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We investigate the potential to use a magnetothermoelectric instability that may be induced in a mesoscopic
magnetic multilayer (F/f/F) to create and control magnetic superstructures. In the studied multilayer two strongly
ferromagnetic layers (F) are coupled through a weakly ferromagnetic spacer (f) by an “exchange spring” with a
temperature-dependent “spring constant” that can be varied by Joule heating caused by an electrical dc current.
We show that in the current-in-plane configuration a distribution of the magnetization, which is homogeneous in
the direction of the current flow, is unstable in the presence of an external magnetic field if the length L of the
sample in this direction exceeds some critical value L, ~ 10 wm. This spatial instability results in the spontaneous
formation of a moving domain of magnetization directions, the length of which can be controlled by the bias
voltage in the limit L > L. Furthermore, we show that in such a situation the current-voltage characteristic has
a plateau with hysteresis loops at its ends and demonstrate that if biased in the plateau region the studied device
functions as an exponentially precise current stabilizer.
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I. INTRODUCTION

A useful tool for manipulating the local magnetic order in
artificially structured materials is provided by the possibility
to control the magnetization of a nanomagnet by injecting an
electrical current. Several such scenarios have been discussed,
including the so-called spin torque transfer (STT) technique
based on the suggestion by Slonczewski' and Berger’ to
use an injection current of spin-polarized electrons. The high
current densities needed in this case can easily be achieved in
electrical point contacts of submicron size, where densities of
the order 108-10'" A/cm? can be reached without significant
heating of the material,>* but for larger contacts thermal
heating cannot be avoided. Instead, Joule heating caused by an
(unpolarized) current can be used for thermal manipulation of
magnetization. In Refs. 5 and 6, this approach was proposed for
varying the strength of the exchange coupling of two strongly
ferromagnetic layers (F) separated by a weakly ferromagnetic
spacer (f). In Ref. 6, the ability of an external magnetic
field to change the relative orientation of the magnetization
in the outer layers of an F/A/F trilayer magnetic stack was
demonstrated. The result was that by varying the temperature,
and hence varying the strength of the exchange-spring coupling
through the spacer layer f, the relative orientation of the
magnetization of the outer F layers could be continuously and
reversibly changed from being parallel to being antiparallel.
Consequently, Joule heating by forcing a dc current through the
structure allows an electrothermal manipulation of the relative
magnetization directions.

This kind of dc-current-induced manipulation of the mag-
netization direction was further studied and observed in stacks
predicted to have nonlinear N- and S-shaped current-voltage
characteristics (CVCs) in Refs. 6 and 7, where temporal
oscillations of the magnetization direction, temperature, and
electric current in the magnetic stack were also investigated.

In this work we explore the possibility to use Joule heating
by a current-in-plane (CIP) dc electrical current to control
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the spatial distribution of the magnetization directions in
an exchange-spring layered structure of the type® sketched
in Fig. 1. We will show that if the voltage bias exceeds a
critical value for which the sign of the differential resistance
becomes negative, two coupled magnetic domain walls can
spontaneously appear along the current flow (see Fig. 6) at a
distance from each other that can be controlled by the bias
voltage.

Domain formation is of course not a new phenomenon.
The Gunn effect,” well known from the physics of semi-
conductors, is the name given to the spontaneous formation
of (moving) electric domains in a semiconductor biased in
a region of negative differential resistance (which requires
N-shaped CVCs). Electric domains in normal metals can
also appear (for a review see, e.g., Ref. 10). These domains
differ from those in semiconductors not only by the geneses
of the N-shaped current-voltage characteristics but also in
that the electric instability in a metal takes place under
the local electric neutrality condition. Domains in metals
may be due to structural'' and magnetic'>!? transitions,
a sharp temperature dependence of the resistance at low
temperatures, and magnetic breakdown, 420 evaporation,21
and melting.22 In all these cases, however, the domain sizes
are macroscopically large, typically several cm. In contrast, we
will show here that the N- and S-shaped CVCs of the magnetic
exchange-spring structures suggested in Refs. 5-7 may give
rise to magnetothermoelectric domains with a characteristic
size of the order of 10 um. The spatial distribution of the
magnetization in these stacks can vary from one corresponding
to a single magnetic domain wall to a spatially periodic
magnetization distribution.

The structure of the paper is as follows. In Sec. II we
briefly discuss some important features of the temperature
dependence of the magnetization orientation in the exchange-
coupled stack sketched in Fig. 1 and derive the N-shaped
CVCs that are the prerequisite for the magnetothermoelectric
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FIG. 1. Orientation of the magnetic moments in the stack of three
ferromagnetic layers discussed in the text. The magnetic moments
in layers 0, 1, and 2 (whose relative magnitudes are indicated by the
thickness of the short arrows) are coupled by the exchange interaction
thus forming an exchange spring trilayer. An external magnetic field
H is directed antiparallel to the magnetization in layer 0 and a current
J flows in the plane of the layers (along the x axis). In panel A the
stack temperature T is lower than the critical temperature 7°” for the
orientational phase transition in layer 1 and hence all the magnetic
moments in the stack are parallel. In panel B, where TV > T > T,
the magnetic moments of layers 1 and 2 tilt towards the direction of
the magnetic field; the angle ® between the magnetization directions
in layers 0 and 2 increases with an increase of the stack temperature
T, approaching ©® = 7 as T — T,

instability discussed in Sec. III. There we show that under
certain conditions an instability leads to spatially highly
inhomogeneous distributions of the magnetization direction
in one of the layers (layer 2 in Fig. 1), of the temperature, and
of the electric field inside the magnetic stack, corresponding
to the formation of a stable magnetothermoelectric domain
(MTED) structure in the stack. In the concluding Sec. IV we
summarize the main results of the paper and estimate the values
of the relevant parameters that lead to MTED formation.

II. N-SHAPED CURRENT-VOLTAGE CHARACTERISTICS
OF A MAGNETIC STACK UNDER JOULE HEATING

The magnetic stack under consideration has three ferromag-
netic layers as shown in Fig. 1. The outer two layers (0 and
2) are strongly ferromagnetic and coupled via the exchange
interaction through a weakly ferromagnetic spacer layer (1).
The Curie temperature 7" of layer 1 is assumed to be lower
than the Curie temperatures 7%2 of layers 0 and 2. In addition
we assume the magnetization direction of layer 0O to be fixed.
A static external magnetic field H, directed opposite to the
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magnetization of layer 0, is required to be weak enough that
at low temperatures 7 the magnetization of layer 2 is kept
parallel to the magnetization of layer O due to the exchange
interaction between them via layer 1. At H = 0and T > TV
this trilayer is similar to the spin-flip “free layer” widely used
in memory device applications.?> The stack is incorporated
into an external circuit in such a way that a current J flows
through the cross-section of the layers and

1 1
’Z[wﬂe—o]v' M

Here R (®) and R, are the magnetoresistance and the angle-
independent resistance of the stack, ® is the angle between
the magnetization directions of layers O and 2, and V is the
voltage drop across the stack.

In Ref. 6 it was shown that a magnetic configuration with
parallel orientations of the magnetization in layers O, 1, and
2 becomes unstable if the temperature exceeds some critical
temperature 7.°” < TV, The magnetization direction in layer
2 smoothly tilts with an increase of the stack temperature
T in the temperature interval Tc(or) <T<K TC(I) (see Fig. 1).
The dependence of the equilibrium tilt angle ® between the
magnetization directions of layers O and 2 on 7 and the
magnetic field H is determined by the equation®

® = D(H,T)sin®, T < TV,

o (2)
O=+4n, T>TY,
where
LiLyHM(T) T
D(H,T) = ———=— ~ Dy(H)—-——  (3)
4oy M (T) . —T
and
upH (Ly\ /(L2
Dy(H) = — (—) (—) @
kgT"\ a J\ a

Here L;, and M;,(T) are the widths and the magnetic
moments of layers 1 and 2, respectively; o ~ I /aMlz(O) is
the exchange constant, /; is the exchange energy in layer 1,
wp is the Bohr magneton, kg is Boltzmann’s constant, and a
is the lattice spacing. D(H,T) is a dimensionless parameter
that determines how effective the external magnetic field is
to cause the misorientation effect under consideration. More
precisely, it is the ratio between the energy of magnetic
layer 2 in the external magnetic field and the energy of the
indirect exchange between layers 0 and 2 (see Fig. 2). At
low temperatures the indirect exchange energy prevails, the
parameter D(H,T) < 1, and Eq. (2) has only one root, ® = 0;
thus a parallel orientation of magnetic moments in layers 0, 1,
and 2 of the stack is thermodynamically stable. However, at
temperature 77 < TV, for which

D(T/",H) =1,

two new solutions, ® = %£|0,;,| # 0, appear. The parallel
magnetization corresponding to ® = 0 is now unstable, and
the direction of the magnetization in region 2 tilts with an
increase of temperature in the interval 7 < T < TV [see
Fig. 1(b)]. The critical temperature 7.°” of this orientational
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FIG. 2. Normalized temperature dependence of the magnetic
stack resistance, R = R[®(T)], as determined by the 7" dependence
according to Eq. (2) of the angle ®(T) between the magnetization
directions in layers O and 2 of Fig. 1. The calculations were made for
R_/R, =02, Dy =0.2; R = R(w) &+ R(0) and TV is the Curie
temperature of the spacer layer 1 between layers 0 and 2.

phase transition is obtained from Eq. (3) as®*

6T §T
Tc(or) — Tc(l) (1 _ W) , —— = DQ(H) (5)

0
The orientational transition discussed above can be de-
tected by measuring the temperature dependence of the stack
magnetoresistance,’® R = R[®(T)], plotted for a typical case
in Fig. 2. This temperature dependence is caused by the
temperature dependence of the misalignment angle ® =
®(T), which is implicitly given by Eq. (2).
If the stack is Joule heated by a current J its temperature
T (V) is determined by the heat-balance condition

JV =0(T), J=V/Re(®), (6)
where
_ R(®)R
Rei(©) = RO+ R’ @)

in conjunction with Eq. (2), which determines the temperature
dependence of ®. Here V is the voltage drop across the stack,
Q(T) is the heat flux flowing from the stack, and R.(®) is the
total stack magnetoresistance. Here and below we neglect the
explicit dependence of the magnetoresistance on 7' since we
consider a thin stack in which elastic scattering of electrons
is the main mechanism of the stack resistance. On the other
hand, we consider the temperature changes caused by the Joule
heating only in a narrow vicinity of 7", which is sufficiently
lower than both the critical temperatures TC(O*Z) and the Debye
temperature.
Equations (2) and (6) define the CVCs of the stack,

J(V) = RL, ®)
off [O(V)]
where @(V) = O[T (V)]. Below we will simplify the notation
by dropping the subscript “eff”” and simply write R(®).

The dependencies of the tilt angle ® on temperature 7 and
of the resistance R on the tilt angle ® can result in a negative
differential resistance. This can be qualitatively understood
by noting that if 7 < 7" there is no tilt, ® =0, and an
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FIG. 3. Current-voltage characteristics (CVCs) of the magnetic
stack of Fig. 1 in which the magnetization directions in the layers are
homogeneously distributed along the x direction (along the stack).
They were calculated for R(®) = R, — R_cos®, R_/R, =0.2,
Dy =02; J. = V./R(7); V. = VR(m)O(TV)/ Q. The branches
0-a and b-b’" of the CVCs correspond to parallel and antiparallel ori-
entations of the stack magnetization, respectively (the parts a-a’ and
0-b are unstable); the branch a-b corresponds to 0 < O[T (V)] < 7.

increase of the applied voltage V increases the current J [see
Eq. (8)] without changing the stack resistance, R = R(0). This
corresponds to the CVC branch 0 — a in Fig. 3. With a further
increase of V, Joule heating increases the temperature above
TV so that the tilt angle starts to increase. This leads to an
increase of the resistance (see Fig. 2), which may decrease the
current with a further increase of V asis shown in Fig. 3. Below
we find the range of parameters for which the differential
resistance does become negative.

Differentiating both equations in Eq. (6) with respect to V
one finds (see Appendix A)

aJj(v) _ d(R™'[©(T)] Q(T))/dT

= R[O&(T .
av — MO R 6@ omy/dr |y,

From here it is clear that the differential conductance of the
stack, dJ/dV, is negative if the sample is Joule heated to a
temperature at which

d{Q(T)/R[O(T)]}/dT < 0.

Therefore, the main properties of the system under con-
sideration are determined by the behavior of the function
X = Q(T)/R[O(T)] plotted for typical parameters in the top
panel of Fig. 4.

In the same manner, using Eq. (2) one may express the
differential conductance in terms of the dependence of the
magnetoresistance R on the magnetization angle © as®

dJ [R~'(®)(1 — Dsin®/0)]

Z = R(®) -
dv [RO)1 — Dsin®/0O)]

)

O=0(V)

where [...]" means the derivative of the bracketed quantity
with respect to ®, and

~ Dy.
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QO(T)/R[O(T)] and the “potential” energy W(T,J) calculated
for R(®) =Ry — R_cos®, R_/R, =0.2, Dy =0.2, and J/J. =
1.03; J. = Vo/R(): tio3 = Tio3/ TSV,

x(T) =

It follows from Eq. (9) that the differential conductance
dJ/dV is negative if
d (1-Dsin®/0)
do R(®)
In this case the current-voltage characteristics (CVCs) of the
stack are N-shaped as shown in Fig. 3.

Using Egs. (1) and (9) and assuming the magnetoresistance
to be of the form?’ R(®) = R, (1 — r cos ©), where

R_ R(r)£ R
r=—>0, Ri= Rm* RO
Ry 2
one finds that the differential conductance dJ/dV is negative
if

<0. (10)

, 1)

_ 3r[R(0) — (1 — r)’R,]
S U+ 20RO + (1= r2(1 — 4Ry

It follows that CVCs with a negative differential resistance are
possible if R(0) > (1 —r)*R,.

In the case that the stack has a negative differential
resistance, nonlinear current and magnetization-direction os-
cillations may spontaneously arise if the stack is incorpo-
rated in a voltage-biased electrical circuit in series with
an inductor.®” In this paper we show that another type of
magnetoelectrical instability can arise in such a stack if
the electrical current flows in the plane of the layers (CIP
configuration): A homogeneous distribution of magnetization
direction, temperature, and electric field along the spring-type
magnetic stack becomes unstable and a magnetothermoelectric
domain spontaneously arises in the stack. Here and below we
consider the case that the electrical current flowing through

12)
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the sample is lower than the torque critical current and hence
the torque effect is absent.”®

III. MAGNETOELECTROTHERMAL INSTABILITY
IN A MAGNETIC STACK

In this section we will work in the voltage bias regime,
where the resistance of the external circuit into which the
magnetic stack is incorporated can be neglected in comparison
with that of the stack. In this case, using the known relation
between the electric field and the temperature (see, e.g.,
Ref. 30) and taking into account that the temperature, T (x,1),
being a function of the coordinate x along the stack and time ¢,
satisfies the continuity equation for the heat flow, one obtains
a set of basic equations for the problem,

aT .tTdotE?T_a T3T AT
C”E_’_J() T ox a(K( )a)— ST, ),
F(T,j) = O(T)/ Q — j2(t)plO(T)], (13)
\%
J(O{p) = 7

where the T-dependence of ®(T) is given by Eq. (2).
Furthermore, j(z) = J(¢)/S is the current density, which is
independent of x due to the condition of local electrical
neutrality, S is the cross-section area of the stack and L is
its length, c, is the heat capacity per unit volume, « is the
proportionality coefficient between the electric field and the
temperature gradient,’® « is the thermal conductivity, Q(T)
is the heat flux flowing from the stack, g is its volume,
and p[f] = Re[0]S/L is the stack magnetoresistivity [see
Eq. (7)]; the brackets (---) that appear in the last part of
Eqg. (13) indicate an average over x along the whole stack of
length L.

The boundary condition needed to solve Eq. (13) is the
continuity of the heat flux at both ends of the stack (which is
coupled to an external circuit with a fixed voltage drop V over
the stack). We shall not write down any explicit expression
for this condition, since it will become clear below that the
magnetothermal domain structure does not depend on the
boundary conditions if L is sufficiently large. Instead, we use
the periodic boundary condition®' T(x + L,t) = T(x,t).

The set of equations (13) always has the steady-state
homogeneous solution

T =TyV), ©=06yV)=06[THV)
Jo=p"[OTNIV/L,  f(To.jo) =0.

The last equation in Eq. (14) is identical to the energy balance
condition (6) which, together with Eq. (2), determines the
N-shaped CVCs shown in Fig. 3.

As shown in Appendix B, if the differential conductance
dJ/dV is negative the uniform magnetization along the stack
is stable only if the stack length L is shorter than some critical
length L., where

(14)

B \/mBT;" p—1(®)(sin © /O
¢ j2p(t) [p~(®)1 — Dsin®/O)]
and the derivatives with respect to ® are evaluated for
® = ©®y. However, when L > L, the uniform distribution of

s)
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the stack magnetization becomes unstable against fluctuations
comprising an arbitrary sum of harmonics A, exp(i2mwnx/L)
(n = =%1,£2...) with |n| < L/L.. A fluctuation with |n| >
L/L. or [n = 0] (uniform fluctuation), on the other hand, does
not destroy the stability of the homogeneous solution (14) [see
Eq. (B2)]. We note here that the characteristic value of the
critical length can be rather short. Using Egs. (9) and (15) and
the Lorentz ratio k /o = n%k3T/3e, where 0 = 1/p and e is
the electron charge, one finds that

c TV 1 kpT®
r p0)jz  rep(0)je
for a realistic experimental situation: r ~ 0.1-0.3, TC(D ~
100 K, p(0) ~ 10 uQcm, j ~ 10°~107 A/cm?.

Therefore, in the range of parameters L > L. homogeneous
distributions of the magnetization direction ®, temperature

~

~10pum  (16)

T =710 (1- p,n® 17)
=T 5
[see Egs. (2) and (3)], and the electric field
&= plO)]) (13)

along the system are unstable, and a magnetothermoelectric
domain, moving with a constant velocity s, may spontaneously
arise inside the magnetic stack:*

'V—V S
Ja( )—Z<p[ al)

Ox,t) = Oy(x — st) = Ov(x — st, jg)l,

where the definition of the brackets (---) is the same as in
Eq. (13), and v(x) satisfies the equation of motion of a fictitious
particle of variable “mass” x(v) governed by a potential force
f(v,j) and a friction force proportional to dv/dx:

d ()dv n . da dv_f( ) Q0)

dx \“ax ) T\ TGy Jax T

(here x is the “time” and v is the “coordinate” of the particle).
The velocity s of the domain is found from the condition

that the total change of energy E(x) in the “period” L vanishes

[that is, §E = 0; see Eq. (C5)]:

. da (dv\* dv\? 21
= o (Y fromon(£2)') e

Hence, the velocity of a magnetothermoelectric domain is

1 1

1 kgTV kpTV
c, TV e &F

for j ~ 10°-10” A/cm?, ¢, ~ 1 J/K em?, TV ~ 100 K.

In the same manner as for Gunn domains in
semiconductors’ and electric domains in superconductors and
normal metals,'® the motion of the MTED domain can be
stopped by inhomogeneities inside the stack or at its ends.
As the MTED velocity is low, even weak inhomogeneities
can pin the MTED. However, in very homogeneous samples
there is a possibility that thermal domains can move along the
sample, periodically disappearing at one end of the sample
and then reappearing at the other, so that the result is temporal
nonlinear electrical oscillations®* with period w ~ L/s. In

T(x,t) = v(x — st, jq),
(19)

s~ jajc, ~ j ~ 10 cm/s
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FIG. 5. (Color online) Current-voltage characteristics (CVCs) of
the magnetic stack of Fig. 1 for L > L., i.e., when the stack contains
a magnetothermoelectric domain. The CVCs were calculated for
R®)=R, —R_cos®, R_/R. =02, Dy=0.2; J. =V,./R(m);

V. =/ R(@)Q(T{")/ Q2. The branches a’-a and b-b’ of the CVCs

correspond to parallel and antiparallel orientations of the stack
magnetization, respectively, while the solid branch a-b corresponds
to a stable magnetothermoelectric domain (MTED) spontaneously
formed inside the stack. The dashed lines indicate sections where the
CVCs are unstable. The red vertical arrows indicate the hysteresis
loop in the CVCs caused by the disappearance and emergence of the
MTED as the bias voltage is changed. The thin horizontal line shows
the stabilization current Jj.

the case under consideration these oscillations involve the
magnetization direction ®, temperature 7, and electrical
current j. Using the parameter values already introduced one
gets w = s/L ~ 1-10 MHz for a magnetic stack of length
L~ 1 pum.

As shown in Appendix C [see Egs. (C6) and (C7)], the
function v(x) satisfies the following equation with a high
accuracy:

1 dv\? .
- (K—) +W(,j) =E. (22)

2\ dx
In this approximation the domain velocity is determined by
the equation

Tinax da
s=j / T—\/E — W(T, j)dT
d . aT d

Tinax
/| eaE= Wi, @y
Tin

where Tpyin and Tpy.« are the minimal and maximal temperatures
in the domain obtained as real roots of the equation W(T, j) =
E. Here the constant E plays the role of “particle” energy,
which determines the “period of motion,” L(E,j), of a
nonlinear oscillator. Its value is found from the condition
that L(E,j) is equal to the length L of the magnetic stack;
that is, the magnetothermoelectric domain v(x) as a function
of x has only one maximum and one minimum along the
length of the magnetic stack. Inthe case L(E, j) = L/n (where
n = 2,3,...), “multiple” domains are also possible.

The solution of Eq. (22), together with Eq. (17), defines
the spatial distributions of temperature and magnetization
direction in a magnetic stack with a magnetothermoelectric
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FIG. 6. (Color online) Coordinate dependence of the temper-
ature, T (x), and the magnetization-misorientation angle, ©(x),
in a magnetic stack containing a magnetothermoelectric do-
main, calculated for R(®) = R, — R_cos®, R_/R, =0.2, Dy =
0.2; J/J. = 1.0265, J. = V./R(r), V. = VR(@)Q(T)/ Qq, Lo =
Lj2p() kTN ~ L.

domain. Typical examples of such distributions are presented
in Fig. 6.

Using Eq. (22) and the last equation in (19) one finds the
set of equations

~ Vimax (/) dT
LE.j)=2 Y
Vmiu(j) \% E - W(Ts.])
Vmax (/) \/EdT
jV2 POT)) e = V. (25)
Umin(j) \' E - W(T9.])

The solutions £ = E4(V,L) and j = j;(V,L) of these equa-
tions are, respectively, the “energy” of the domain and the
current-voltage characteristics of the magnetic stack contain-
ing a magnetothermoelectric domain (the dynamic CVCs). In
Egs. (24) and (25) the limits of integration, vy, and vyax, i.€.,
the minimum and maximum temperature of the domain, are
obtained as the real roots of the equation W(v,j) = E.

Let us consider the most pronounced case, for which L >
L. In this limit we find a solution of Eq. (22) that has a
period much larger than L.. Since the period L(E,j) of the
nonlinear oscillator [see Eq. (24)] diverges logarithmically
as E — min{W,; 3(j)} [where W 3(j) are the maxima of the
“potential” energy; see Fig. 4], this condition is satisfied if the
“energy” E = E(L,j) of the domain differs from min{ W, W3}
by an exponentially small amount. From here it follows that
variations of the current inside a narrow interval around jj,
defined by the relation

T3(jo)
| warsajodr <o,
Ti(jo)

drastically changes the form of the magnetothermoelectric
domain and hence the current voltage characteristics. Solving
the set of equations (24) and (25) in the interval |j — jo| < Jo
[where W, (j) =~ W3(j) =~ W(jo)] and taking into account that
the maximal, v, and minimal, vy, temperatures of the
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domain are close to 77 and T3, respectively, one finds the
following implicit form of the dynamic CVCs:

= sexp| PO L
ST o= e r(jop+) Lo
E—p@m)j L

el ST e

Here £ = V/L, Lo = [f(T")/k]V/? ~ L., and the con-
stants J; ;; are of the order of jy while f'7 = df/9T.

Differentiating both sides of Eq. (26) with respect to &€ one
finds that the dynamic CVCs have vertical tangents at the two
points (J; ,&1) and (jz,c‘fz), where

Ji = Jjo(1 +20), & = p(0)jo{l + A(O)[1 — InA(0)]}

27
and
J2 = Jjo(1 + A(m)& = p() jof1 — A(@)[1 = In A(7)]}
(28)
while
(@) = Lo P = p(©) 29

L p(©)

It follows from the above equations that the values of the
currents j; and j, differ from jy by an amount ~ jo(L./L).

One can see from Eq. (26) and Eq. (29) that for all values
of £ = V/L in the interval £ < € < &, except for a small
region near the ends of the interval, the current j coincides
with jy to an accuracy that is exponential in the parameter
L/L. > 1. A change of the bias voltage in this interval does
not change the current but it does change the length of the
magnetothermoelectric domain, that is the length of the higher
resistive part of it providing the needed voltage drop across the
stack at the fixed current value J = Jj. Therefore, a magnetic
stack with a magnetothermoelectric domain inside can work
as a high-quality current stabilizer.

Near the points £, and &, there is a sharp transition from
the nearly horizontal segment of the dynamic CVCs to the
rising segments of the CVCs corresponding to a homogeneous
state of the magnetic stack (see Fig. 5). As a result, there are
hysteresis loops in the current-voltage characteristics of the
stack of a large enough length L.

The fact, mentioned above, that the current is nearly
independent of the bias voltage in the interval [V}, V;] (here
Via = L& ») comes about because in this region the domain
structure can be written to exponential accuracy [i.e., with an
error < exp(—L/L.)] as

Ty(x) = 9(x +x1) + P(x2 — X) — Tnaxs (30)

where the function ¢*(x) is a domain-wall-type solution of
Eq. (20) at j = jp and L — oo, the asymptotic behavior of
which is
lim =9(x) = Tmin, lim = %(x) > Thpax. (€19
xX—>—00 X—>00
Here x; » are the points of deflections of the curve d7;(x)/dx

so that L;; = x, — x; is approximately the length of the
“hot” section of a trapezoidal MTED having the maximal
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temperature T, and L; = L — Ly is the length of its “cold”
section having the minimal temperature 71, (see Fig. 6).

IV. CONCLUSION

We have shown that Joule heating of the magnetic stack
sketched in Fig. 1 by a current flowing in the plane of the
layers may result in an instability of an initially homogeneous
distribution of the magnetization of the stack if the length
L of the stack in the direction of the current flow is longer
than some critical length L.. This instability results in the
spontaneous appearance of moving domains of magnetization
direction in layer 2 of Fig. 1, ®(x — st), temperature, 7 (x —
st), and electric field, £(x — st). For the case L 2 L. the length
of the domain is of the order of L..

If the length of the stack greatly exceeds the critical length,
L > L., the stack is spontaneously divided into two regions,
where in one region the magnetization directions in layer 1
and layer 2 of Fig. 1 are parallel to each other, while in the
other region they are antiparallel. The length of the region
with antiparallel magnetization orientations (that is the length
of the domain L,) is controlled by the bias voltage in the
interval L, < Ly < L (see Fig. 6). In this case the CVCs of a
stack containing such a domain have a plateau with hysteresis
loops at the ends, as shown in Fig. 5. Therefore, the stack can
work as a current stabilizer since the current flowing through
it has a fixed value Jy to within an exponentially small error
oxexp(—L/L.); a change of bias voltage only results in a
change of the domain length to provide the needed voltage
drop over the stack.

For a realistic experimental situation the value of the pa-
rameter r, which through Eq. (11) determines the dependence
of the stack resistance on the magnetization-misorientation
angle ®, can be estimated to be of order 0.1-0.3, while the
Curie temperature 7,V of the spacer layer 1 can be ~100 K.
Using these values and a resistivity of p(® = 0) ~ 10 u2 cm,
a current density of j ~ 10°~107 A/cm?, and a specific heat
of ¢, ~ 1 J/K cm?, one finds that the critical length is L. ~
10 pm.
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APPENDIX A: NEGATIVE DIFFERENTIAL
CONDUCTANCE

Inserting R(T) = R(®(T)) in Eq. (6) one gets
Vv

— 2 _
= 2 V2 = Q(T)R(T).

(A1)
Differentiating the both equations with respect to V one finds

d]_[l R'TVdT} VdT_[2QR}
av. LR R dV]i_gy) AV OB oy

(A2)
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where f;. =df/dT and T(V) is determined by the second
equation in Eq. (A1). From here one readily obtains

(R'O)p _
RO)r lr—1(v)
(A3)

dJ _1RQ; — R0 _r
dv. R (RQ); B

T=T(V)

APPENDIX B: INSTABILITY OF A MAGNETIZATION
DISTRIBUTION THAT IS SPATIALLY HOMOGENEOUS
IN THE PLANE OF THE MAGNETIC LAYERS

In order to investigate the stability of the spatially ho-
mogeneous solution (14) for temperature, T = Ty, current
density, j = jo, and magnetization-misalignment angle, ® =
®y, against spatial fluctuations we express these quantities as
sums of two terms,

T =To(V)+Ti(x.1), ©=00(V)+ O1(x,1),

(B1)
Jj =Jo+ j1®),

where 77,0, and j; are each a small correction. Inserting
Eq. (B1) into Egs. (2) and (13) and using the Fourier expansion

+o0
Ti(t,x) = Z T (1) expliknx},

n=—0oQ

~+00
Oit,x) = Y O () explikyx}, ky = —,

n=—0oo
one finds that
7" (1) = DoT"|(sin ©y/ Op) |©"(1),

while the equation for the Fourier harmonics of the angle are

. aey _ { j2p(r)
Cdi DT |(sin®/©) |
1 — . / 0)
x——[p(®)(1 — Dsin®/O)] } o'
p(©) oo, |
(B2)
ifn =0, and

c, dO}" _ _(2_71)2"2 B { Jj2p()
K dt L k DoT " |(sin® /@) |

xp(@)[p~'(®)(1 — Dsin®/O)] } S
®=0,
(B3)

if n # 0.
From this result one sees that if

[ (®)(1 — Dsin®/O)]g_g, <0

[thatis if dJ/dV < 0, see Eq. (9)] the uniform magnetization
along the stack loses its stability if the stack length exceeds
some critical value. Setting the right-hand side of Eq. (B3)
equal to zero one gets the result (15) for the critical length L.
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APPENDIX C: DOMAIN STRUCTURE

By multiplying both sides of Eq. (20) by «(v)dv/dx one
gets the equation

d 1 [ dv\? W
EI:E (Ka) + (V»]d)]

= —,! cs—'vda Kdv ’
o v Jd dv dx )’

where the quantity

(CI)

1/ dv\? )
E(x) = <K—> +W®,ja) (C2)

dx

plays the role of the total “energy” of a fictitious particle,
the first term giving the “kinetic energy” and the “potential
energy” being defined as

T

W(T.j) = — /
T>(j)

[the dependence of W(T',j) on T is shown in Fig. 4].
The change of energy with “time” x is caused by the action
of the “friction” force:

dE » _da\ [ dv\’
— = —K CyS — Jav— )| k— ) .
dx dv dx

K(THf(T', HdT’ (C3)

(C4)
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Integrating this equation one finds the change of the energy
E(x) during the “period” L

SE = —/ kY eys —jdv—a K—V dx. (C5)
0 dv dx

From here it follows that §E = 0 if the domain velocity s
satisfies Eq. (21).

As one sees from Eq. (C1), the ratio of the “friction force”
to the “inertial” term is of the order

L. 7" kpTV
L kel
8F\/;

where ep is the Fermi energy. From here it follows that the
right-hand sides of Egs. (C1) and (C4) are of the order of

VAT [ dv\® 1 ( dv®
——k=—=) ~107*— (k=
L. er dx L. dx

and hence the function v(x) satisfies an “energy” conservation
law E(x) = E = const [see Eq. (C2)] to within an error
~kp Tc(l)/azp ~ 10~*, which results in Eq. (22).

~ 1074,

(Co)
K rpK
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