the current-current correlator of the formula expressed
using diagrammatic perturbation theory. A formally similar
approach has been recently used to explain the electric field
dependence of the infrared spectra of bilayer graphene.32 The
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FIG. 1. (a) Schematic representation of the multilayer model, reproduced from Ref. 26. The shaded planes represent the copper-oxygen
planes. The distance between the closely spaced planes forming a bilayer (between the bilayers) is denoted by dbl (dint), the c-axis lattice
parameter d is given by d = dbl + dint. If an ac electric field Eext is applied perpendicular to the planes, currents flow between the planes.
The corresponding current densities are denoted by jbl and jint. They are not equal and the planes thus become charged. The resulting charge
density alternates from one plane to the other (ρ and −ρ). As a consequence, the average electric field of the bilayer region Ebl differs from
that of the interbilayer region (spacing layer) Eint. The current densities are related to the fields via jbl = σblEbl and jint = σintEint with the local
conductivities σbl and σint. Feynman diagrams representing the correlators defined in the text [(b) and (c)], the interaction vertices corresponding
to HC of Eq. (13) and He−p of Eq. (16) [(d)], and two segments that appear in the series of part (f) [(e)]. (f) Series of the diagrams corresponding
to the quantities χA, χB , χC , and χD defined in the text. The sum of the contributions of the diagrams is to be multiplied by d2

bl/d
2 in case of

χA and by dbl/d in case of χC and χD .

final formula for the c-axis conductivity will be derived and it
will be shown to coincide, for a natural choice of the electron-
phonon coupling term, with that of the phenomenological
model. The essential aspects of the theory are formulated in
the points (i)–(viii).

For the sake of simplicity we neglect the hopping through
the spacing layer (t ′⊥ in the notation of CBM, σint = 0),33 focus,
as usual, on the long-wavelength limit of q = 0,34 and limit
ourselves to the case of one infrared active phonon.

(i) Relevant equations of CBM. The (electronic) conductiv-
ity σbl of the bilayer unit is given by

σbl(ω) = −iωε0χbl(ω) = κdia−bl + dbl	jj (ω)

i(ω + iδ)
, (1)

where χbl is the bilayer susceptibility, κdia−bl is the term
describing the diamagnetic contribution, dbl is the distance
between the closely spaced planes, and 	jj (ω) is the current-
current correlation function. The term κdia−bl is given by

κdia−bl = − e2dbl

h̄2Na2

∑
ks

t⊥(k)〈c†BkscBks − c
†
AkscAks〉, (2)

where N is the number of unit cells per copper-oxygen plane,
a is the in-plane lattice parameter, the sum runs over all values
of the in-plane quasimomentum k and spin s, t⊥(k) is the
intrabilayer hopping parameter, and c

†
Bks , cBks (c†Aks , cAks)

are the quasiparticle operators corresponding to the bonding

(antibonding) band. The correlator 	jj is given by

	jj (ω) = iNa2

h̄

∫ ∞

−∞
dt eiωt

〈[
ĵ

p
bl(t),ĵ

p
bl(0)

]〉
θ (t), (3)

where ĵ
p
bl is the operator of the intrabilayer paramagnetic

current density,

ĵ
p
bl = ie

h̄Na2

∑
ks

t⊥(k)(c†BkscAks − c
†
AkscBks). (4)

In the absence of interlayer Coulomb interaction and any
phonon contribution, the total (volume averaged) c-axis
current density would be equal to σ ∗(ω)Eext(ω) with σ ∗(ω) =
(dbl/d)σbl(ω) and Eext is the external field, d is the c-axis
lattice parameter.

(ii) Response of a c-axis polarized infrared active phonon
mode. The well-known formulas describing the one-phonon
absorption (see, e.g., Ref. 35) are rewritten here in terms of the
phonon current density operator. This will allow us to construct
the perturbation expansion needed to describe the interacting
case.

In the absence of any electronic contribution, the (volume
averaged) current density can be expressed as σ ∗(ω)Eext(ω)
with

σ ∗(ω) = σph(ω) = −iωε0χ = κdia−ph + d�jj (ω)

i(ω + iδ)
, (5)

where χ is the phonon polarizability, κdia−ph is the term
describing the diamagnetic contribution, and �jj (ω) is the
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phonon current-current correlator.36 The term κdia−ph is equal
to −ε0ω

2
P , where ωP is the phonon plasma frequency,

ω2
P = 1

(a2d)ε0

{ ∑
μ

[eμ(e)μ z/
√

mμ]

}2

. (6)

Here a2d is the volume of a unit cell and eμ, (e)μ z, and mμ are
the effective charge, the c-axis component of the polarization
vector, and the mass of the μth ion, respectively. The correlator
is given by

�jj (ω) = iNa2

h̄

∫ ∞

−∞
dt eiωt

〈[
ĵ

p
ph(t),ĵ p

ph(0)
]〉
θ (t). (7)

Here ĵ
p
ph is the phonon paramagnetic current-density operator

ĵ
p
ph = i√

Na2d

√
h̄ω0

2

∑
μ

eμ(e)μz√
mμ

(a† − a), (8)

ω0 is the phonon frequency, and a† and a are the phonon
creation and annihilation operators, respectively. The cor-
relator can be further expressed in terms of the retarded
phonon propagator D(ω), that is, the Fourier component of
D(t) = −i〈[ϕ(t),ϕ+(0)]〉
(t) with ϕ = a + a†. We obtain

d�jj = ε0ω
2
0χ = −ε0ω

2
P ω0

2
D(ω) . (9)

In the noninteracting case, D(ω) = D0(ω) = 2ω0/(ω2 − ω2
0 +

iωδ), the phonon conductivity is given by

σph(ω) = −iε0ω
ω2

P

ω2
0 − ω2 − iωδ

, (10)

and the phonon contribution to the dielectric func-
tion by �ε(ω) = ω2

P /(ω2
0 − ω2 − iωδ) and �ε2(ω) =

π (ω2
P /2ω0)δ(ω − ω0). These are the familiar formulas de-

scribing the one-phonon absorption in the absence of any final
state interactions.35 Our expression for the phonon plasma
frequency [the right-hand side of Eq. (6)] coincides with that
appearing in the equations of Ref. 35.

(iii) Case of the electronic contribution coexisting with the
phonon one. The total current density is given by σ ∗(ω)Eext

with

σ ∗(ω) = κ ′
dia−bl + κdia−ph + d �jj (ω)

i(ω + iδ)
, (11)

where κ ′
dia−bl = (dbl/d)κdia−bl,

�jj (ω) = iNa2

h̄

∫ ∞

−∞
dt eiωt

〈[
Ĵ

p
bl(t) + ĵ

p
ph(t),Ĵ p

bl(0)

+ĵ
p
ph(0)

]〉
θ (t), (12)

and Ĵ
p
bl = (dbl/d)ĵ p

bl. In the absence of interlayer Coulomb
interaction and electron-phonon interaction, the mixed corre-
lators (involving both Ĵ

p
bl and ĵ

p
ph) would vanish and we would

obtain simply σ ∗(ω) = (dbl/d)σbl(ω) + σph(ω) with σbl from
Eq. (1) and σph from Eq. (5). The interactions will be shown
to lead both to a renormalization of σbl and σph and to nonzero
values of the mixed correlators.

(iv) Formulas used to describe the final state interactions.
Let us begin our considerations with the simple scheme of

Fig. 1(a). The difference between the local conductivities σbl

and σint leads to a difference between the current densities jbl

and jint resulting in the excess charge density ρ [see Fig. 1(a)].
The electrostatic energy due to ρ is given by Na2dblρ

2/(2ε0)
and the corresponding contribution to the Hamiltonian by Eq.
(25) of CBM, that is,

HC = Na2dbl

2ε0
ρ̂2, (13)

where ρ̂ is the density operator that can be expressed in terms
of the quasiparticle operators as

ρ̂ = e

2Na2

∑
ks

(c†AkscBks + c
†
BkscAks). (14)

Next we derive the formula for the coupling term He−p

describing the interaction between the charge densities of
the planes ρ and −ρ and a phonon. We begin with the
textbook formula for the energy U of a polarized medium
in a homogeneous electric field: U = −V · P · E, where V

is the volume of the medium, P is the polarization, and E is
the field. In the present case, V is the volume of N unit cells
V → Na2d, P is the polarization due to the phonon P → P̂ ,

P̂ = 1√
Na2d

√
h̄

2ω0

∑
μ

eμ(e)μ z√
mμ

(a† + a), (15)

and E is the electric field due to ρ and −ρ, E → ρ̂/ε0. In
addition, the product has to be multiplied by a factor denoted
by ξ , representing the degree of overlap of E and the oscillating
microscopic dipoles. The reason is that E is nonzero only in
the region between the closely spaced planes, that is, inside
the bilayer unit [see Fig. 1(a)]. For the sake of simplicity,
only three types of phonons are considered: those associated
with vibrations inside (outside) the bilayer unit, with ξ = 1
(0), and phonons involving mainly the oxygens of the CuO2

planes. In the latter case, ξ ≈ 1/2, as explained in simple
terms below. Consider the scheme of Fig. 1(a). The charge
density of the planar oxygens can be assumed to be distributed
partially above the fixed metallic planes and partially below
them (for a related scheme, see Fig. 5 of Ref. 25). The
vibrations thus occur partially inside and partially outside
the bilayer unit. As a result, the degree of overlap of E and
P is intermediate between the two types and ξ ≈ 1/2. By
combining the expressions for V , P , and E we obtain

He−p = −ξ
Na2d

ε0
P̂ ρ̂. (16)

(v) Modification of the response by HC and He−p. The
function �jj defined by Eq. (12) can be written as the sum of
four contributions: χA [the term involving Ĵ

p
bl(t) and Ĵ

p
bl(0)],

χB [ĵ p
ph(t) and ĵ

p
ph(0)], χC [Ĵ p

bl(t) and ĵ
p
ph(0)], and χD [ĵ p

ph(t) and

Ĵ
p
bl(0)]. These correlators can be expressed, using perturbation

theory, in terms of those referring to the case of HC = 0 and
He−p = 0: 	jj , 	jρ , 	ρj , 	ρρ , �jj , �jP , �Pj , and �PP .
Two of the latter, 	jj and �jj , have been defined above, see
Eqs. (3) and (7), the others are defined similarly, for example,
�jP (ω) = (iNa2/h̄)

∫ ∞
−∞ dt eiωt 〈[ĵ p

ph(t),P̂ (0)]〉θ (t). Figure 1
shows the Feynman diagrams representing the correlators [in
(b) and (c)] and the interaction vertices [in (d)]. Also shown are
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the factors to be assigned to the vertices when calculating the
contributions of the diagrams. Figure 1(f) shows the series of
the diagrams corresponding to χA, χC , χC , and χD . The series
can be summed up by standard techniques37 and the results are(

d

dbl

)2

χA = 	jj + 	jρ

1

1 − 	′
ρρ

	′
ρj ,

χB = �jj + ξ 2d2

ε2
0

�jP

	ρρ

1 − 	′
ρρ

�Pj ,

(17)
d

dbl
χC = ξd

ε0
	jρ

1

1 − 	′
ρρ

�Pj ,

d

dbl
χD = ξd

ε0
�jP

1

1 − 	′
ρρ

	ρj ,

where 	′
ρρ/ρj is the expression corresponding to the repeating

segment of the diagrams shown in Fig. 1(d),

	′
ρρ/ρj = dbl

ε0

(
ξ 2d2

dblε0
�PP − 1

)
	ρρ/ρj . (18)

(vi) Simplifications resulting from the gauge invariance.
The sum in the numerator on the right-hand side of Eq. (11)
containing κdia−bl, κdia−ph, and the four correlators of Eq. (17)

can be considerably simplified by using the relations

	ρj = iωε0

dbl
χbl = −	jρ, 	ρρ = ε0

dbl
χbl,

�Pj = iωε0

d
χ = −�jP , �PP = ε0

d
χ (19)

that follow from the requirement of the charge conservation
formulated in different gauges of the electromagnetic po-
tentials or equivalently from the requirement of the gauge
invariance.26,38 We obtain

σ ∗(ω) = −iωε0[(dbl/d)χbl + χ + (1 − 2ξ )χblχ ]

× 1

1 − χbl[(d/dbl)ξ 2χ − 1]
. (20)

(vii) Total electric field, from σ ∗(ω) to σ (ω). The total
electric field E consists of the external field Eext and the
induced field Eind due to the charge fluctuations described
by ρ and the phonon polarization described by P , Eind =
(dbl/d)(ρ/ε0) − (P/ε0) = j/(iωε0). We have used the con-
tinuity equation iωρ = jbl and the relation between P and
the total phonon current density jp, −iωP = jp, j is the
total current density. The c-axis conductivity σ (ω) defined
by σ (ω) = j (ω)/E(ω) is equal to σ ∗(ω)[Eext(ω)/E(ω)], that
is,

σ (ω) = σ ∗(ω)

1 − iσ ∗/(ωε0)
= −iωε0

(dbl/d)χbl+χ+(1−2ξ )χblχ

1+[1−(dbl/d)]χbl−χ−[1−2ξ+(dbl/d)ξ 2]χblχ
. (21)

(viii) Considerations of screening by high-frequency pro-
cesses lead to a slightly modified formula:

σ (ω) = rhs of Eq. (21)[ε0 → ε0ε∞,

χbl → χbl/ε∞, χ → χ/ε∞], (22)

where ε∞ is the interband dielectric function. The total
dielectric function is given by ε(ω) = ε∞ + iσ (ω)/(ωε0).

It is an easy exercise to show that the final formula [(21)
or (22)] is precisely the same as the one resulting from the
single phonon version of the phenomenological multilayer
model.39 The important point is that is has been derived here
on microscopic grounds, using perturbation theory, with the
electron-phonon coupling constant determined by simple elec-
trostatics. Within the phenomenological model, the response
of a phonon to the applied field is governed by the eigenvector-
dependent local electric field. Here the eigenvector enters
the equations through the coupling constant. Our result adds

credibility to the central claim of Ref. 10, that at T ons the
spectral weight of the low-energy component of the (local)
intrabilayer conductivity σbl begins to increase, possibly a
manifestation of precursor superconductivity. Future studies
involving the present formalism in conjunction with the local
conductivities resulting from microscopic calculations such as
those reported in CBM (rooted in the Fermi liquid theory) or
those of the kind of Ref. 40 based on a phenomenological
ansatz41 related to the resonating valence bond picture are
needed to achieve further progress.
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23M. Grüninger, D. van der Marel, A. A. Tsvetkov, and A. Erb, Phys.

Rev. Lett. 84, 1575 (2000).
24D. Munzar, C. Bernhard, A. Golnik, J. Humlı́ček, and M. Cardona,
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