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Quantized vortex reconnection: Fixed points and initial conditions
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Quantized vortices are phase singularities in complex fields. In superfluids, they appear as mobile interacting
defects that may cross and reconnect by exchanging tails. Reconnection is a topology-changing event that allows
vortex tangles to decay; it is a defining signature of quantum turbulence. We report a family of fixed points (i.e.,
stationary solutions), including planar forms, that capture reconnection in the Gross-Pitaevskii model in contrast
to previous suggestions of pyramidal structures. These are obtained using a well known, systematic method for
generating low-energy relaxed initial conditions for Gross-Pitaevskii simulations.

DOI: 10.1103/PhysRevB.86.014509 PACS number(s): 67.25.dk, 03.75.Lm, 05.45.−a

Quantized vortex reconnection is a topology-changing
mechanism by which two quantized vortices in a quantum
fluid (e.g., superfluid 4He) approach and exchange tails.1

Reconnection is important as a decay mechanism in quan-
tum turbulence,2–4 and has recently been directly observed
experimentally.5 It was found that reconnection events were
involved in strongly non-Gaussian velocity statistics, clearly
distinguishing quantum from classical turbulence.5

A quantized vortex exists as a line phase defect on the locus
of zeros of both the real and imaginary parts of a complex field
�. In the context of superfluids, � is the order parameter,
often taken to obey the Gross-Pitaevskii (GP) equation.
The GP equation, which naturally exhibits quantized vortex
solutions and reconnection, has received much theoretical and
numerical examination as a useful model of superfluids and
Bose-Einstein condensates. Quantized vortices are also of
widespread interest in other processes that have topological
defects, such as Ginzberg-Landau theory, superconductivity,6

liquid crystals, and cosmic strings. Magnetic reconnection is
a closely related and similarly active field of study in plasmas
and astrophysical magnetohydrodynamics.7

Many interesting and significant numerical studies have
investigated quantized vortex evolution and reconnection,8–15

but have not often explored in detail the role of the initial data.
Given the Hamiltonian structure of GP evolution, and that
the three dimensional (3D) equation conserves total energy,
momentum, and mass, it is not surprising that initial data
are central to the dynamics. Here we present evidence of the
important role of initial data on vortex evolution.

This paper presents a method for generating well-specified
initial conditions and, as a cautionary tale, the unintended
results of failing to do so. A method is recalled,16 which
we exploit to find previously unidentified fixed points,
that is stationary solutions of the underlying Hamilto-
nian dynamics, relevant to vortex reconnection. Recent
analytical work on the topology of complex fields with
connections to the results of previous work on linear
models of reconnection17 and our fixed points is also
discussed.

Theoretical studies of complex fields18 provide generic
descriptions and a classification of phase singularities and
topology-changing events of which vortex reconnection is but

one example. Indeed, distinct categories have been established
which have direct analogs in the context of superfluids with
a single straight vortex, the reconnection of vortices, and ring
propagation, generation, and decay. Specifically, Berry and
Dennis18 have precisely defined the conditions required in a
complex field for a topology-changing event to occur. They
provide a general Taylor expansion of a complex field � near
a topology-changing event, namely,

�(x,y,z; t) = t + i(az) + 1
2 r · A · r + O(r4) (1)

with a bifurcation on a real time parameter which unfolds
the singularity. Here a is a scalar, r = (x,y,z), and A is
a complex, symmetric 3 × 3 matrix. They show that if
det{Re A} > 0 the process is elliptical and analogous to a
vortex ring which shrinks and vanishes. If det{Re A} < 0 the
process is hyperbolic and analogous to a pair of vortices that
reconnect. These are the only two stable topology-changing
events in complex fields,18 and their analogous physical
processes in superfluid 4He have both been observed in
experiment.5 This supports the idea that topology-changing
events are deeply involved with quantum turbulence decay.

It is worth noting that (1) encapsulates our analytic work
presented below and the linear aspects of the well-known study
of Nazarenko and West17 on vortex reconnection. The analysis
by Berry and Dennis was executed in the context of optical
vortices but is generally applicable to all systems with an
evolving complex field; it can be helpful in understanding
quantized vortices. Here we focus on the hyperbolic case
associated with vortex reconnection.

The Gross-Pitaevskii Equation (GPE) may be written

ih̄
∂�

∂t
=

(−h̄2

2m
∇2 − μ + γ |�|2

)
�, (2)

and expressed in dimensionless form using natural time
and space units, (t0,ξ0), yielding ∂/∂t̄ = (h̄/μ)∂/∂t , ∇̄ =
h̄/

√
2mμ∇, and �̄ = �/

√
mμ. For 4He, accepting a healing

length ξ0 ≈ 0.9 Å gives t0 ≈ 0.5 ps.
To prepare minimal-energy initial conditions and to re-

examine the straight vortex solution, we employ the diffusive
GP equation (DGPE), with a real diffusivity, written in
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dimensionless form as

∂�

∂t
= (∇2 + 1 − |�|2)�. (3)

Notice that a stationary solution of the DGPE is simulta-
neously a fixed point for the GPE. This fact can be exploited
to find fixed points of the GPE numerically, and to generate
relaxed, minimal-energy initial conditions for dynamical GPE
simulations with a specified initial phase profile. The proce-
dure is analogous to the imaginary-time propagation method,16

used in Bose-Einstein condensate theory and simulations to
study the ground states.

To perform any vortex calculation using the GPE, a vortical
initial condition must be specified. An infinite straight vortex
is an axisymmetric stationary solution of the GPE that is
expressible in cylindrical spatial coordinates as

�(r,φ,z) = f (r)eiφ, (4)

where the density profile satisfies f (r) → 0 when r → 0, and
f (r) → 1 when r → ∞. Since there are no exact analytical
forms for f (r), it must be found numerically; but this is
not practical when a wave function for multiple vortices is
required as an initial condition. In previous work, it has been
customary to use some convenient analytic but approximate
density profile,10–12,15 and to multiply such wave functions
together, one for each vortex, to construct a �0 ≡ �(r,t = 0).

We propose a systematic method for generating an initial
condition of minimal energy by using the DGPE. First, one
generates an approximate phase profile φ0(r), defined through-
out the computational domain, that qualitatively describes
the desired initial vortex configuration. Then a corresponding
initial wave function �0 with phase factor eiφ0(r) is constructed.
This is evolved via the DGPE, (3), allowing the magnitude
|�(r,t)| to diffuse, but actively maintaining the same, fixed
phase profile, i.e., φ0(t) = tan−1(Re{�0}/Im{�0}). This pro-
cess converges to a relaxed solution with minimal energy
and provides reproducible low-energy initial data for a GP
calculation. Note that the Lyapunov functional of the DGPE,
which can only decrease or become stationary, is identical
to the Hamiltonian for the GP model. For a single straight
vortex along the z axis, �0 = (x + iy)/

√
x2 + y2 is a sufficient

input and converges to the minimal-energy relaxed core density
profile. Multiple-vortex initial conditions can be generated by
parameterizing the single-vortex phase factors for each desired
vortex, multiplying these together, and diffusing as above. The
technique will be elaborated in a future manuscript.

The consequences of using conventional approximate den-
sity profiles are dramatic. Figure 1 compares three of these
analytical forms, namely, the Kerr,15 Fetter,19 and Berloff13

approximants, showing how they differ, some substantially,
from the relaxed numerical solution found by first evolving
with the DGPE or, equivalently, by numerically solving the
relevant radial ordinary differential equation for f (r).8 The
Kerr and Fetter approximants launch strong radial waves when
imposed as initial conditions for a single straight vortex and
evolved in a GP computation. The emission arises as the
inner core region evolves towards the relaxed density profile
while the excess energy propagates outwards as waves: see
Fig. 2. This is clearly a mistaken consequence of not specifying
minimal-energy initial conditions. (Of course, an interesting
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FIG. 1. (Color online) Comparison of approximate density pro-
files, |�| = f (r), as introduced by Kerr15 f 2

K = r4/(2 + r4) (green,
dot-dashed), proposed by Fetter19 f 2

F = r2/(2 + r2) (blue, solid), and
developed by Berloff13 f 2

B = 11r2(12 + r2)/(384 + 182r2 + 11r4)
(red, dashed), with the diffused/exact profile fD(r) (pink, dotted).
The inset displays the differences, fB(r) being closest to the exact
stationary solution with lowest energy per unit mass. Relative to fD

the excess energies are about 6%, 2%, and 1%, respectively.

feature of the reconnection of vortices is the generation of
acoustic waves, etc.; see, e.g., Secs. 4 and 5 of Ref. 12) Any
of the three approximate profiles can be relaxed to a stable,
minimal-energy solution, by first using the DGPE technique.

Using these same methods we can find fixed points of the
GPE representing the specific moment of reconnection. The
simplest of these we call �4, here shown schematically in
Fig. 3(a). This vortex configuration is poised to reconnect into
the 1st and 3rd (x,y) quadrants, as in Fig. 3(c), or into the 2nd
and 4th. This bistability underlies the saddle nature of the time
dynamics near the fixed point.

The local linear structure of this reconnection fixed point
is, using an auxiliary length parameter η,

�4(x,y,z) ≈ xy + i(ηz). (5)
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FIG. 2. (Color online) Time evolution of the Fetter approximant
for a single straight stationary vortex according to the GPE integrated
in a periodic domain: fF = |�| is plotted at times t = 0,2,4,8
along a midplane section. To reveal the time evolution, successive
profiles have been shifted. Evidently, the density profile fF is not
a minimal-energy condition and immediately launches erroneous
acoustic waves.
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FIG. 3. (Color online) The �4 reconnection fixed point is shown schematically in (a). It consists of four half-infinite coplanar vortices
meeting at right angles. Isosurfaces of the fixed point at |�4| = 0.3 are shown in (b), as obtained via the diffusive GP equation. The fixed point
is, dynamically, an exponentially unstable saddle that, after a minimal white-noise perturbation in a time-dependent GP solver, develops with
time in a box of size L = 24.6 as shown in part (c).

This determines the phase profile for the four half-infinite
vortices shown in Fig. 3(a). We extend this lowest order Taylor
series model (a fixed point of the linearized GPE) to a full
nonlinear GPE solution by using the DGPE as above. The
phase profile implied by (5) was held constant in a DGPE
solver until the fully converged fixed-point solution in Fig. 3(b)
emerged. This was done in an L × L × L Cartesian box,
using 4th order Runge-Kutta time integration and 2nd order
centered finite differences for the Laplacian operator. The
length parameter η was set to L/2 which served to produce
circular vortex cores. With n̂ a unit vector normal to a box
wall, we set (∇�) · n̂ = 0 for each wall, to enforce no-flux
boundary conditions. In relaxing the initial �(r) it proved
necessary to enforce all symmetries: thus the functional form
in (5) satisfies Re{�(x,y,z)} = −Re{�(−x,y,z)} = Re{(−x,

−y,z)}, etc. To protect the calculation from symmetry-
breaking instabilities fed by roundoff, corresponding values
were averaged and reassigned in the box at each time step.

The resulting �4 fixed point, shown in Fig. 3(b), constitutes
a counterexample to a suggested1 universal reconnection with
a fixed 3D pyramidal form; see also Tebbs et al.14 Note (5)
is a specific example of a hyperbolic phase singularity in a
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FIG. 4. The eigenvalue λ of the fixed point �4 varies with the
size of the computational box L. The inset illustrates an exponential
L2 growth after a small perturbation of the fixed point �4 in a box of
size L = 24.6.

complex field as discussed by Berry and Dennis.18 Nazarenko
and West17 also discussed reconnection in hyperbolic configu-
rations: their analysis includes (5) as a special case of a family
of linear solutions, parametrized by the opening angle between
the four half-vortices. Indeed, their perpendicular linearized
configuration is likewise stationary.

To study the dynamics about our �4 fixed point, the final
DGPE solution was perturbed by white noise of order 10−4

at each grid point in the GP solver, and evolved in time,
yielding configurations as illustrated in Fig 3(c). The fixed
point proves exponentially unstable with a unique, positive,
real eigenvalue λ. The L2 deviation from the fixed point,
namely, δL2(t) = V −1

∫
V

d3r|�(t) − �4|2, grows exponen-
tially as eλt : see the log-linear inset in Fig. 4. The eigenvalue
λ depends quite strongly on the box size L, measured in
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FIG. 5. (Color online) Two higher-order fixed points found
numerically: (a) the planar eight half-vortex form (6) and (b) the
three-dimensional body centered cubic form (7). The |�| = 0.3
isosurfaces are shown.
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terms of the healing length ξ0, as seen in Fig. 4; indeed,
quantitatively reliable dynamics requires computational box
sizes L > 25.

Fixed points of the GPE involving straight half-vortices
meeting at a point can also be regarded as satisfying a
geometric “advection analysis.” Each vortex core generates
a solenoidal velocity field, with direction given by the vortex
sign, either “inwards” or “outwards.” For a fixed point, the
mutual advection of each half-vortex on every other half-vortex
must sum to zero. Contemplating these criteria, we have
found several other fixed point geometries. Because these
higher-order fixed points involve many vortices meeting at
a point, they are improbable in real flows of a quantum fluid,
unless symmetry constraints are imposed. However, the fixed
points are of some interest for small physical systems, and,
furthermore, they demonstrate the ability to find fixed points
of higher order.

We have confirmed numerically that eight coplanar vortices,
meeting at an angle of π/4 with alternating polarities in a
cylindrical octagonal computational box, form a fixed point
with a local structure

�8(x,y,z) ≈ yx3 − xy3 + i(ζ 3z). (6)

The relaxed, fully nonlinear fixed point found by the DGPE
process is shown in Fig. 5(a). Note that (5) and (6) are members
of a likely family of 4, 6, 8, etc., coplanar half-vortices joining

at the origin. This family can easily be computed in the
linearized version.

Further, as shown in Fig. 5(b), we have found a 3D
fixed point that satisfies the advection analysis in a body
centered cubic geometry. The local linear structure of this fixed
point is

�8BCC(x,y,z) ≈ x2 + y2 − 2z2 + i(x2 + z2 − 2y2). (7)

In conclusion, we present an identification of a family of
phase singularities and topology-changing events permitted
in complex fields with vortex reconnection in the Gross-
Pitaevskii equation. Quantum turbulence decay may be more
deeply understood as a relaxation of the topology of the
complex order parameter, permitted only through ring decay
and vortex reconnection. A method for finding appropriate
initial conditions is outlined, with an application to find
fixed points of the Gross-Pitaevskii equation. A host of
reconnection fixed points have been identified numerically,
one of which directly counters previous claims of pyramidal
vortex reconnection geometry.1,14
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