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The Hund’s-rule-exchange induced and coexisting spin-triplet paired and magnetic states are considered
within the doubly degenerate Hubbard model with interband hybridization. The Hartree-Fock approximation
combined with the Bardeen-Cooper-Schrieffer (BCS) approach is analyzed for the case of square lattice. The
calculated phase diagram contains regions of stability of the spin-triplet superconducting phase coexisting with
either ferromagnetism or antiferromagnetism, as well as a pure superconducting phase. The influence of the
intersite hybridization on the stability of the considered phases, as well as the temperature dependence of both the
magnetic moment and the superconducting gaps, are also discussed. Our approach supplements the well-known
phase diagrams containing only magnetic phases with the paired triplet states treated on the same footing. We
also discuss briefly how to include the spin fluctuations within this model with real-space pairing.
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I. INTRODUCTION

The spin-triplet superconducting phase is believed to appear
in Sr2RuO4,1 UGe2,2 and URhGe.3 In the last two compounds,
the considered type of superconducting phase occurs as
coexisting with ferromagnetism. Additionally, even though U
atoms in these compounds contain 5f electrons responsible
for magnetism, this multiple-band system can be regarded as a
weakly or moderately correlated electron system, particularly
at higher pressure. Originally, it had been suggested via
a proper quantitative analysis4−6 that the the intra-atomic
Hund’s rule exchange can lead in a natural manner to the
coexistence of superconductivity with magnetic ordering:
ferromagnetism or antiferromagnetism.

The coexisting superconducting and magnetic phases are
discussed in this work within an orbitally degenerate two-
band Hubbard model using the Hartree-Fock approximation
(HF), here combined with the Bardeen-Cooper-Schrieffer
(BCS) approach, i.e., in the vicinity of the ferromagnetism
disappearance, where also the superconductivity occurs. The
particular emphasis is put on the appearance of superconduc-
tivity near the Stoner threshold, where the Hartree-Fock-BCS
approximation can be regarded as realistic. This type of
approach can be formulated also for other systems.7

The alternative suggested mechanism for appearance of
superconductivity in those systems is the pairing mediated
by ferromagnetic spin fluctuations, which can also appear
in the paramagnetic or weakly ferromagnetic phase.8 Here,
the mean-field approximation provides not only the starting
magnetic phase diagram, but also a related discussion of
the superconducting states treated on equal footing. In this
approach, the spin-fluctuation contribution appears as a next-
order contribution. This is the reason for undertaking a revision
of the standard Hartree-Fock approximation. Namely, we
concentrate here on the spin-triplet states, pure and coexisting
with either ferromagnetism or antiferromagnetism, depending

on the relative magnitude of microscopic parameters: the
Hubbard intraorbital and interorbital interactions U and U ′,
respectively, the Hund’s rule ferromagnetic exchange integral
J , the relative magnitude of hybridization βh, and the band
filling n. The bare bandwidth W is taken as unit of energy. In
the concluding section, we discuss briefly how to outline the
approach to include also the quantum fluctuations around this
HF-BCS (saddle-point) state as a higher-order contribution.

The role of exchange interactions is crucial in both the
so-called t-J model of high-temperature superconductivity9

and in the so-called Kondo-mediated pairing in heavy-fermion
systems.10 In this and the following papers, we discuss the idea
of real-space pairing for the triplet-paired states in the regime
of weakly correlated particles and include both the interband
hybridization and the corresponding Coulomb interactions.
We think that this relatively simple approach is relevant to the
mentioned at the beginning ferromagnetic superconductors
because of the following reasons. Although the effective
exchange (Weiss-type) field acts only on the spin degrees of
freedom, it is important in determining the second critical field
of ferromagnetic superconductor in the so-called Pauli limit,11

as the orbital effects in the Cooper-pair breaking process
are then negligible. The appearance of a stable coexistent
ferromagnetic-superconducting phase means that either Pauli
limiting situation critical field has not been reached in the case
of spin-singlet pairing or else the pairing has the spin-triplet
nature, without the component with spin Sz = 0, and then the
Pauli limit is not operative.

The present model with local spin-triplet pairing has its
precedents of the same type in the case of spin-singlet pairing,
i.e., the Hubbard model with U < 0,12 which played the central
role in singling out a nontrivial character of pairing in real
space. Here, the same role is being played by the intra-atomic
(but interorbital) ferromagnetic exchange. We believe that this
area of research unexplored so far in detail opens up new
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possibilities of studies of weakly and moderately correlated
magnetic superconductors.13

The structure of this paper is as follows. In Sec. II, we
define the model and the full Hartee-Fock-BCS approximation
(i.e., mean-field approximation for magnetic ordering with the
concomitant BCS-type decoupling) for the coexistent two-
sublattice antiferromagnetic and spin-triplet superconducting
phase (cf. also Appendix A for details). For completeness,
in Appendix B, we include also the analysis of a simpler
coexistent superconducting-ferromagnetic phase. In Sec. III,
we provide a detailed numerical analysis and construct the full
phase diagram on the Hund’s rule coupling-band filling plane.
We describe also the physical properties of the coexistent
phases. In Appendix C, we sketch a systematic approach of
going beyond Hartree-Fock approximation, i.e., including the
spin fluctuations, starting from our Hartree-Fock-BCS state.

II. MODEL AND COEXISTENT
ANTIFERROMAGNETIC-SPIN-TRIPLET

SUPERCONDUCTING PHASE: MEAN-FIELD-BCS
APPROXIMATION

We start with the extended orbitally degenerate Hubbard
Hamiltonian, which has the form

Ĥ =
∑

ij (i �=j )ll′σ

t ll
′

ij a
†
ilσ ajl′σ + (U ′ + J )

∑
i

n̂i1n̂i2

+U
∑
il

n̂il↑n̂il↓ − J
∑

ill′(l �=l′)

(
Ŝil · Ŝil′ + 3

4
n̂il n̂il′

)
,

(1)

where l = 1,2 label the orbitals and the first term describes
electron hopping between atomic sites i and j . For l �= l′,
this term represents electron hopping with change of the
orbital (intersite, interorbital hybridization). The next two
terms describe the Coulomb interaction between electrons
on the same atomic site. However, as one can see, the
second term contains the contribution that originates from the
exchange interaction (J ). The last term expresses the (Hund’s
rule) ferromagnetic exchange between electrons localized
on the same site, but on different orbitals. This term is
regarded as responsible for the local spin-triplet pairing in the
subsequent discussion. The components of the spin operator
Ŝil = (Ŝx

il ,Ŝ
y

il ,Ŝ
z
il) used in (1) acquire the form

Ŝ
x,y,z

il = 1
2 ĥ†

ilσx,y,zĥil , (2)

where σx,y,z are the Pauli matrices and h†
il ≡ (a†

il↑,a
†
il↓). In

our considerations, we neglect the interaction-induced intra-
atomic singlet-pair hopping (Ja

†
i1↑a

†
i1↓ai2↓ai2↑ + H.c.) and the

correlation-induced hopping [V n1σ̄ (a†
1σ̄ a2σ̄ + a

†
2σ̄ a1σ̄ ) + 1 ↔

2],13 as they should not introduce any important new qualitative
feature in the considered here spin-triplet paired states. What is
more important, we assume that t12

ij = t21
ij and t11

ij = t22
ij ≡ tij ,

i.e., the starting degenerate bands have the same width (the
extreme degeneracy limit), as we are interested in establishing
new qualitative features to the overall phase diagram, which
are introduced by the magnetic pairing.

As has already been said, the aim of this work is to
examine the spin-triplet superconductivity coexisting with

ferromagnetism and antiferromagnetism as well as the pure
spin-triplet superconducting phase and the pure magnetically
ordered phases. Labels defining the spin-triplet paired phases
(A and A1) that are going to be used in this work correspond
to those defined for superfluid 3He according to Refs. 14
and 8. Namely, in the A phase, the superconducting gaps that
correspond to Cooper pairs with total spin up and down are
equal (�1 = �−1 �= 0, �0 = 0), whereas in the A1 phase the
only nonzero superconducting gap is the one that corresponds
to the Cooper pair with total spin up (�1 �= 0, �−1 = �0 = 0).
In this section, we show the method of calculations that is
appropriate for the superconducting phase coexisting with
antiferromagnetism, as well as pure superconducting phase of
type A and pure antiferromagnetic phase. The corresponding
considerations for the case of ferromagnetically ordered
phases and superconducting phase A1 are deferred to the
Appendix B.

From the start, we make use of the fact that the full exchange
term can be represented by the real-space spin-triplet pairing
operators, in the following manner:

J
∑

ill′(l �=l′)

(
Ŝil · Ŝil′ + 3

4
n̂il n̂il′

)
≡ 2J

∑
i,m

Â
†
imÂim, (3)

which are of the form

Â
†
i,m ≡

⎧⎪⎪⎨
⎪⎪⎩

a
†
i1↑a

†
i2↑, m = 1

a
†
i1↓a

†
i2↓, m = −1

1√
2
(a†

i1↑a
†
i2↓ + a

†
i1↓a

†
i2↑), m = 0.

(4)

Furthermore, the interorbital Coulomb repulsion term can be
expressed with the use of spin-triplet pairing operators and the
spin-singlet pairing operators in the following manner:

(U ′ + J )
∑

i

n̂i1n̂i2 = (U ′ + J )

(∑
i

B̂
†
i B̂i +

∑
im

Â
†
imÂim

)
,

(5)

where

B̂
†
i = 1√

2
(a†

i1↑a
†
i2↓ − a

†
i1↓a

†
i2↑) (6)

are the interorbital, intra-atomic spin-singlet pairing operators
in real space. Using Eqs. (3) and (5), one can write our model
Hamiltonian in the form

Ĥ =
∑

ij (i �=j )ll′σ

t ll
′

ij a
†
ilσ ajl′σ + U

∑
il

n̂il↑n̂il↓

+ (U ′ + J )
∑

i

B̂
†
i B̂i − (J − U ′)

∑
im

Â
†
imÂim. (7)

It should be noted here that for J < U ′, the interorbital
Coulomb repulsion suppresses the spin-triplet pairing mech-
anism and the superconducting phases will not appear in
the system in the weak-coupling (Hartree-Fock) limit. For
3d electrons,15 U ′ = U − 2J , thus the necessary condition
for the pairing to occur in our model is U < 3J . Usually,
for 3d metals, we have U ∼ 3J , so it represents a rather
stringent condition for the superconductivity to appear in
that situation. We use this relation to fix the parameters for
modeling purposes, not limited to 3d systems. This is also
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because, e.g., 5f electrons in uranium compounds lead to a
similar behavior as do 3d electrons. One should note that the
considered here pairing is based on the intra-atomic interorbital
ferromagnetic Hund’s rule exchange. A simple extension to the
situation with nonlocal J has been considered by Dai et al.7

Also, as we consider only the weakly correlated regime, where
the metallic state is stable, no orbital ordering is expected (cf.
Klejnberg and Spałek in Ref. 5).

In our considerations, the antiferromagnetic state represents
the simplest example of the spin-density-wave state. In this
state, we can divide our system into two interpenetrating
sublattices A and B. The average staggered magnetic moment
of electrons on each of the N/2 sublattice A sites is equal,
〈Sz

i 〉 = 〈Sz
A〉, whereas on the remaining N/2 sublattice B

sites, we have 〈Sz
i 〉 = 〈Sz

B〉 ≡ −〈Sz
A〉. In accordance with this

division into two sublattices, we define different annihilation

operators for each sublattice, namely,

ailσ =
{

ailσA for i ∈ A,

ailσB for i ∈ B.
(8)

The same holds for the creation operators a
†
ilσ . We assume that

the charge ordering is absent. In this situation, we can write
that 〈

Sz
i1A

〉 = 〈
Sz

i2A

〉 ≡ S̄z
s ,

〈
Sz

i1B

〉 = 〈
Sz

i2B

〉 ≡ −S̄z
s , (9)

〈ni1A〉 = 〈ni2A〉 = 〈ni1B〉 = 〈ni2B〉 ≡ n/2, (10)

where n is the band filling. In what follows, we treat the
pairing and the Hubbard parts in the combined mean-field
BCS approximation. In effect, we can write the Hamiltonian
transformed in reciprocal (k) space in the form

ĤHF − μN̂ =
∑
klσ

[εk(a†
klσAaklσB + a

†
klσBaklσA) − σI S̄z

s (n̂klσA − n̂klσB)]

+
∑

kll′(l �=l′σ )

εk12(a†
klσAakl′σB + a

†
klσBakl′σA) +

∑
klσ

[
n

8
(U + 2U ′ − J ) − μ

]
(n̂klσA + n̂klσB)

+
∑

k,m=±1

(�∗
mAÂkmA + �mAÂ

†
kmA) +

∑
k,m=±1

(�∗
mBÂkmB + �mBÂ

†
kmB)

+
√

2
∑

k

(�∗
0AÂk0A + �0AÂ

†
k0A) +

√
2

∑
k

(�∗
0BÂk0B + �0BÂ

†
k0B) − N

n2

16
(U + 2U ′ − J )

+ 2NI
(
S̄z

s

)2 − N

2(J − U ′)
(|�1A|2 + |�−1A|2 + |�1B |2 + |�−1B |2 + 2|�0A|2 + 2|�0B |2), (11)

where I ≡ U + J is the effective magnetic coupling constant
and εk1 = εk2 ≡ εk is the dispersion relation. The results
presented in the next section have been carried out for square
lattice with nonzero hopping t between nearest neighbors only.
The corresponding bare dispersion relation in a nonhybridized
band acquires the form

εk = −2t cos kx − 2t cos ky. (12)

As we are considering the doubly degenerate band model
situation, we make a simplifying assumption that the hy-
bridization matrix element ε12k = βhεk, where βh ∈ [0,1] is
the parameter, which specifies the hybridization strength (i.e.,
represents a second scale of electron energies, in addition
to εk). This means that we have just one active atom per
unit cell with a doubly degenerate orbital of the same kind
(their spatial asymmetry is disregarded). One should note that
the sums in (11) (and in all corresponding equations below)
is taken over N/2 independent k states. In the Hamiltonian
written above, we have also introduced the superconducting
spin-triplet sublattice gap parameters

�±1A(B) ≡ −2(J − U ′)
N

∑
k

〈Âk,±1A(B)〉,
(13)

�0A(B) ≡ −2(J − U ′)√
2N

∑
k

〈Âk,0A(B)〉.

The terms N n2

16 (U + 2U ′ − J ) and n
8 (U + 2U ′ − J ) in (11)

can be neglected, as they lead only to a shift of the reference
point of the system energy. One should note that since the real-
space pairing mechanism is of intra-atomic nature, there is no
direct conflict with either ferromagnetic or antiferromagnetic
ordering coexisting with it.

A. Antiferromagnetic (Slater) subbands

The diagonalization of the Hamiltonian (11) can be carried
out in two steps. In the first step, we diagonalize the one-
particle part of the Hartree-Fock Hamiltonian [the first two
sums of (11)]. Note that we have to carry out this step first
since we assume the bands are both hybridized and contain
pairing part. By introducing the four-composite fermion
operator f†kσ ≡ (a†

k1σA,a
†
k2σA,a

†
k1σB,a

†
k2σB), we can express the

one-particle Hamiltonian in the following form:

Ĥ 0
HF =

∑
kσ

f†kσ H0
kσ fkσ , (14)

where fk ≡ (f†k)†, and

H0
kσ =

⎛
⎜⎜⎜⎝

−σI S̄z
s 0 εk εk12

0 −σI S̄z
s εk12 εk

εk εk12 σI S̄z
s 0

εk12 εk 0 σI S̄z
s

⎞
⎟⎟⎟⎠ . (15)
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To diagonalize this Hamiltonian, we introduce a generalized
Bogoliubov transformation to new operators ãklσA and ãklσB

in the following manner:

⎛
⎜⎜⎜⎝

ak1σA

ak2σA

ak1σB

ak2σB

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

−U+
kσ U−

kσ V +
kσ −V −

kσ

−U+
kσ −U−

kσ V +
kσ V −

kσ

V +
kσ −V −

kσ U+
kσ −U−

kσ

V +
kσ V −

kσ U+
kσ U−

kσ

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

ãk1σA

ãk2σA

ãk1σB

ãk2σB

⎞
⎟⎟⎟⎠ ,

(16)

where

U
(±)
kσ = 1√

2

(
1 + σI Ŝz

s√
(εk ± εk12)2 + (

I S̄z
s

)2

)1/2

,

(17)

V
(±)

kσ = 1√
2

(
1 − σI Ŝz

s√
(εk ± εk12)2 + (

I S̄z
s

)2

)1/2

.

One should note that the symbols A and B that appear as
indices of the new quasiparticle operators ãklσA and ãklσB

single out the new, hybridized, quasiparticle subbands and do
not correspond to the sublattices indices A and B as in the case
of operators aklσA and aklσB . The dispersion relations in the
new quasiparticle representation acquire the form

ε̃k1A = −
√

(εk + εk12)2 + (
I S̄z

s

)2
,

ε̃k1B =
√

(εk + εk12)2 + (
I S̄z

s

)2
,

(18)

ε̃k2A = −
√

(εk − εk12)2 + (
I S̄z

s

)2
,

ε̃k2B =
√

(εk − εk12)2 + (
I S̄z

s

)2
.

As one can see, the new dispersion relations do not depend
on the spin quantum numbers of the quasiparticle. In general,
if εk12 is not ∼ εk, we may have four nondegenerate Slater
subbands, which is not the case considered here. To express
the pairing operators that are present in the Hamiltonian (11) in
terms of the new quasiparticle operators, one can use relations
(16) and the definitions (4). The explicit form of the original
pairing operators in terms of the newly created quasiparticle
operators is provided in Appendix A.

B. Quasiparticle states for the coexistent antiferromagnetic and
superconducting phases

In the second step of the diagonalization of (11), a
generalized Nambu–Bogoliubov–de Gennes scheme is intro-
duced to write the complete HF Hamiltonian again in the
matrix form, which allows for an easy determination of its
eigenvalues. With the help of composite creation operator
f̃†kσ ≡ (ã†

k1σA,ã−k2σA,ã
†
k1σB,ã−k2σB ), we can construct this

new 4 × 4 Hamiltonian matrix and write

ĤHF − μN̂ =
∑
kσ

f̃†kσ Hkσ f̃kσ + 2
∑

k

(ε̃k2A + ε̃k2B)

− 2μN + C, (19)

with

Hkσ ≡

⎛
⎜⎝

ε̃k1A − μ δ1kσ 0 δ3kσ

δ∗
1kσ −ε̃k2A + μ δ4kσ 0
0 δ∗

4kσ ε̃k1B − μ δ2kσ

δ∗
3kσ 0 δ∗

2kσ −ε̃k2B + μ

⎞
⎟⎠

(20)

and f̃k ≡ (f̃†k)†. The parameters δlkσ are defined as follows:

δ1kσ = �σAU+
kσU−

kσ + �σBV +
kσV −

kσ ,

δ2kσ = �σAV +
kσV −

kσ + �σBU−
kσU+

kσ ,
(21)

δ3kσ = −�σAU+
kσV −

kσ + �σBU−
kσV +

kσ ,

δ4kσ = −�σAV +
kσU−

kσ + �σBV −
kσU+

kσ .

Constant C contains the last two terms of the right-hand
side of expression (11). Hamiltonian (19) and matrix (20)
have been written under the assumption that �0A = �0B ≡
0. Calculations for the more general case of nonzero gap
parameters for m = 0 have been also done, but no stable
coexisting superconducting and antiferromagnetic solutions
have been found numerically. The only coexisting solutions
that have been found fulfill the relation �0A = �0B ≡ 0. This
fact can be understood by the following argument. As in the
antiferromagnetic state, all lattice sites have nonzero magnetic
moment, the Cooper pairs in the spin-triplet state for m = 0
(i.e., with the total spin Sz = 0, corresponding 〈Âk0〉) are not
likely to appear. Nevertheless, we present the matrix form
of the Hamiltonian (11) for the mentioned most general case
in Appendix A. In our considerations here, we limit also to
the situation with the real gap parameters �∗

±1A(B) = �±1A(B).
Then, the straightforward diagonalization of (20) yields to the
following Hamiltonian:

ĤHF − μN̂ =
∑
klσ

(−1)l+1(λklσAα
†
klσAαklσA

+ λklσBα
†
klσBαklσB) + 2

∑
k

(ε̃k2A + ε̃k2B)

+
∑
kσ

(λk2σA + λk2σB) − 2μN + C, (22)

where λklσA(B) are the eigenvalues of the matrix (20) and
αklσA(B) (α†

klσA(B)) are the quasiparticle annihilation (creation)
operators, related to the original annihilation and creation
operators ãklσ , ã

†
klσ from the first step of our diagonalization,

via generalized Bogoliubov transformation of the form

f̃kσ = U†
kσ gkσ , (23)

with g†kσ ≡ (α†
k1σA,α−k2σA,α

†
k1σB,α−k2σB). Eigenvectors of

the Hamiltonian matrix (20) are the columns of the diago-
nalization matrix U†

k. Using the definitions of gap parameters
�±1A, �±1B , the average number of particles per atomic site
n = ∑

l〈n̂il↑A + n̂il↓A〉, and the average magnetic moment per
band per site S̄z = 〈n̂il↑A − n̂il↓A〉/2, we can construct the
set of self-consistent equations for the mean-field parameters
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(�±1A, �±1B , S̄z) and for the chemical potential. The
averages that appear in the set of self-consistent equations
〈α†

klσA(B)αklσA(B)〉 can be replaced by the corresponding Fermi
distribution functions

f [(−1)l+1λklσA(B)] = 1/{exp[β(−1)l+1λklσA(B)] + 1}, (24)

where β = 1/kBT . The eigenvalues and the eigenvectors of
(20) are evaluated numerically while executing the numerical
procedure of solving the set of self-consistent equations. For
a given set of microscopic parameters n, J , U , U ′, and
temperature T , the set of self-consistent equations has several
solutions that correspond to different phases.16–18 Free energy
can be evaluated for each of the solutions that have been found,
and the one that corresponds to the lowest value of the free
energy is regarded as the stable phase. The expression for the
free-energy functional in the considered case has the form

F = − 1

β

∑
klσ

[ln(1 + exp[−β(−1)l+1λklσA])

+ ln(1 + exp[−β(−1)l+1λklσB])]

+ 2
∑

k

(ε̃k2A + ε̃k2B) +
∑
kσ

(λk2σA

+ λk2σB) − μ(2 − n)N + C. (25)

Numerical results are carried out for square lattice with
nonzero hopping t between the nearest neighbors only.
The described above numerical scheme is executed for the
following selection of phases:

(i) normal state (NS): �±1A(B) = 0, S̄z
s = 0,

(ii) pure superconducting phase type A (A): �±1A(B) ≡
� �= 0, S̄z

s = 0,
(iii) pure antiferromagnetic phase (AF): �±1A(B) = 0,

S̄z
s �= 0,

(iv) coexistent superconducting and antiferromagnetic
phase (SC + AF): �±1A(B) �= 0, S̄z

s �= 0.

The ferromagnetically ordered phases, which will also be
included in our considerations in the following sections, are
listed below:

(a) pure saturated ferromagnetic phase (SFM): �±1A(B) =
0, S̄z

u = S̄z
u(max) �= 0,

(b) pure nonsaturated ferromagnetic phase (FM):
�±1A(B) = 0, 0 < S̄z

u < S̄z
u(max),

(c) saturated ferromagnetic phase coexistent with su-
perconductivity of type A1 (A1 + SFM): �1A(B) ≡ �1 �= 0,
�−1A(B) = 0, S̄z

u = S̄z
u(max) �= 0,

(d) nonsaturated ferromagnetic phase coexistent with su-
perconductivity of type A1 (A1 + FM): �1A(B) ≡ �1 �= 0,
�−1A(B) = 0, 0 < S̄z

u < S̄z
u(max).

It should be noted that S̄z
u refers to the uniform magnetic

moment per band per site in the ferromagnetically ordered
phases, whereas S̄z

s is the staggered magnetic moment that
corresponds to the antiferromagnetic phases. One could also
consider the so-called superconducting phase of type B for
which all superconducting gaps (including �0A(B)) are equal
and different from zero. However, this phase never coexists
with magnetic ordering. What is more important in the
absence of magnetic ordering the superconducting phase A

has always lower free energy than the B phase. Therefore,
the superconducting B phase is absent in the following
discussion.

III. RESULTS AND DISCUSSION

We assume that U ′ = U − 2J and U = 2.2J , so there are
actually two independent parameters in the considered model:
n and J . The energies have been normalized to the bare
bandwidth W = 8|t |, and T expresses the reduced temperature
T ≡ kBT /W .

A. Overall phase diagram: Coexistent magnetic-paired states

In Figs. 1(a)–1(d), we present the complete phase diagrams
in coordinates (n,J ) for different values of the hybridization
parameter βh. They comprise sizable regions of stable spin-
triplet superconducting phase coexisting with either ferromag-
netism or antiferromagnetism, as well as pure superconducting
phase A. In the phase SC + AF, the calculated gap parameters
fulfill the relations

�+1A = �−1B ≡ �+,

�−1A = �+1B ≡ �−, (26)

�+ > �−.

For the singlet paired state, one would have �+1A = −�−1A,
which is not the case here. For the case of half-filled band
n = 2, the superconducting gaps �+ and �− vanish and only
pure (Slater-type) AF survives. The appearance of the AF state
for n = 2 corresponds to the fact that the bare Fermi-surface
topology has a rectangular structure with Q = (π,π ) nesting.
This feature survives also for βh �= 0. Also, the symmetry of
the phase diagrams with respect to half-filled band situation is
a manifestation of the particle-hole symmetry since the bare
density of states is symmetric with respect to the middle point
of the band. This feature of the problem provides an additional
test for the correctness of the numerical results.

It is clearly seen from the presented figures that the influence
of hybridization is significant quantitatively when it comes to
the superconducting phase A, as the region of its stability
narrows down rapidly with the increase of βh. The stability
areas of A1 + FM and NS phases expand on the expense
of A and A1 + SFM phases. With the further increase of
the hybridization, the stability of A phase is completely
suppressed, as shown in Fig. 1(d). The regions of stable
antiferromagnetically ordered phase do not alter significantly
with the increasing hybridization. To relate the appearance of
superconductivity with the onset of ferromagnetism, we have
marked explicitly in Fig. 2 the Stoner threshold on the phase
diagram. One sees clearly that only the A1 phase appearance
is related to the onset of ferromagnetism. What is more
important, the FM phase coexisting with the paired A1 phase
becomes stable for slightly lower J values than the Stoner
threshold for appearance of pure FM phase. The A1 + FM
coexistence near the Stoner threshold can be analyzed by
showing explicitly the magnetization and superconducting gap
evolution with increasing J . This is shown in Figs. 3 and 4. One
sees explicitly that the nonzero magnetization appears slightly
below the Stoner threshold and is thus induced by the onset of
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FIG. 1. (Color online) Phase diagrams in space (n,J ) for T = 10−4 and for different values of the βh parameter: (a) βh = 0.00, (b)
βh = 0.04, (c) βh = 0.06, (d) βh = 0.11. Labels representing different phases are described in the main text. One sees that practically all
magnetic phases here are in fact the coexistent phases with superconductivity except the half-filled situation where we have pure AF phase.

A1 paired state. In other words, superconductivity enhances
magnetism. But the opposite is also true, i.e., the gap increases
rapidly in this regime, where magnetization changes. The
situation is preserved for nonzero hybridization. The transition
A→A1 + FM is sharp, as detailed free-energy plot shows.
For βh = 0.11 in a certain range of J , the superconducting
solutions A1 + FM and A can not be found by the numerical
procedure. That is why the curves representing the gap
parameters � and free energy suddenly break. The most
important and surprising conclusion is that in the A1 + FM
phase, only the electrons in spin-majority subband are paired.
This conclusion may have important practical consequences
for spin filtering across NS/A1 + FM interface, as discussed
at the end. Nevertheless, one should note that the partially
polarized (FM) state appears only in a narrow window of
J values near the Stoner threshold, at least for the selected
density of states.

Summarizing, we have supplemented the well-known
magnetic phase diagrams with the appropriate stable and
spin-triplet paired states. A relatively weak hybridization
of band states destabilizes pure paired states but stabilizes

coexistent superconducting-magnetic phases except for the
half-filled band case, when the appearance of the Slater gap at
the Fermi level excludes any superconducting state. A very
interesting phenomenon of pairing for one-spin (majority)
electrons occurs near the Stoner threshold for the onset
of FM phase and extends to the regime slightly below
threshold.

B. Detailed physical properties

In Figs. 5 and 6, we show the low-temperature values of
superconducting gaps and the staggered magnetic moment
as a function of band filling. In the SC + AF phase, both
gap parameters �+ and �− decrease continuously to zero
as the system approaches the half-filling. On the contrary, the
staggered magnetic moment S̄z

s reaches then the maximum.
For the case of βh = 0.0, below the critical value of band
filling nc ≈ 1.45, the gap parameters �+ and �− are equal
and the staggered magnetic moment vanishes. In this regime,
the superconducting phase of type A is the stable one. For the A
phase, the superconducting gap decreases with the band-filling
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FIG. 2. (Color online) Phase diagrams zoomed in space (n,J )
with the dashed line marking the Stoner threshold for the onset of
pure ferromagnetism. The values of the hybridization parameter are
βh: (a) βh = 0.00, (b) βh = 0.11, while the temperature is T = 10−4.

decrease and becomes zero for some particular value of n.
Below that value, the NS (paramagnetic state) is stable. It
is clearly seen that the appearance of two gap parameters
above nc is connected with the onset of the staggered-moment
structure, as above nc we have Sz

s �= 0 [cf. Fig. 5(b)]. For
comparison, we also show the staggered moment for pure
AF in Figs. 5(b) and 6(b) (dashed line). As one can see, the
appearance of SC increases slightly the staggered moment in
SC + AF phase. For βh = 0.11 below some critical value of
band filling nc ≈ 1.473 in a very narrow range of n, a pure
AF phase is stable. The inset in Fig. 6(a) shows that there
is a weak first-order transition between the AF + SC and SC
phases as a function of doping. The A phase is not stable in
this case.

One should mention that the easiness with which the
superconducting triplet state is accommodated within the
antiferromagnetic phase stems from the fact that the SC gaps
have an intra-atomic origin and the corresponding spins have
then the tendency to be parallel. Therefore, the pairs respect the
Hund’s rule and do not disturb largely the staggered-moment
structure, which is of interatomic character.

In Fig. 7,we show temperature dependence of the free
energy for the six considered phases for the set of microscopic
parameters selected to make the SC + AF phase stable at

(a)

(b)

FIG. 3. (Color online) Magnetic moment (per orbital per site),
ground-state energy, and superconducting gap as a function of J

near the Stoner threshold for n = 1 and βh = 0.0. Black vertical line
in the inset marks the onset of saturated magnetism at the Stoner
threshold.

T = 0 and for βh = 0. Because the free-energy values of the
A and NS phases are very close, we exhibit their temperature
dependencies zoomed in Fig. 7(b). The same is done for
the free energy of phases A1 + FM and FM. For the same
values of n, J , U , and U ′, the temperature dependence of the
superconducting gaps and the staggered magnetic moment in
SC + AF phase are shown in Fig. 8 for selected βh values. For
given βh below the superconducting critical temperature TS ,
the staggered magnetic moment and the superconducting gaps
have all nonzero values, which means that we are dealing with
the coexistence of superconductivity and antiferromagnetism
in this range of temperatures. Both �+ and �− vanish at
TS , while the staggered magnetic moment vanishes at the
Néel temperature TN � TS . In Fig. 9, one can observe that
there are two typical mean-field discontinuities in the specific
heat at TS and TN for a given βh. The first of them, at TS ,
corresponds to the phase transition from the SC + AF phase
to the pure AF phase, while the second, at TN , corresponds to
the transition from the AF phase to the NS phase. The values
of the ratios of the specific heat jump (�c/cN ) at TC that
correspond to βh = 0.0, 0.4, 0.6 are 15.075, 16.298, 17.375,
respectively. No antiferromagnetic gap is created since we have
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(a)

(b)

FIG. 4. (Color online) Magnetic moment (per orbital per site),
ground-state energy, and superconducting gap as a function of J near
the Stoner threshold for n = 1 and βh = 0.11. Black vertical line in
the inset marks the onset of magnetism at the Stoner threshold.

number of electrons n < 2. The specific-heat discontinuity at
the AF transition is due to the change of spin entropy near TN .
For n = 2, the formation of the Slater gap at TN makes the
superconducting transition to disappear. As one can see form
Figs. 8 and 9, with the increase of βh, the critical temperature
TS is decreasing slightly, while the Néel temperature increases,
but the ratio remains almost fixed, TN/TC ≈ 10.

Temperature dependence of free energies of relevant
phases are presented in Fig. 10 (βh = 0) for the microscopic
parameters selected to make the A1 + FM phase stable at
T = 0. Free energies for A and A1 + FM phases are drawn
only in the low-T regime [Fig. 10(b)] for the sake of
clarity. The corresponding temperature dependence of the
superconducting gaps, magnetic moment, and specific heat
in A1 + FM phase for three selected values of βh are shown in
Fig. 11. Analogously as in the SC + AF case, the system un-
dergoes two phase transitions. The influence of hybridization
on the temperature dependencies is also similar to that in
the case of coexistence of superconductivity with antiferro-
magnetism. With the increasing βh, the critical temperature
TS is decreasing slightly, whereas the Curie temperature TC

is slightly increasing, but still TC/TS ≈ 5. The values of
the ratios of the specific heat jump (�c/cN ) at TC that

(a)

(b)

FIG. 5. (Color online) Low-temperature values of the supercon-
ducting gaps and the staggered magnetic moment both as a function
of band filling for βh = 0 and J = 0.175. The stable phases are
appropriately labeled in the regimes of their stability. Note that
�− � �+, i.e., the paired state is closer to A1 state than to A state
in the coexistent regime.

correspond to βh = 0.0, 0.2, 0.4 are 1.329, 1.421, 0.793,
respectively.

For the sake of completeness, in Fig. 12 we provide the
temperature dependence of superconducting gap for the values
of parameters that correspond to stable pure superconducting
phase of type A at T = 0 and for three different values of
βh. In this case, neither the antiferromagnetically ordered
nor the pure ferromagnetic phases exist. As in previous
cases, the increasing hybridization decreases TS . It should be
noted that the values of βh are very close to zero. This is
necessary to assume for the A phase to appear. The values
of the ratios of the specific heat jump (�c/cN ) at TC that
correspond to βh = 0.0, 0.035, 0.006 are 1.382, 1.326, 1.202,
respectively.

In Table I we have assembled the exemplary values
of mean-field parameters, chemical potential, as well as
free energy for two different sets of values of microscopic
parameters corresponding to the low-temperature stability of
two considered here superconducting phases: SC + AF and
A1 + FM. For the two sets of values of n and J , the free-energy
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(a)

(b)

FIG. 6. (Color online) Low-temperature values of the supercon-
ducting gaps and the staggered magnetic moment as a function of
band filling for βh = 0.11 and J = 0.175. Note the disappearance of
the pure A phase and that again �− � �+. The inset in (b) illustrates
the fact that a pure AF phase appears in a very narrow regime of n

before the SC + AF phase becomes stable, whereas the inset in (a)
shows the free energy of those two phases for n close to nC when a
weak first-order transition occurs.

difference between the stable and first unstable phases is of
order 10−3. The values for the stable phases are underlined.

IV. CONCLUSIONS AND OUTLOOK

We have carried out the Hartree-Fock-BCS analysis of
the hybridized two-band Hubbard model with the Hund’s-
rule induced magnetism and spin-triplet pairing. We have
determined the regions of stability of the spin-triplet paired
phases with �0 ≡ 0, coexisting with either ferromagnetism
(A1 + FM) or antiferromagnetism (SC + AF), as well as pure
paired phase (A). We have analyzed in detail the effect of
interband hybridization on stability of the those phases. The
hybridization reduces significantly the stability regime of the
superconducting phase A, mainly in favor of the paramagnetic
(normal) phase NS. For a large enough value of βh (βh >

0.08), the A phase disappears altogether. When it comes to
magnetism, with the increase of βh, the stability regime of

(a)

(b)

FIG. 7. (Color online) (a) Temperature dependence of the free
energy for considered phases for n = 1.9 and J = 0.175 when the
SC + AF phase is stable at T = 0. The free-energy values of A and
NS phases are very close, so we exhibit their temperature dependence
blown up in part (b).

the saturated ferromagnetically ordered phase is reduced in
favor of the nonsaturated. The influence of the hybridization
on the low-temperature stability of the SC + AF phase is not
significant. When the system is close to the half-filling, the
SC + AF phase is the stable one. However, for the half-filled
band case (n = 2), the superconductivity disappears and only
pure antiferromagnetic state survives since the nesting effect
of the two-dimensional band structure prevails then.

We have also examined the temperature dependence of
the order parameters and the specific heat. For both co-
existent superconducting and magnetically ordered phases
(SC + AF and A1 + FM), one observes two separate phase
transitions with the increasing temperature. The first of them,
at substantially lower temperature (TS), is the transition from
the superconducting-magnetic coexistent phase to the pure
magnetic phase and the second, occurring at much higher tem-
perature (TN or TC), is from the magnetic to the paramagnetic
phase (NS). The hybridization has a negative influence on
the spin-triplet superconductivity since it reduces the critical
temperature for each type of the spin-triplet superconducting
phase considered here. On the other hand, the Curie (TC) and
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the Néel (TN ) temperatures are increasing with the increase of
the βh parameter, as it generally increases the density of states
at the Fermi level (for appropriate band fillings).

One should note that since the pairing is intra-atomic
in nature, the spin-triplet gaps �m are of the s type. This
constitutes one of the differences with the corresponding
situation for superfluid 3He, where they are of p type.8

It is also important to note that the paired state appears
both below and above the Stoner threshold for the onset of
ferromagnetism (cf. Fig. 2), although its nature changes (A
and A1 states, respectively). In the ferromagnetically ordered
phase, only the spin-majority carriers are paired. This is not the
case for the AF + SC phase. It would be very interesting to try
to detect such highly unconventional SC phase. In particular,
the Andreev reflection and, in general, the NS/SC conductance
spectroscopy will have an unusual character. We should see
progress along this line of research soon.

As mentioned before, all the results presented in the
previous section have been obtained assuming that U = 2.2J

and U ′ = U − 2J . Having said that, the value of JH = J − U ′
determines the strength of the pairing mechanism, while
I = U + J is the effective magnetic coupling constant, one

(a)

(b)

FIG. 8. (Color online) Temperature dependencies of the super-
conducting gaps �+, �− and of the staggered magnetic moment for
n = 1.9, J = 0.175 and for selected values of the βh parameter. Note
that TS � TN .

FIG. 9. (Color online) Temperature dependence of the specific
heat for n = 1.9, J = 0.175, and for selected values of βh parameter.
The behavior is almost independent of βh value and the ratio
TN/TS ≈ 10.

(a)

(b)

FIG. 10. (Color online) Temperature dependence of the free
energy for n = 1.0 and J = 0.31625 when the A1 + FM phase is
stable at T = 0. AF phases do not appear in this case. Free energies
for A and A1 + FM phases are shown in the low-T regime (b) for the
sake of clarity.
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(a)

(b)

FIG. 11. (Color online) Temperature dependence of the super-
conducting gaps �+, �−, magnetic moment (a), and specific heat
(b) for n = 1.0, J = 0.31625, and for selected values of βh.
Qualitative features do not alter appreciably even for βh = 0.4. The
ratio TC/TS ≈ 5.

can roughly predict how will the change in the relations
between U , U ′, and J result. It seems reasonable to say that the
larger J is with respect to U ′, the stronger the superconducting
gap in the paired phases. This would also result in the increase
of TC and a corresponding enlargement of the area occupied
by the superconducting phases on the diagrams. Furthermore,
the increase of U with respect to J should result in the
increase of the ratios TC/TS and TN/TS . This is because in
that manner we make the magnetic coupling stronger with
respect to the pairing. If we, however, increase U but do not
change JH , then the strength of the pairing would be the
same but the magnetic coupling constant would be stronger so
this would favor the coexistent magnetic and superconducting
phases with respect to the pure superconducting phase. Quite a
stringent necessary condition for the pairing to appear J > U ′
(equivalent to 3J > U if we assume U ′ = U − 2J , as has
been done here) indicates that only in specific materials one
would expect for the Hund’s rule to create the superconducting
phase. This may explain why only in very few compounds
the coexistent ferromagnetic and superconducting phase has
been indeed observed. Obviously, one still has to add the
paramagnon pairing (cf. Appendix C).

FIG. 12. (Color online) Temperature dependencies of the super-
conducting gaps �+, �− (a), and the specific heat (b) for n = 1.25,
J = 0.175, and for selected values of βh parameter.

It should be noted that more exotic magnetic phases may
appear in the two-band model.19 Here, we neglect those phases
because of two reasons. First the lattice selected for analysis
is bipartite, with strong nesting (AF tendency). Second the
additional ferrimagnetic, spiral, etc., phase might appear if we
assumed that the second hopping integral t ′ �= 0. Inclusion of
t ′ would require a separate analysis, as the lattice becomes
frustrated then.

TABLE I. Exemplary values of the mean-field parameters, the
chemical potential, and the free energy of the considered phases at
T = 10−4 for two different sets of values of microscopic parameters:
n, J . The underlined values correspond the stable phases. The
numerical accuracy is better than the last digit.

n = 1.9 n = 1.0
Parameter Phase J = 0.175 J = 0.31625

� A 0.0097911 0.0208481
� A1 + FM 0.0056821 0.0482677
�+ SC + AF 0.0210081
�− SC + AF 0.0017366

Sz
u A1 + (S)FM 0.1134254 0.2500000

Sz
u (S)FM 0.1144301 0.2500000

Sz
s SC + AF 0.3340563

Sz
s AF 0.3314687

μ A −0.0107669 −0.1815757
μ NS −0.0094009 −0.1799612
μ A1 + (S)FM −0.0175982 −0.2530000
μ (S)FM −0.0178066 −0.253000
μ SC + AF −0.1708890
μ AF −0.1859011

F A −0.4050464 −0.3286443
F NS −0.4048522 −0.3282064
F A1 + (S)FM −0.4062039 −0.3314652
F (S)FM −0.4061793 −0.3291425
F SC + AF −0.4489338
F AF −0.4469097
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APPENDIX A: HAMILTONIAN MATRIX FORM IN THE
COEXISTENT SC + AF PHASE AND QUASIPARTICLE

OPERATORS

In this appendix, we show the general form of the
Hamiltonian matrix Hk and the pairing operators expressed

in terms of the quasiparticle creation operators from the first
step of the diagonalization procedure discussed in Sec. II.

For the case of nonzero gap parameters �0A(B), we have to
use eight element composite creation operator

f̃†k ≡ (ã†
k1↑A,ã

†
k1↓A,ã−k2↑A,ã−k2↓A,ã

†
k1↑B,

ã
†
k1↓B,ã−k2↑B,ã−k2↓B ),

to write the Hamiltonian (11) in the matrix form

ĤHF − μN̂ =
∑

k

f̃†kHkf̃k + 2
∑

k

(ε̃k2A + ε̃k2B) − 2μN + C,

(A1)

where f̃k ≡ (f̃†k)†, and

Hk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε̃k1A − μ 0 δ1k↑↑ δ1k↑↓ 0 0 δ3k↑↑ δ3k↑↓
0 ε̃k1A − μ δ1k↓↑ δ1k↓↓ 0 0 δ3k↓↑ δ3k↓↓
δ∗

1k↑↑ δ∗
1k↓↑ −ε̃k2A + μ 0 δ4k↑↑ δ4k↓↑ 0 0

δ∗
1k↑↓ δ∗

1k↓↓ 0 −ε̃k2A + μ δ4k↑↓ δ4k↓↓ 0 0

0 0 δ∗
4k↑↑ δ∗

4k↑↓ ε̃k1B − μ 0 δ2k↑↑ δ2k↑↓
0 0 δ∗

4k↓↑ δ∗
4k↓↓ 0 ε̃k1B − μ δ2k↓↑ δ2k↓↓

δ∗
3k↑↑ δ∗

3k↓↑ 0 0 δ∗
2k↑↑ δ∗

2k↓↑ −ε̃k2B + μ 0

δ∗
3k↑↓ δ∗

3k↓↓ 0 0 δ∗
2k↑↓ δ∗

2k↓↓ 0 −ε̃k2B + μ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A2)

The δlkσσ ′ are the generalization of parameters introduced
earlier in Eq. (16):

δ1kσσ ′ = �σσ ′AU+
kσU−

kσ ′ + �σσ ′BV +
kσV −

kσ ′ ,

δ2kσσ ′ = �σσ ′AV +
kσV −

kσ ′ + �σσ ′BU+
kσU−

kσ ′,
(A3)

δ3kσσ ′ = −�σσ ′AU+
kσV −

kσ ′ + �σσ ′BV +
kσU−

kσ ′ ,

δ4kσσ ′ = −�σσ ′AV +
kσU−

kσ ′ + �σσ ′BU+
kσV −

kσ ′ ,

where �↑↑A(B) = �+1A(B), �↓↓A(B) = �−1A(B), �↓↑A(B) =
�↑↓A(B) = �0A(B).

In the following, we present the pairing operators expressed
in terms of the quasiparticle creation operators that we
have introduced during the first step of the diagonalization
procedure of the Hamiltonian (11):

Â
†
kσA = U+

kσU−
kσ ã

†
k1σAã

†
−k2σA + V +

kσV −
kσ ã

†
k1σBã

†
−k2σB

−U+
kσV −

kσ ã
†
k1σAã

†
−k2σB − V +

kσU−
kσ ã

†
k1σBã

†
−k2σA,

Â
†
kσB = U+

kσU−
kσ ã

†
k1σBã

†
−k2σB + V +

kσV −
kσ ã

†
k1σAã

†
−k2σA

+U+
kσV −

kσ ã
†
k1σBã

†
−k2σA + V +

kσU−
kσ ã

†
k1σAã

†
−k2σB, (A4)

Â
†
k0A = 1√

2

∑
σ

(U+
kσU−

kσ̄ ã
†
k1σAã

†
−k2σ̄A

+V +
kσ V −

kσ̄ ã
†
k1σBã

†
−k2σ̄B − V −

kσU+
kσ̄ ã

†
k1σBã

†
−k2σ̄A

−U+
kσV −

kσ̄ ã
†
k1σAã

†
−k2σ̄B),

Â
†
k0B = 1√

2

∑
σ

(V +
kσV −

kσ̄ ã
†
k1σAã

†
−k2σ̄A

+U+
kσU−

kσ̄ ã
†
k1σBã

†
−k2σ̄B + U−

kσV +
kσ̄ ã

†
k1σBã

†
−k2σ̄A

+V +
kσ U−

kσ̄ ã
†
k1σAã

†
−k2σ̄B). (A5)

APPENDIX B: HAMILTONIAN MATRIX AND
QUASIPARTICLE STATES FOR THE COEXISTENT

FERROMAGNETIC-SPIN-TRIPLET SUPERCONDUCTING
PHASE

In this appendix, we show briefly the approach to the
coexistent ferromagnetic-spin-triplet superconducting phase
within the mean-field-BCS approximation. In analogy to the
situation considered in Sec. II, we make use of relations (3) and
(5) and transform our Hamiltonian into the reciprocal space
to get

ĤHF − μN̂ =
∑
klσ

(
εk − μ − σISz

u

)
n̂klσ

+
∑

kll′(l �=l′)σ

ε12ka
†
klσ akl′σ

+
∑

k,m=±1

(�∗
mÂk,m + �mÂ

†
k,m)

+
√

2
∑

k

(�∗
0Âk,0 + �0Â

†
k,0)

+N

{ |�1|2 + |�−1|2 + 2|�0|2
J − U ′ + 2I

(
Sz

u

)2
}
,

(B1)
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where Sz
u is the uniform average magnetic moment and this

time the sums are taken over all N independent k points, as here
we do not need to perform the division into two sublattices.
In the equation above, we have omitted the terms that only
lead to the shift of the reference energy. Next, we diagonalize
the one-particle part of the HF Hamiltonian by introducing
quasiparticle operators

ãk1σ = 1√
2

(ak1σ + ak2σ ),

(B2)

ãk2σ = 1√
2

(−ak1σ + ak2σ ),

with dispersion relations

ε̃k1σ = εk − μ − σISz + |ε12k|,
(B3)

ε̃k2σ = εk − μ − σISz − |ε12k|.
Using the four-component composite creation operator
f̃†k ≡ (ã†

k1↑,ã
†
k1↓,ã−k2↑,ã−k2↓), we can construct the 4 × 4

Hamiltonian matrix and write it in the following form:

ĤHF − μN̂ =
∑

k

f̃†kH̃kf̃k +
∑
kσ

ε̃k2σ + C, (B4)

where

H̃k =

⎛
⎜⎝

ε̃k1↑ 0 �1 �0

0 ε̃k1↓ �0 �−1

�∗
1 �∗

0 −ε̃k2↑ 0
�∗

0 �∗
−1 0 −ε̃k2↓

⎞
⎟⎠ , (B5)

with f̃k ≡ (f̃†k)†. Symbol C refers to the last two terms of
the right-hand side of expression (B1). After making the
diagonalization transformation of (B5), we can write the HF
Hamiltonian as

ĤHF − μN̂ =
∑
klσ

λklσ α
†
klσ αklσ +

∑
kσ

(ε̃k2σ − λk2σ ) + C,

(B6)

where we have again introduced the quasiparticle operators
αklσ and α

†
klσ . Assuming that �0 = 0 and that the remaining

gap parameters are real, we can write the dispersion relations
for the quasiparticles λklσ in the following way:

λk1↑ =
√

(εk − μ − ISz)2 + �2
1 + βh|εk|,

λk1↓ =
√

(εk − μ + ISz)2 + �2
−1 + βh|εk|,

(B7)
λk2↑ =

√
(εk − μ − ISz)2 + �2

1 − βh|εk|,

λk2↓ =
√

(εk − μ + ISz)2 + �2
−1 − βh|εk|.

In this manner, we have obtained the fully diagonalized
Hamiltonian analytically for the case of superconductivity
coexisting with ferromagnetism. Next, in the similar way as for
the antiferromagnetically ordered phases, we can construct the
set of self-consistent equations for the mean-field parameters
�±1, Sz

u and for the chemical potential, as well as construct
the expression for the free energy.

APPENDIX C: BEYOND THE HARTREE-FOCK
APPROXIMATION: HUBBARD-STRATONOVICH

TRANSFORMATION

In outlining the systematic approach going beyond the
Hartree-Fock approximation, we start with Hamiltonian (7)
with the singlet pairing part ∼ (U ′ + J )

∑
i B

†
i Bi neglected,

i.e.,

Ĥ = Ĥ0 + U
∑
il

n̂il↑n̂il↓ − JH
∑
im

Â
†
imÂim, (C1)

where Ĥ0 contains the hopping term, and JH ≡ J − U ′. We
use the spin-rotationally invariant form of the Hubbard term

n̂il↑n̂il↓ = n̂2
il

4
− ( �μil · Ŝil)

2, (C2)

where n̂il = ∑
σ n̂ilσ and �μi is an arbitrary unit vector

establishing local spin quantization axis. One should note that,
strictly speaking, we have to make the Hubbard-Stratonovich
transformation twice for each of the last two terms in (C2)
separately. The last term will be effectively transformed in the
following manner:

−JH
∑
im

Â
†
imÂim

→ −
∑
im

(Â†
im�im + Âim�∗

im − |�im|2/JH ), (C3)

where �im is the classical (Bose) field in the coherent-state
representation. The term (C2) can be represented in the
standard form through the Poisson integral

exp

(
α̂2

i

2

)
= 1√

2π

∫ ∞

−∞
dxi

(
− x2

i

2
+ α̂ixi

)
. (C4)

In effect, the partition function for the Hamiltonian (C1) will
have the form in the coherent-state representation

Z =
∫

D[ailσ ,a
†
ilσ ,�im,�∗

im,λil]

× exp

(
−

∫ β

0
dτ

{∑
ij ll′σ

a
†
ilσ

[
t ll

′
ij +

(
∂

∂τ
− μ

)
δij δll′

]
ajl′σ

−
∑
im

[
�im(τ )Â†

im(τ ) + �∗
im(τ )Âim(τ ) − |�im(τ )|2

JH

]

−
∑
il

√
2λil �μil · Ŝil + λ2

il

})
, (C5)

where we have included only the spin and the pairing
fluctuations. In this paper, t ll

′
ij = tij δll′ + (1 − δll′ )t12

ij . Also,
the integration takes place in imaginary-time domain and
the creation and annihilation operators are now Grassman
variables.20 In this formulation, �im and λi represent local
fields which can be regarded as mean (Hartree-Fock) fields
with Gaussian fluctuations.
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With the help of (C5), we can define “time-dependent”
effective Hamiltonian

Ĥ (τ ) ≡
∑
ij ll′σ

t ll
′

ij a
†
ilσ (τ )ajl′σ (τ ) − JH

∑
im

[
�im(τ )Â†

im(τ )

+�∗
im(τ )Âim(τ ) − |�im(τ )|2

]

−U
∑

i

[
�λil(τ ) · Ŝil(τ ) +

�λ2
il(τ )

2

]
, (C6)

where now the fluctuating dimensionless fields are defined as

�λil(τ ) ≡
√

2 �μilλil(τ )

U
, �im(τ ) ≡ �im(τ )

JH
. (C7)

Note that the magnetic molecular field ∼ U �λil(τ ) is sub-
stantially stronger than the pairing field ∼ JH �im(τ ). In
the saddle-point approximation �λil(τ ) ≡ λilez, �im(τ ) =

�∗
im(τ ) ≡ �, and we obtain the Hartree-Fock-type approxi-

mation. Therefore, the quantum fluctuations are described by
the terms

−U
∑
il

�δλil(τ ) · Ŝil(τ )

−JH
∑
im

[δ�im(τ )Â†
im(τ ) + δ�∗

im(τ )Âim(τ )]. (C8)

The first term represents the quantum spin fluctuations of the
amplitude �δλil(τ ) ≡ �λil(τ ) − λez, and the second describes
pairing fluctuations. Both fluctuations are Gaussian due to

the presence of the terms ∼ �δλ2
il(τ ) and |δ�im(τ )|2. In

other words, they represent the higher-order contributions
and will be treated in detail elsewhere. In such manner, the
mean-field part (real-space pairing) and the fluctuation part
(pairing in k space) can be incorporated thus into a single
scheme.
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