
PHYSICAL REVIEW B 86, 014423 (2012)

Spin nematic phase in one-dimensional and quasi-one-dimensional
frustrated magnets in a strong magnetic field

A. V. Syromyatnikov*

Petersburg Nuclear Physics Institute NRC “Kurchatov Institute”, Gatchina, St. Petersburg 188300, Russia
and Department of Physics, St. Petersburg State University, 198504 St. Petersburg, Russia

(Received 23 April 2012; revised manuscript received 26 June 2012; published 23 July 2012)

We discuss spin- 1
2 one-dimensional (1D) and quasi-1D magnets with competing ferromagnetic nearest-

neighbor J1 and antiferromagnetic next-nearest-neighbor J exchange interactions in a strong magnetic field
H . It is well known that, due to attraction between magnons, quantum phase transitions (QPTs) take place at
H = Hs from the fully polarized phase to the nematic phase if J > |J1|/4. Such a transition at J > 0.368|J1|
is characterized by a softening of the two-magnon bound-state spectrum. Using a bond-operator formalism we
propose a bosonic representation of the spin Hamiltonian containing, aside from bosons describing one-magnon
spin-1 excitations, a boson describing spin-2 excitations whose spectrum coincides at H � Hs with the
two-magnon bound-state spectrum obtained before. The presence of the bosonic mode in the theory that softens
at H = Hs makes the QPT consideration substantially standard. In the 1D case at H < Hs , we find an expression
for the magnetization which well describes existing numerical data. Expressions for spin correlators are obtained
which coincide with those derived before, either in the limiting case of J � |J1| or using a phenomenological
theory. In quasi-1D magnets, we find that the boundary in the H -T plane between the fully polarized and the
nematic phases is given by Hs(0) − Hs(T ) ∝ T 3/2. Simple expressions are obtained in the nematic phase for
static spin correlators, spectra of magnons and the soft mode, magnetization, and the nematic order parameter. All
static two-spin correlation functions are short ranged with the correlation length proportional to 1/ ln(1 + |J1|/J ).
Dynamical spin susceptibilities are discussed and it is shown that the soft mode can be observed experimentally
in the longitudinal channel.
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I. INTRODUCTION

Spin nematic states with multiple-spin ordering and without
the conventional long-range magnetic order have attracted
much attention in recent years. Two-spin nematic order
can be generally described by the tensor1 Q

αβ

jl = 〈Sα
j S

β

l 〉 −
δαβ〈Sj Sl〉/3. The antisymmetric part of Q

αβ

jl is related to the
vector chirality 〈Sj × Sl〉. The formation of the vector chiral
spin liquid was anticipated a long time ago in two-dimensional
(2D) frustrated spin systems.2 Such states have been obtained
recently in a ring-exchange spin- 1

2 model at T = 03 and in
classical frustrated spin systems at T �= 0.4 The symmetric
part of Q

αβ

jl describes a quadrupolar order. In this instance one
distinguishes the cases of j = l and j �= l. It has been known
for a long time that the one-site (j = l) nematic state can
be stabilized by the sufficiently strong biquadratic exchange
(S1S2)2.5 The interest in this mechanism of multiple-spin
ordering stabilization has been revived recently in connection
with experiments on cold-atom gases6 and on the disordered
spin system NiGa2S4.7

While the one-site quadrupolar ordering can exist only for
S � 1, the different-site one (j �= l) can be found even in
spin- 1

2 systems. In particular, different-site nematic phases
have been discussed recently in (quasi-) one-dimensional
(1D),8–22 2D,23–27 and three-dimensional (3D)28 systems with
competing ferro- and antiferromagnetic exchange couplings
between neighboring and next-neighboring spins, respectively.
The (quasi-) 1D magnet of this kind is described by the
Hamiltonian

H =
∑

j

(−Sj Sj+1 + JSj Sj+2) − H
∑

j

Sz
j + H′, (1)

where we set the ferromagnetic exchange coupling constant
between neighboring spins to be equal to −1 and H′ describes
an interchain interaction that is also taken into account in
the present paper [see Fig. 1(a)]. As the field direction can
be arbitrary, we direct the field perpendicular to chains for
simplicity. The interest in model (1) is stimulated also by
recent experiments on the corresponding quasi-1D materi-
als LiCuVO4,29–33 Rb2Cu2Mo3O12,34 Li2ZrCuO4,35 CuCl2,36

PbCuSO4(OH)2,37 LiCuSbO4,38 and some others.
It has been found recently that the physics of spin- 1

2 model
(1) with H′ = 0 is even richer: field-driven transitions to
phases with quasi-long-range multiple-spin ordering have been
obtained below the saturation field Hs and are described by
operators S±

j S±
j+1 · · · S±

j+p−1 with p = 2 (quadrupolar phase)
at J > 0.368, p = 3 (hexapolar phase) at 0.284 < J < 0.368,
and p = 4 (octupolar phase) at 0.259 < J < 0.284.15,16 Finite
interchain interaction H′ stabilizes the long-range nematic
order at T = 0 but quite a small nonfrustrated H′ turns
the point H = Hs into an ordinary quantum critical point
separating the fully polarized phase and that with a long-range
magnetic order.17,18,21,22

It is well known that the origin of the nematic phases is
the attraction between magnons caused by frustration.8 As
a result of this attraction, the bottom of the one-magnon
band lies above the lowest multimagnon bound state at
H = Hs [see, e.g., Fig. 2(a)]. Then, transitions to nematic
phases are characterized by a softening of the multimagnon
bound-state spectrum rather than the one-magnon spectrum.
As a consequence, new approaches are required to describe
such transitions.

Properties of model (1) are well-understood in the fully
polarized state at H � Hs . Wave functions of the multimagnon
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FIG. 1. (Color online) (a) Quasi-1D frustrated magnet described
by Hamiltonian (1). It is implied that interchain interactions J ′

1 and J ′
2

are small compared to those inside chains. The approach suggested
in the present paper is based on the unit cell doubling along the chain
direction that is shown in panel (b).

bound states can be represented as linear combinations of
functions S−

i1
S−

i2
· · · S−

ip
|0〉, where |0〉 is the vacuum state at

which all spins have the maximum projection on the field
direction, and the spectrum can be found numerically from
the corresponding equations.16,39 An approach is suggested in
Ref. 17 that allows one to map the system at H � Hs to a tight-
binding impurity problem. In particular, it allows authors to
obtain analytical expressions for the two-magnon bound-state
spectrum and to show that it is quadratic at J > 0.375 near its
minimum located at k = π/d, where d is the distance between
neighboring spins [see Fig. 2(a)].

Transitions to nematic spin liquid phases in the purely 1D
spin- 1

2 model are discussed using the bosonization technique
in the limit J � 1 and using a phenomenological approach
at arbitrary J > 1/4.9–11,13,16 According to the latter method

the transition is equivalent to that in a 1D hard-core Bose gas
with the following correspondence between the bosonic oper-
ators bi and spins: b

†
i = (−1)iS−

i S−
i+1 · · · S−

i+p−1 = (−1)iM (p)
i

and b
†
i bi = (1/2 − Sz

i )/p. Results of the phenomenological
approach agree with those of the bosonization method in
the region of its validity J � 1 and show, in particular,
an algebraic decay of static spin correlators 〈Sz

i S
z
j 〉 and

〈M (p)
i M

(p)
j 〉 in nematic phases and an exponential decay of

〈S+
i S−

j 〉. Although many predictions of the phenomenological
theory are confirmed by numerical calculations, the corre-
sponding microscopic analytical calculations based on the spin
Hamiltonian are also desirable at J ∼ 1.

It is well known that the behavior of quasi-1D systems
differs significantly at low T from that of purely 1D systems.
Then, a special approach for a quasi-1D model (1) at
T = 0 has been suggested recently.21 The wave function of
the ground state in the quadrupolar phase is proposed in
a form that resembles the BCS pairing wave function of
electrons in superconductors. Using this approach authors
have calculated static spin correlators and found that, in
contrast to the purely 1D case, 〈Sz

i S
z
j 〉 decays exponentially

and the system has a long-range nematic “antiferromagnetic”
order. The magnetization of LiCuVO4 at H < Hs measured
in Ref. 30 is also described successfully in Ref. 21. How-
ever, many dynamical properties as well as the temperature
effect have not been considered yet in the quasi-1D case
that leaves room for further theoretical discussion in this
field.

We suggest an approach in the present paper that allows
us to perform a quantitative microscopic consideration of the
quadrupolar phase at T � 0 and H ≈ Hs both in a purely 1D
and quasi-1D spin- 1

2 model (1). This approach is based on the
unit cell doubling along the chain direction that is shown in
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FIG. 2. (Color online) (a) Spectra of one-magnon excitations and two-magnon bound states are shown at H = Hs as they were found
before at J > 0.375 for an isolated chain described by Hamiltonian (1) (the particular curves drawn are for J = 1). The distance between two
neighboring spins in the chain is equal to d . Dashed lines are for the parts of the bound-state spectrum which lie in the two-magnon continuum.
The first Brillouin zone (BZ) [−π/2d, π/2d] is marked after the unit cell doubling that is drawn in Fig. 1(b). The result of the reduction to this
BZ is presented in panel (b). Within the approach suggested in the present paper, spectra of spin-1 excitations described by α- and β-particles
[see Eqs. (6)–(12)] are two parts of the one-magnon spectrum shown in panel (a), whereas the spectrum of a particles (spin-2 excitations)
coincides with the low-energy part of the two-magnon bound-state spectrum.
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Fig. 1(b) and on a representation of two spin operators in each
unit cell via three bosons. This representation resembles those
proposed for dimer spin- 1

2 systems.40–42 Two of these bosons
describe one-magnon (spin-1) modes while the third one
describes spin-2 excitations (see Fig. 2), which are referred to
as a particles below. We demonstrate that the spectrum of a par-
ticles coincides at H � Hs with the spectrum of two-magnon
bound states calculated before by other methods.8,17,18 Then, it
is the main advantage of our approach that it contains a boson
whose spectrum becomes “soft” as a result of the transition
to the nematic phase. This circumstance makes relatively
simple and quite standard the quantitative discussion of the
transition.

It should be noted at once that the procedure of unit-cell
doubling is arbitrary (there are two ways for neighboring spins
to group into couples) and it breaks the initial translational
symmetry. However, it does not play a role in our consideration
because all the physical results are obtained in the present
paper either exactly or using perturbation theories with
“good” small parameters. As a consequence, the translational
symmetry is restored in our results at H � Hs , it turns out
to be broken at H < Hs in accordance with conclusions of
previous considerations and all the physical results obtained
at H < Hs do not depend on the way of spins grouping into
couples.

By using our approach, we confirm the hypothesis proposed
in Ref. 16 that the transition in an isolated chain to the
quadrupolar phase is equivalent in many respects to that in 1D
systems of hard-core bosons. We rederive many of the results
for the isolated chain obtained in Refs. 9–11, 13, and 16. As an
extension of the previous discussion, we derive an expression
for the magnetization that well describes available numerical
data at H ≈ Hs .

In quasi-1D systems, we find that the boundary in the
H -T plane between the fully polarized and the quadrupolar
phases is given by Hs(0) − Hs(T ) ∝ T 3/2. Simple expressions
are obtained for static spin correlators, spectra of magnons
and the soft mode, magnetization, and the nematic order
parameter. We obtain an “antiferromagnetic” nematic long-
range order along the chains in accordance with Refs. 8 and 21.
All the static two-spin correlators decay exponentially with
the correlation length proportional to 1/ ln(1 + 1/J ). This
exponential decay results in broad peaks in the transverse
structure factor with the period along chains equal to π/d

rather than 2π/d. Dynamical spin susceptibilities χαβ(ω,q)
are discussed, where α, β = x, y, z. It is shown that χzz(ω,q)
has sharp peaks at ω equal to energies of a particles.
Thus, the soft mode can be observed experimentally in the
longitudinal channel. There are sharp peaks at ω corresponding
to energies of magnons in transverse components of the
dynamical spin susceptibility (in accordance with predictions
of Ref. 21). An application is discussed of the proposed
theory to LiCuVO4. Our results are in reasonable agreement
with available experimental data for magnetization in this
compound.

The rest of the present paper is organized as follows: We
describe in detail our approach in Sec. II. Properties of an
isolated chain are discussed in Sec. III. Quasi-1D systems
at H � Hs and H < Hs are considered in Secs. IV and V,
respectively. Sec. VI contains a summary of our results and

a conclusion. Some details of calculations and the model
describing LiCuVO4 are discussed in appendices.

II. APPROACH

A. Spin representation

We start with an isolated chain at H � Hs . To describe its
properties in the fully polarized state and the quantum phase
transition we suggest to double the unit cell, as shown in
Fig. 1(b). Then, there are two spins, S1j and S2j , in j th unit
cell. To take into account all spin degrees of freedom in each
unit cell we introduce three Bose operators a

†
j , b

†
j , and c

†
j ,

which create three spin states from the vacuum |0〉 as follows:

|0〉 = |↑↑〉,
a
†
j |0〉 = |↓↓〉,

(2)
b
†
j |0〉 = |↑↓〉,

c
†
j |0〉 = |↓↑〉,

where all spins have the maximum projection on the field
direction at the state |0〉. One leads to the following spin
representation via these Bose operators:

S
†
1j = b

†
j aj + cj , S

†
2j = c

†
j aj + bj ,

S−
1j = a

†
j bj + c

†
j , S−

2j = a
†
j cj + b

†
j , (3)

Sz
1j = 1

2 − a
†
j aj − c

†
j cj , Sz

2j = 1
2 − a

†
j aj − b

†
j bj .

It is easy to verify that Eqs. (3) reproduce spin commutation
relations on the physical subspace (which consists of states
with no more than one particle a, b, or c in each unit
cell) of the Hilbert space and S2

1j = S2
2j = 3/4. In order to

eliminate contributions to physical quantities from unphysical
states, one can introduce into Eqs. (3) the projector operator
1 − a

†
j aj − b

†
j bj − c

†
j cj or add to the Hamiltonian a term

describing infinite repulsion between particles in each unit
cell:

U
∑

j

(a†
j a

†
j ajaj + b

†
j b

†
j bjbj + c

†
j c

†
j cj cj + a

†
j b

†
j ajbj

+ a
†
j c

†
j aj cj + b

†
j c

†
j bj cj ), U → ∞. (4)

Both methods should lead to the same results at small T (see,
e.g., Ref. 43) and we choose the last one in the present paper.

Representation (2)–(4) is an analog of the bond-operator
representation suggested in Ref. 40 and applied to systems with
singlet (“dimerized”) ground states. In principle, Eqs. (2)–(4)
can be derived from Ref. 40, implying that |↑↑〉 is the ground
state, as done, for example, in Ref. 42 for the singlet ground
state.

B. Hamiltonian transformation

Substituting Eqs. (3) into Hamiltonian (1) with H′ = 0 and
taking into account constraint (4), one obtains

H = E0 + H2 + H3 + H4, (5)
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where E0 is a constant,

H2 =
∑

k

[εa0a
†
kak + Ek(b†kbk + c

†
kck) + Bkc

†
kbk + B∗

kb
†
kck], (6)

H3 = 1√
N

∑
k1+k2+k3=0

[
−1

4
(eik1 + eik2 )c†1c

†
2a−3 − 1

4
(e−ik1 + e−ik2 )b†1b

†
2a−3 + 1

2
(J1 + J2)b†1c

†
2a−3

− 1

4
(eik2 + eik3 )a†

1c−2c−3 − 1

4
(e−ik2 + e−ik3 )a†

1b−2b−3 + 1

2
(J2 + J3)a†

1b−2c−3

]
, (7)

H4 = 1

N

∑
k1+k2+k3+k4=0

[
(U + J1+3 − ei(k1+k3))a†

1a
†
2a−3a−4 +

(
U + 1

2
J1+3

)
(b†1b

†
2b−3b−4 + c

†
1c

†
2c−3c−4)

+
(

U + J1+3 + 1

2
J1+4 − e−i(k1+k3)

)
a
†
1c

†
2a−3c−4 +

(
U + J1+3 + 1

2
J1+4 − ei(k1+k3)

)
a
†
1b

†
2a−3b−4

+ (U − e−i(k1+k3))b†1c
†
2b−3c−4 − 1

2
e−i(k2+k3)a

†
1c

†
2a−3b−4 − 1

2
e−i(k1+k4)a

†
1b

†
2a−3c−4

]
, (8)

where k is the one-dimensional momentum here, Jk =
2J cos k, we set 2d = 1, εa0 = 2H + 1 − J0, Ek = H + 1 −
(J0 − Jk)/2, Bk = −eik/2 cos k

2 , N is the number of unit cells
(that is, half the number of spins in the lattice), and we omit
some indices k in Eqs. (7) and (8).

After the unitary transformation

ck = 1√
2
eik/4(αk + βk), bk = 1√

2
e−ik/4(βk − αk), (9)

the bilinear part of the Hamiltonian (6) acquires the form

H2 =
∑

k

(εa0a
†
kak + εα(k)α†

kαk + εβ(k)β†
kβk), (10)

where

εα(k) = H + 1 − J + J cos k + cos
k

2
, (11)

εβ(k) = H + 1 − J + J cos k − cos
k

2
. (12)

Equations (11) and (12) represent two branches of the one-
magnon spectrum which result from the unit-cell doubling,
as shown in Fig. 2. The lower branch εβ(k) has minima at
k = (±Q,0,0), where

cos
Q

2
= 1

4J
, (13)

near which εβ(k) is quadratic. As demonstrated below, the
one-magnon branches are not renormalized at H � Hs within
our approach and Eqs. (11) and (12) reproduce the one-magnon
spectrum of the model (1) obtained before8,21 (remember that,
in our notation, the distance between neighboring spins is equal
to 1/2). In particular, one has from Eq. (12) for the field value
at which the one-magnon spectrum becomes unstable:

Hc = 2J − 1 + 1

8J
. (14)

In contrast to b and c particles (or α and β particles), a

particles are of the two-magnon nature [see Eqs. (2)]. It is one
of the main findings of the present paper that their spectrum,
derived below, coincides at H � Hs with the low-energy part

of the two-magnon bound-state spectrum obtained before by
using other approaches8,17,18 (see Fig. 2).

C. Diagram technique

We find it more convenient not to use the unitary trans-
formation (9) in the following and to introduce four Green’s
functions:

Ga(k) = −i〈aka
†
k〉, (15)

Gb(k) = −i〈bkb
†
k〉, (16)

Gc(k) = −i〈ckc
†
k〉, (17)

F (k) = −i〈bkc
†
k〉, (18)

F (k) = −i〈ckb
†
k〉, (19)

where k = (ω,k) and ak is the Fourier transform of ak(t).
Notice that a particles cannot transform to single b or c

particles due to the spin conservation law (a particles carry
spin 2 while b and c particles carry spin 1). That is why the
Dyson equation for Ga(k) has the form Ga(k) = Ga0(k)[1 +
	a(k)Ga(k)], where Ga0(k) = (ω − εa0 + iδ)−1 and εa0 is
defined in Eq. (6) and which gives

Ga(k) = 1

ω − εa0 − 	a(k) + iδ
. (20)

In contrast, b and c particles can interconvert, which leads to
two couples of Dyson equations for Gb(k), F (k) and Gc(k),
F (k). We obtain for one of them

Gb(k) = Gb0(k)[1 + 	b(k)Gb(k) + 
(k)F (k)],
(21)

F (k) = Gc0(k)[
(k)Gb(k) + 	c(k)F (k)],

where Gb0(k) = Gc0(k) = (ω − Ek + iδ)−1, and 	b,c, 
, and

 are self-energy parts. The solution of the Dyson equations
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has the form

Gb(k) = ω − Ek − 	c(k)

D(k)
, (22)

Gc(k) = ω − Ek − 	b(k)

D(k)
, (23)

F (k) = 
(k)

D(k)
, F (k) = 
(k)

D(k)
, (24)

D(k) = [ω − Ek − 	b(k) + iδ][ω − Ek − 	c(k) + iδ]

−
(k)
(k). (25)

It should be noted that all poles of these Green’s functions
lie below the real axis. This circumstance gives a useful rule
of the diagram analysis at H � Hs : if a diagram contains a
contour that can be walked around while moving by arrows
of the Green’s functions, integrals over frequencies in such
a diagram give zero (see, e.g., Ref. 44). Using this rule, one
concludes that there are no nonzero diagrams for 	b(k), 	c(k)
and 
(k), 
(k) at H � Hs which are determined solely by
bilinear part of the Hamiltonian (6):

	b(k) = 	c(k) = 0, (26)


(k) = 

∗
(k) = B∗

k = −e−ik/2 cos
k

2
. (27)

As a result we have from Eqs. (25)–(27) D(k) = [ω − εα(k) +
iδ][ω − εβ(k) + iδ], where εα,β(k) are given by Eqs. (11) and
(12). Another useful rule for the diagram analysis follows
from the spin conservation law. As the total spin carried by
all incoming particles must be equal to that of all outgoing
particles, one concludes immediately, for instance, that four-
particle vertices are zero with only one incoming or outgoing
a particle.

It is seen from Eq. (7) that the three-particle terms of
the Hamiltonian describe decay of a particles into two one-
magnon particles of b or c types. They give rise to the only
nonzero diagrams for 	a(k) at H � Hs , all of which are shown
in Fig. 3.

III. ISOLATED CHAIN

A. H �� Hs

To calculate 	a(k) one has to find vertices �1(q,k), �2(q,k),
and �3(q,k) for which we obtain equations shown in Fig. 3(b).
The solution of these equations can be tried in the form

�j (q,k) = uj (k) + sj (k) cos q, j = 1,2, (28)

�3(q,k) = u3(k) + s3(k) cos q + iv(k) sin q, (29)

where u1(k), u2(k), and u3(k), s1(k), s2(k), and s3(k), and v(k)
are real functions. After substitution of Eqs. (28) and (29) into
the equations shown in Fig. 3(b), we obtain a set of seven
linear algebraic equations for u1(k), u2(k), and u3(k), s1(k),
s2(k), and s3(k), and v(k). The corresponding exact solution
is quite cumbersome for arbitrary k. However, it simplifies

(a)

cG
aG

bG

F , ,

,
c bG G

F F( )a kΣ =
F

(b)

1( , )q kΓ =

2( , )q kΓ =

3( , )q kΓ =

FIG. 3. (Color online) (a) Diagrams for self-energy part 	a(k)
of a particles at H � Hs . It is implied that one should put Green’s
functions of b and c particles Gb(p), Gc(p), F (p), and F (p) defined
by Eqs. (16)–(19) instead of double dashed lines [there are 10 different
loop diagrams for 	a(k)]. Triangles stand for renormalized vertices
for which we obtain equations presented in panel (b). Bare vertices
are defined by Eqs. (7) and (8).

greatly at k = 0 and one has at H = Hs

�1(q,0) = �2(q,0) = − cos2 q

2
, (30)

�3(q,0) = 2J − 1 + 1

1 + J
+ (1 + 2J ) cos q + i sin q. (31)

These expressions are used below for the nematic phase
discussion. Substituting the general exact solution for the
vertices into expression for 	a(k) shown in Fig. 3(a) leads
to the following expression for the spectrum of a particles at
k � 1:

εa(k) = 2H + 2 − 4J − 1

1 + J
+ D‖k2, (32)

D‖ = 3J 2(2 + J ) − 1

16(1 + J )2
, (33)

which coincides (up to a factor of 1/4 in D‖ due to the
unit-cell doubling) with the spectrum of the two-magnon
bound states obtained before within other approaches.8,17

Then, the condition D‖ > 0 gives from Eq. (33) that the
minimum of the two-magnon bound-state spectrum is at k = 0
if J > 0.375, which is also in accordance with previous
numerical findings8,16 and analytical results.17 It is not difficult
within our approach to take into account also anisotropy in
Hamiltonian (1) of the form Sz

jS
z
j+1 and Sz

jS
z
j+2. We omit it in

the present consideration for simplicity. The reader is referred
to Ref. 17 for the corresponding expressions for two-magnon
bound-state spectra.

The condition εa(0) = 0 gives from Eq. (32) the saturation
field value for the isolated chain:

Hs = 2J − 1 + 1

2 + 2J
, (34)

which is larger (if J > 1/3) than the field value (14) at which
the one-magnon spectrum becomes gapless. We find also for
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the Green’s function of a particles near the pole

Ga(ω ≈ εa(k),k) = Z

ω − εa(k) + iδ
, (35)

Z = 1 + 2J

(1 + J )(2J 2 + 2J + 1)
. (36)

These expressions are used in the subsequent calculations.
It should be noted that the bare completely flat spectrum of

a particles εa0 is renormalized greatly by quantum fluctuations
[see Eq. (32)]. Because this renormalization comes from
processes of a-particle decay into two one-magnon particles,
one concludes that a particle corresponds to a state that is a
superposition of the initial state with two neighboring flipped
spins and the great number of those with two flipped spins
sitting on sites which can be quite far from each other. It is
the structure of the wave function that is used in the standard
method of the bound-state analysis.39

B. H < Hs

The instability of the a-particle spectrum (32) for H < Hs

signifies the transition to the nematic phase. It is not the aim
of the present paper to discuss in detail the quadrupolar phase
in the isolated chain. But in view of the quadratic dispersion
of εa(k) at H = Hs and gaps in spectra of α and β particles,
some results can be readily borrowed from the theory of 1D
Bose gases of real particles.45,46 In particular, one obtains
〈a†

j aj 〉 = 1
π

√
(Hs − H )/D‖ by using exact results by Lieb and

Liniger45,46 at T = 0 and H ≈ Hs . Diagram analysis shows
that all poles of the Green’s functions Gb(k) and Gc(k) lie
below the real axis at H < Hs and only self-energy parts
acquire some corrections (as is shown below, this is not the case
in quasi-1D models due to the presence of the “condensate” of
a particles). Then, 〈b†j bj 〉 = 〈c†j cj 〉 = 0 and one obtains from
Eqs. (3) at H ≈ Hs

1

2
− 〈

Sz
j

〉 = 〈a†
j aj 〉 = 1

π

√
Hs − H

D‖
, (37)

which is an extension of the previous isolated chain analysis.
As demonstrated in Fig. 4, Eq. (37) well describes available
numerical data10,11 within the range of its validity that
reads as 〈a†

j aj 〉 � 1. Because D‖ � Hs at J > 0.375, the
magnetization decays quite rapidly upon the field decreasing
at H ≈ Hs , which is also illustrated by Fig. 4.

Many results obtained before using other methods can be
confirmed (and extended somewhat) within our approach. In
particular, one obtains at H ≈ Hs from an expression for the
asymptotic of the correlator of densities in a 1D Bose gas:46

〈
Sz

j+n(t)Sz
j (0)

〉 ≈ 〈
Sz

j

〉2 − 1

π

(
1

(n + iut)2 + 1

(n − iut)2

)
+A1

cos (πρn)

n2 + u2t2
, (38)

where n → ∞, u = 4πρD‖, A1 is a constant, and ρ = 〈a†
j aj 〉

is given by Eq. (37). Equation (38) coincides in the limit
H → Hs with the corresponding expression derived in Refs. 9,
10, and 16 using the bosonization technique (J � 1) and the
phenomenological theory of multipolar phases. Our discussion
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0.36
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0.42

0.44

0.46

0.48

0.50

J = 0.5

z
jS

H/J

FIG. 4. Magnetization of isolated chain with J = 0.5. Circles
are numerical data taken from Ref. 10 and the line is drawn using
Eqs. (37), (33), and (34).

provides explicit expressions for the “sound velocity” u and
ρ in Eq. (38). Notice that spin-1 excitations do not contribute
to Eq. (38) due to the above-mentioned circumstance that all
poles of one-magnon Green’s functions lie below the real axis,
whereupon all integrals over energies in the corresponding
loop diagrams give zero at T = 0. Then, the asymptote of the
1D Bose gas “field correlator” gives for the nematic correlation
at H ≈ Hs and n → ∞:

〈S+
0 (t)S+

1 (t)S−
2n(0)S−

2n+1(0)〉 = 〈a0(t)a†
n(0)〉 ≈ A2√|2n + iut | ,

(39)

where A2 is a constant; that is, consistent at t = 0 with the
results of Refs. 10 and 13.

It is seen from Eqs. (38) and (39) that static longitu-
dinal and nematic correlators decay algebraically with the
distance at T = 0. According to the exact results of
the 1D Bose gas theory,46 this algebraic decay changes into
the following exponential decay at small T : 〈Sz

j+nS
z
j 〉 ≈ e−n/rc

and 〈S+
0 S+

1 S−
2nS

−
2n+1〉 ≈ e−n/2rc , where rc ≈ u/(2πT ). Spin-1

excitations give contributions decaying much faster at small T

due to gaps in their spectra.
To conclude our brief discussion of the isolated chain at

H < Hs , we confirm the long-standing expectation that bound
states of two magnons behave in many respects like hard-
core bosons. A more detailed consideration of the quadrupolar
phase in the isolated chain is complicated by the existence of
b and c particles.

IV. QUASI-ONE-DIMENSIONAL MAGNETS: H �� Hs

Let us take into account the interchain interaction. As
shown below and as found before,17,18,21,22 quite a small
nonfrustrating interaction between chains can destroy the
nematic phase and turn H = Hs into an ordinary quantum
critical point at which the condensation takes the place of
one-magnon excitations. That is why we consider in the
present paper the interchain interaction as a perturbation. To
demonstrate the main ideas we discuss the simplest interaction
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of the form [see Fig. 1(a)]

H′ = 1

2

∑
lm

J ′
1lmSlSm = 1

2

∑
lm

(J ′
1lmS1lS1m + J ′

1lmS2lS2m),

(40)

where the first sum is over the lattice sites and the second one
is over the doubled unit cells shown in Fig. 1(b). Substituting
Eqs. (3) into Eq. (40) one obtains

H′ = E ′
0 + H′

2 + H′
3 + H′

4, (41)

where E ′
0 is a constant and

H′
2 =

∑
k

[
−J ′

10a
†
kak + 1

2
(J ′

1k − J ′
10)(b†kbk + c

†
kck)

]
, (42)

H′
3 = 1

2
√

N

∑
k1+k2+k3=0

[(
J ′

1k1
+ J ′

1k2

)
b
†
1c

†
2a−3

+ (
J ′

1k2
+ J ′

1k3

)
a
†
1b−2c−3

]
, (43)

H′
4 = 1

N

∑
k1+k2+k3+k4=0

[
J ′

1k1+k3
a
†
1a

†
2a−3a−4

+ 1

2
J ′

1k1+k3
(b†1b

†
2b−3b−4 + c

†
1c

†
2c−3c−4)

+
(

J ′
1k1+k3

+ 1

2
J ′

1k1+k4

)
a
†
1c

†
2a−3c−4

+
(

J ′
1k1+k3

+ 1

2
J ′

1k1+k4

)
a
†
1b

†
2a−3b−4

]
, (44)

where all vectors k have two nonzero components y and z [see
Fig. 1(a)] and J ′

1k = ∑
lm J ′

1lmei(kRlm) = 2J ′
1(cos ky + cos kz).

Naturally, we will assume from now on that momenta k in
Eqs. (6)–(8) are 3D vectors with the only nonzero component
x. It is easy to show that H′

3 and H′
4 do not lead to

renormalization of the one-magnon spectrum at H � Hs .
Then, one obtains for the spectrum of β particles using
Eqs. (12) and (42):

εβ(k) = H + 1 − J + J cos kx − cos
kx

2
+ 1

2
(J ′

1k − J ′
10),

(45)

which has minima at k = (±Q,0,0) and k = (±Q,π,π ) if
J ′

1 < 0 and J ′
1 > 0, respectively, and Q is given by Eq. (13).

In contrast, H′
3 and H′

4 renormalize the spectrum of a

particles εa(k). Considering H′ as a perturbation it is easy
to demonstrate that the only diagrams contributing to εa(k)
in the second order in J ′

1 are those presented in Fig. 5.
Straightforward calculations show that their contribution to

( )a kδΣ

FIG. 5. (Color online) Diagrams for self-energy part of a particles
that give contributions of second order in the interchain interaction J ′

1

at H � Hs . Triangles stand for vertices which are calculated at J ′
1 = 0

and for which one has equations presented in Fig. 3(b). Double dashed
lines represent the Green’s functions Gb, Gc, F , and F which are cal-
culated by taking into account also Eq. (42). Black dots stand for bare
vertices (43).

εa(k) has the form

δεa(k) = −2D⊥(2 + cos ky + cos kz), (46)

D⊥ = (J ′
1)2 (1 + J )(1 + 3J + 3J 2)

2(1 + 2J )2
. (47)

Then, εa(k) has a minimum at k = (0,0,0) near which we
obtain, using Eqs. (32) and (46),

εa(k) = 2H + 2 − 4J − 1

1 + J

− J ′
10 − 8D⊥ + D‖k2

x + D⊥k2
⊥, (48)

where D‖ is given by Eq. (33) and k⊥ is the projection of k
on the yz plane. It is seen from Eq. (48) that εa(k) is quadratic
at k � 1. Notice also that the stiffness D⊥ of a particles in
the yz plane is second order in J ′

1. One finds from Eqs. (45)
and (48) for the field values at which the spectra of β and a

particles become gapless [cf. Eqs. (14) and (34)]:

Hc = 2J − 1 + 1

8J
+ 1

2
|J ′

10| + 1

2
J ′

10, (49)

Hs = 2J − 1 + 1

2 + 2J
+ 1

2
J ′

10 + 4D⊥. (50)

The condition of the nematic phase existence (Hs > Hc) leads
from Eqs. (49) and (50) to the following inequality in the first
order in J ′

1:

|J ′
10| <

3J − 1

4J (J + 1)
. (51)

One concludes from Eq. (51) that |J ′
1| should be much

smaller than unity in order that the nematic phase can arise.
Equations (45), (49), and (50) are in accordance with previous
results obtained within another approach.17,18 The reader is
referred to Ref. 18 for a more detailed discussion of the
influence of the interchain interaction on the considered
system at H � Hs .

V. QUASI-ONE-DIMENSIONAL MAGNETS: H < Hs

It is convenient to discuss the quantum phase transition at
H = Hs in terms of Bose condensation of a particles that is
similar to condensation of magnons in ordinary magnets in a
strong magnetic field.47

A. Condensation of a particles

According to the general scheme,44,47 one has to represent
a0 as follows at H < Hs :

a0 �→ a0 + eiφ
√

Nρ, (52)

where φ is an arbitrary phase and ρ is the “condensate” density.
New terms appear in the Hamiltonian after this transformation.
In particular, the largest terms in the ground-state energy have
the form δE0 = −(Hs − H )ρ + �a(0)ρ2, where �a(k) is the
four-particle vertex of a particles at H = Hs . An equation
for �a(k) can be represented in the form shown in Fig. 6(a).
Minimization of δE0 gives

ρ = Hs − H

2�a(0)
. (53)

Although the above formulas are standard,44 the situation
is more complicated here. As shown in Fig. 6(a), one has
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( )a kΓ =
(a)

( , )k qγ =

(b)

( )T a kδ Σ =

FIG. 6. (Color online) (a) Equation for four-particle vertex �a(k)
of a particles at H ≈ Hs . A sum of an infinite number of diagrams
which remain finite at k,q → 0 and J ′

1 → 0 plays the role of the
“bare” vertex γ (k,q). Some diagrams for γ (k,q) are also presented.
(b) Diagram giving the leading temperature correction to the normal
self-energy part of a particles. Same notation as in Fig. 3.

to consider an infinite set of diagrams to find �a(k) whose
sum γ (k,q) plays the role of a “bare” vertex. These diagrams
remain finite at k, q → 0, J ′

1 → 0 because εα,β(k) have gaps
at H = Hs and J ′

1 = 0. That is why one can set J ′
1 = 0 in

γ (k,q). In contrast, the integral over q diverges at J ′
1 → 0

in the second term on the right-hand side of the equation for
�a(k) [see Fig. 6(a)]. Due to the smallness of J ′

1, small qx are
important in the integral over q. As a result, one obtains using
Eq. (35) the following equation to leading order in J ′

1: �a(0) =
γ (0,0) − γ (0,0)T �a(0), which gives

�a(0) = γ (0,0)

1 + γ (0,0)T ≈ 1

T , (54)

T = Z2

(2π )3

∫
dk

εa(k)
≈ 0.32

Z2√
D‖D⊥

� 1, (55)

where D‖, D⊥, and Z are given by Eqs. (33), (47), and (36),
respectively, Eq. (46) has been used to take the integral in
Eq. (55), and we omit the unity in the denominator of Eq. (54)
due to the large value of T . We remind the reader also that the
range of validity of Eqs. (53)–(55) is defined by the inequality
ρ � 1.

According to the general theory of dilute Bose-gas
condensation,44,48–51 the spectrum of a particles acquires a
linear part at small momenta k and has the form

ε̃a(k) =
√

εa(k)(εa(k) + �), (56)

where � ∼ ρ and εa(k) = D‖k2
x + D⊥k2

⊥.
Thermal fluctuations can be taken into account quite

standardly.44,48,49 The leading contribution from them to δE0

comes from the Hartree-Fock diagram shown in Fig. 6(b). As

a result one obtains the following equation for the boundary
in the H -T plane between the fully polarized and the nematic
phases at T � D⊥:

Hs(0) − Hs(t) = T 3/2 Z�a(0)

D⊥
√

D‖

ζ (3/2)

2π3/2
, (57)

where �a(0) is given by Eq. (54), Hs(0) is given by Eq. (50),
and ζ (3/2) ≈ 2.61 is the Riemann ζ function. Notice that at
small nonzero temperature one has to put Hs(T ) given by
Eq. (57) instead of Hs in Eq. (53).

B. One-magnon spectrum renormalization

Condensation of a particles (52) leads to terms in the
Hamiltonian which renormalize the one-magnon spectrum. In
particular, those coming from the three-particle vertices and
contributing to the bilinear part of the Hamiltonian (6) have
the form at H ≈ Hs

δH(3)
2 = √

ρ
∑

q

[e−iφ�1(q,0)(cqc−q + bqb−q)

+ eiφ�1(q,0)(c†qc
†
−q + b†qb

†
−q)

+ e−iφ�3(q,0)bqc−q + eiφ�∗
3 (q,0)b†qc

†
−q],

(58)

where �1(q,0) and �3(q,0) are given by Eqs. (30) and (31),
respectively, and we neglect the interchain interaction in the
sum. There are also terms of the form b

†
qbq, c

†
qcq, c

†
qbq, and

b
†
qcq coming to H2 from four-particle vertices a†b†ab, a†b†ac,

and a†c†ac. The analysis of these vertices which is similar to
that carried out above for �a(k), shows that contributions to
H2 from them are of the order of ρ

√
D⊥. Straightforward

calculations demonstrate that contribution from these terms to
the spectrum renormalization is negligible. Thus, we use only
Eq. (58) below in order to make formulas more compact.

To find the one-magnon spectrum renormalization we take
into account terms (58) in the Hamiltonian and introduce the
Green’s functions

P (k) = −i〈b†−kb
†
k〉, Q(k) = −i〈c†−kc

†
k〉,

(59)
R(k) = −i〈c†−kb

†
k〉,

in addition to those given by Eqs. (16)–(19). Then, one leads
to a set of four linear Dyson equations for Gb, P , R, and F that
is derived and solved in Appendix A. Analysis of the Green’s
functions denominator shows that the spectrum of β particles
can be represented in the vicinity of its minimum as

ε̃β(k) =
√

ε2
β(k) − ρA, (60)

A = (3J − 1){J [2 + J (19 + 8J {J [16J (3 + 4J ) − 11] − 9})] − 1}
128J 4(1 + J )2(1 + 5J )

, (61)

where εβ(k) is given by Eq. (45), A > 0 at J > 1/3, and
A ≈ 12/5 at J � 1.

As seen from Eq. (60), the spectrum of β particles becomes
unstable at a certain field value H̃c < Hs that would signify a
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transition to a phase with a long-range magnetic order. While
the inequality ρ � 1 can hold at H = H̃c, the present discus-
sion is not applicable for this quantum phase transition analysis
because disappearance of the gap in the one-magnon spectrum
leads to a finite damping of a particles at all momenta. Besides,
diagrams contributing to γ (k,q) contain infrared divergences
at k, q → 0 if the one-magnon spectrum is gapless. As a result
the above analysis should be reconsidered at H ≈ H̃c, which
is out of the scope of the present paper.

It should be noted also that one-magnon excitations acquire
finite damping at H < Hs stemming from loop diagrams. The
damping, however, is small at H ≈ Hs , being of the order of
ρ (that is much smaller than the gap in the spectra of α and β

particles).

C. Static spin correlators and nematic order parameter

One obtains from Eqs. (3) and (52) at H < Hs

〈S⊥
1j 〉 = 〈S⊥

2j 〉 = 0, (62)

〈S−
1j S

−
2j 〉 ≡ 〈a†

j 〉 = √
ρe−iφ, (63)

where ⊥ denotes the projection on the plane perpendicular
to the field direction. Then, the condensation of a particles
signifies the formation of the quadrupolar phase without the
conventional long-range magnetic order in which 〈S−

1j S
−
2j 〉 �= 0

in each (double) unit cell. This condensate should appear also
“between” the neighboring unit cells as the doubling of the
unit cell we made is only a trick. To show this we calculate the
value 〈S−

2j S
−
1(j+1)〉 [see Fig. 1(b)], where j enumerates sites in

one of the chains, for which one has from Eqs. (3) to leading
order in ρ

〈S−
2j S

−
1(j+1)〉 = 1

N

∑
q

e−iqx 〈b†qc†−q〉. (64)

One obtains after simple integration using Eqs. (30), (31),
(A3), and (64) to leading order in the interchain interaction
[cf. Eq. (63)]

〈S−
2j S

−
1(j+1)〉 = −√

ρe−iφ. (65)

As seen from Eqs. (63) and (65), the nematic order parameter
〈S−

j S−
j+1〉 = (−1)j

√
ρe−iφ , where j enumerates now spins in

a chain, has an “antiferromagnetic” order: its absolute value
is the same for all j whereas its phase differs by π for two
neighboring sites (j and j + 1). Such nematic ordering along
chains was predicted in Refs. 8 and 21. In contrast, the nematic
order is “ferromagnetic” in directions transverse to chains
because the minimum of εa(k) is at k = (0,0,0) [see Eqs. (46)
and (48)]. The nematic ordering does not depend on the sign
of J ′

1. Notice also that this finding does not depend on the way
of grouping of spins into couples shown in Fig. 1(b) due to
arbitrariness of φ.

Let us consider the static spin correlator 〈S−
j S−

j+n〉. To find
it, one has to calculate 〈S−

2j S
−
1(j+n)〉, 〈S−

1j S
−
2(j+n)〉, 〈S−

2j S
−
2(j+n)〉,

and 〈S−
1j S

−
1(j+n)〉, which can be easily done to first order in

√
ρ

and to leading order in J ′
1 using Eqs. (3), (30), (31), (A2), and

(A3). The result can be represented in the form

〈S−
j S−

j+n〉 = √
ρe−iφ(−1)j sin

(
πn

2

)(
J

1 + J

) n−1
2

, (66)
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FIG. 7. Static spin correlator at H < Hs given by Eq. (69) with
q = (q,0,0). The inset shows the longitudinal static spin correlator
divided by ρ and given by Eq. (70). Here d is the distance between
two neighboring spins in a chain.

where n > 0 and which reproduces, in particular, Eqs. (63)
and (65) at n = 1. In much the same way, one obtains to first
order in ρ and to leading order in J ′

1

〈S+
j S−

j+n〉 = ρ cos

(
πn

2

) (
J

1 + J

) n
2 −1 (

2J (1 + J )

1 + 2J
+ n

2

)
,

(67)〈(
Sz

j − 1

2

) (
Sz

j+n − 1

2

)〉
= ρ sin2

(
πn

2

) (
J

1 + J

)n−1

.

(68)

It is seen from Eqs. (66)–(68) that all the static spin correlators
decay exponentially as n → ∞. This should be contrasted
with the case of the isolated chain in which the algebraic
decay of static correlator (68) is observed.10,16 As a result of
the exponential decay, static spin correlators have broad peaks
in quasi-1D magnets instead of Bragg peaks, whose height
rises as J increases. In particular, one obtains from Eqs. (67)
and (68) (up to a constant)

〈S+
q S−

−q〉 ∼ ρ
sin2 q

4J 2

(
1

4J (1 + J )
+ cos2 q

)−2

, (69)

〈
Sz

qS
z
−q

〉 ∼ ρ
1 + 2J

2J 2
cos q

[(
1

2J (1 + J )
+ 1

)2

− cos2 q

]−1

,

(70)

where q = (q,0,0). Plots of these expressions are shown in
Fig. 7. It is seen that the breakdown of the translational
symmetry of the ground state at H < Hs becomes apparent
in the transverse spin structure factor, which has a periodicity
in the reciprocal space equal to π/d rather than 2π/d.

A small interchain interaction gives rise to a weak depen-
dence of correlators (69) and (70) on components of momenta
transverse to chains.51
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D. Magnetization

Using Eqs. (3) and the solution of Eqs. (A1) for Gb (and the
similar expression for Gc) one finds, after simple integration
for the magnetization in the leading order in ρ and J ′

1,

〈
Sz

j

〉 = 1

2
− 2

(1 + J )2

1 + 2J
ρ. (71)

Notice that, in contrast to the 1D case discussed above, there
is a nonzero contribution to the second term in Eq. (71) from
〈c†j cj 〉 = 〈b†j bj 〉.

E. Spin Green’s functions

Spin Green’s functions (or generalized susceptibilities)
defined as

χαβ(ω,q) = 〈
Sα

−q,S
β
q

〉
ω

= i

∫ ∞

0
dteiωt

〈[
Sα

−q(t),Sβ
q (0)

]〉
, (72)

where α, β = x, y, z, can be found straightforwardly using
Eqs. (3) and (22)–(27). In particular, components of χαβ

transverse to the field direction are expressed via Green’s
functions Gb, Gc, F , and F . As a consequence, they have
sharp peaks at ω = ±ε̃α,β (q) corresponding to one-magnon
excitations. It is seen from Eqs. (3) that the longitudinal spin
Green’s function has a contribution containing Ga(q) (apart
from a smooth background originating from terms c†c, b†b
and a†a in Sz

1 and Sz
2):

χzz(ω,q) ∼ −ρ[Ga(ω,q) + Ga(−ω,q)]

≈ − 2Zρε̃a(q)

(ω + iδ)2 − ε̃2
a (q)

, (73)

which shows sharp peaks at ω = ±ε̃a(q) and small q. Thus,
the soft mode (56) can be observed in the nematic phase
experimentally in the longitudinal channel.

F. Phase transitions at H < Hs(T ): Symmetry consideration

Let us discuss the breakdown of symmetry in the tran-
sition from the fully polarized phase to the nematic one at
H = Hs(T ). The symmetry of the Hamiltonian (1) is O(2).
Symmetry operations that do not change the nematic order
parameter 〈S−

j S−
j+1〉 = (−1)j

√
ρe−iφ include a rotation by

π as well as rotations by −φ and −φ + π accompanied by
a reflection. These operations form a discrete group which
is equivalent to Z2 ⊗ Z2. Then, the phase transition in the
quadrupolar phase corresponds to the continuous symmetry
O(2)/(Z2 ⊗ Z2) = SO(2)/Z2 breakdown (see, e.g., Refs. 52
and 53) that produces, in particular, the massless excitations
(the soft mode). On the other hand, one can expect in the
considered quasi-1D system that the broken symmetry at
small field is Z2 ⊗ SO(2) (as in a noncollinear Heisenberg
XY magnet). Consequently, the discrete subgroup Z2 ⊗ Z2

should be broken upon decreasing field at H < Hs(T ). This
breakdown of symmetry can happen in one transition (which
can be either of first or second order) or in two subsequent Ising
(second order) transitions corresponding to two Z2 subgroups
breaking.53 The latter scenario can be realized in LiCuVO4,
where two phase transitions (apart from the low-field spin-flop
transition) are observed at H < Hs(T ).29–33

VI. SUMMARY AND CONCLUSION

To summarize, we suggest an approach for quantitative
discussion of quantum phase transitions to the quadrupolar
phase in frustrated spin systems in a strong magnetic field H ≈
Hs . Quasi-1D and 1D spin- 1

2 models described by Hamiltonian
(1) are discussed in detail. The approach we propose is based
on the unit cell doubling along the chain direction presented
in Fig. 1(b) and on representation (3) of spins in each unit
cell via three Bose operators a, b, and c (2). Bosons b and c

describe spin-1 excitations whose spectra represent at H � Hs

two parts of the one-magnon spectrum [see Fig. 2, Eqs. (6) and
(9)–(12)]. Spectra (11) and (46)–(48) of the boson a carrying
spin 2 coincide at H � Hs with those of two-magnon bound
states found before within other approaches. It is the main
advantage of the suggested approach that there is the bosonic
mode in the theory softening at H = Hs . This circumstance
makes the consideration of the transition to the quadrupolar
phase substantially standard. In the purely 1D case, we rederive
spin correlators (38) and (39) obtained before either in the
limiting case of J � 1 or using the phenomenological theory
and extend previous discussions by Eq. (37) for magnetization
that well describes existing numerical data at H ≈ Hs (see
Fig. 4). In the quasi-1D model with the simplest interchain
interaction (40), we calculate at H < Hs spectra of the
one-magnon band (60) and the soft mode (56), nematic order
parameter (63) and (65), and static spin correlators (66)–(70)
and magnetization (71) that are expressed via the condensate
density ρ given by Eqs. (53)–(55). At T �= 0, ρ is also
expressed by Eqs. (53)–(55) in which one should replace Hs

by Hs(T ) given by Eq. (57). All static two-spin correlators
decay exponentially with the correlation length proportional
to 1/ln(1 + 1/J ). This decay results in broad peaks in
static structure factors (see Fig. 7). The periodicity in the
reciprocal space of the transverse static structure factor is
equal to π/d rather than 2π/d. Transverse components of
the dynamical spin susceptibilities (72) are expressed via one-
magnon Green’s functions and contain sharp peaks at ω equal
to magnon energies. The longitudinal component χzz(ω,q)
apart from a smooth background contains a contribution (73)
from Green’s functions of a particles which have sharp peaks
at ω = ±ε̃a(q).

We apply the proposed approach to the analysis of the
model describing the quasi-1D material LiCuVO4 in which a
transition at the saturation field to (presumably) a quadrupolar
phase has been observed experimentally. Details of the
corresponding calculations are presented in Appendix B.
Predictions of our theory are in reasonable agreement with the
recent magnetization measurements in LiCuVO4. Our finding
that Hs(0) − Hs(T ) ∝ T 3/2, Eqs. (56), (60), (66)–(71), and
(73) can be checked in further experiments on this material
which should confirm also that the phase observed just below
Hs(T ) is really the quadrupolar phase.
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APPENDIX A: ONE-MAGNON GREEN’S FUNCTIONS IN NEMATIC PHASE

Taking into account terms (58) in the Hamiltonian which appear at H < Hs leads to a set of four linear Dyson
equations for Gb(k), P (k), R(k), and F (k) that read [cf. Eqs. (21)]

Gb(k) = Gb0(k)[1 + eiφ2
√

ρ�1(k,0)P (k) + eiφ√
ρ�∗

3 (k,0)R(k) + B∗
kF (k)],

P (k) = Gb0(k)[e−iφ2
√

ρ�1(k,0)Gb(k) + e−iφ√
ρ�∗

3 (k,0)F (k) + B∗
kR(k)],

(A1)
R(k) = Gc0(k)[e−iφ√

ρ�3(k,0)Gb(k) + BkP (k) + e−iφ2
√

ρ�1(k,0)F (k)],

F (k) = Gc0(k)[BkGb(k) + eiφ2
√

ρ�1(k,0)R(k) + eiφ√
ρ�3(k,0)P (k)],

where P (k) and R(k) are defined in Eqs. (59), Gb0(k) = Gc0(k) = Gb0(−k) = Gc0(−k) = (ω − E′
k + iδ)−1, E′

k = Ek + (J ′
1k −

J ′
10)/2, and Ek and Bk are defined in Eq. (6). Solving Eqs. (A1) one finds, in particular, to leading order in ρ

P (k) = √
ρe−iφ

2�1(k,0)
(
E′2

k + |Bk|2 − ω2
) − �∗

3 (k,0)Bk(E′
k + ω) − B∗

k�3(k,0)(E′
k − ω)

[ω − εα(k) + iδ][ω + εα(k) − iδ][ω − εβ(k) + iδ][ω + εβ(k) − iδ]
, (A2)

R(k) = √
ρe−iφ

�∗
3 (k,0)B2

k − (
ω2 − E′2

k

)
�3(k,0) − 4E′

kBk�1(k,0)

[ω − εα(k) + iδ][ω + εα(k) − iδ][ω − εβ(k) + iδ][ω + εβ(k) − iδ]
, (A3)

where we set ρ = 0 in the denominators. Expressions for Gb

and F are cumbersome and we do not present them here.
Another set of Dyson equations for Gc(k), Q(k), R(k), and

F (k) can be considered in much the same way.

APPENDIX B: APPLICATION TO LiCuVO4

We apply in this Appendix the approach proposed in the
main text to the particular quasi-1D compound LiCuVO4.
While exchange coupling constants inside a chain J1 =
−18.5 K and J = 44 K have been extracted from experimental
data in LiCuVO4 quite precisely, a small interchain interaction
has been determined much less accurately.30,54 Then we
take into account, to first approximation only, the interchain
coupling J ′

2 = −4.3 K that is shown in Fig. 1(a).30,54 Such a
model for LiCuVO4 is considered in Ref. 21 using another

approach that involves numerical calculations at H � Hs and
self-consistent calculations at H < Hs . Thus, it is reasonable
to compare our analytical results with those of Ref. 21.
Notice that the interchain interaction J ′

2 makes the system
two-dimensional (in contrast to J ′

1 considered in the main
text).

Let us start with the case of H � Hs and represent the
interchain interaction in the form

H′ = 1

2

∑
lm

J ′
2lmSlSm =

∑
lm

J ′
2lmS1lS2m, (B1)

where the first sum is over the lattice sites and the second one
is over the double unit cells shown in Fig. 1(b). Substituting
Eqs. (3) into Eq. (B1) one obtains Eq. (41), where now

H′
2 =

∑
k

[
−J ′

20a
†
kak − J ′

20
1

2
(b†kbk + c

†
kck) + 1

2
J ′

2kc
†
kbk + 1

2
J ′

2−kb
†
kck

]
, (B2)

H′
3 = 1

2
√

N

∑
k1+k2+k3=0

(
J ′

2k1
c
†
1c

†
2a−3 + J ′

2−k1
b
†
1b

†
2a−3 + J ′

2k3
a
†
1c−2c−3 + J ′

2−k3
a
†
1b−2b−3

)
, (B3)

H′
4 = 1

N

∑
k1+k2+k3+k4=0

(
J ′

2k1+k3
a
†
1a

†
2a−3a−4 + J ′

2k2+k4
a
†
1c

†
2a−3c−4 + J ′

2k1+k3
a
†
1b

†
2a−3b−4

+ J ′
2k2+k3

b
†
1c

†
2b−3c−4 + 1

2
J ′

2k1+k4
a
†
1c

†
2a−3b−4 + 1

2
J ′

2k2+k3
a
†
1b

†
2a−3c−4

)
, (B4)

and J ′
2k = 2J ′

2 cos kz(1 + e−ikx ). We find from Eqs. (6) and (B2) for the spectrum of β particles:

εβ(k) = H + 1 − J + J cos kx − cos
kx

2
|1 − 2J ′

2 cos kze
−ikx | − 2J ′

2. (B5)

One has from Eq. (B5) to second order in J ′
2 for the field value at which εβ(k) becomes gapless:

Hc = 2J − 1 + 1

8J
+ 2J ′

2 + J ′
2

(1 − 8J 2)

16J 3
+ (J ′

2)2 (1 − 4J 2 + 8J 4)

16J 5
. (B6)
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The spectrum εa(k) of a particles can be calculated to second order in J ′
2 as done for J ′

1 in the main text. Considering diagrams
shown in Fig. 5 one obtains that εa(k) has a minimum at k = (0,π ) near which we have

εa(k) = 2H + 2 − 4J − 1

1 + J
− 4J ′

2 − (J ′
2)2 {1 + 4J [1 + J (1 + J )(3 + J )]}

2(1 + J )3(1 + 2J )2
+ D‖k2

x + D⊥k2
z , (B7)

D⊥ = (J ′
2)2

(
J (1 + J )(2J {3 + J [23 + J (38 + J {5 + 4J [(J − 1)J (5 + J ) − 9]})]} − 5) − 1

16J 5(1 + J )4(1 + 2J )2

+ (1 + 2J ){1 + 4J [J (ξ − 1) − 1] − ξ}
64

√
2J 5(1 + J )4

√√
ξ − 1 + 2J 2

− 4
√

2ξ [1 − 2J (1 + J )(1 + 2J ) + ξ ]√
ξ (

√
ξ − 1 + 2J 2)[40J 2 + J 3(20 − 8ξ ) − 2(3 + ξ ) + J (3 + ξ )(4 + ξ )]

)
, (B8)

where ξ = 4J 2[5 + 4J (2 + J )] − 3, D⊥ > 0 at J > 1.16,
and D⊥ ≈ 1/8J at J � 1. One finds from Eq. (B7)

Hs = 2J − 1 + 1

2 + 2J
+ 2J ′

2 + (J ′
2)2

× {1 + 4J [1 + J (1 + J )(3 + J )]}
4(1 + J )3(1 + 2J )2

, (B9)

which gives Hs = 47.08 T in LiCuVO4 in accordance with the
value of 47.1 T obtained in Ref. 21. We derive from Eqs. (B6)
and (B9) for the binding energy of two magnons given by
2(Hs − Hc) the value of 0.031J , which is in good agreement
with that of 0.030J obtained in Ref. 21. Then, we find using
Eqs. (B6) and (B9) that the nematic phase can arise (i.e.,
Hs > Hc) if |J ′

2| < 7.15 K, which is in accordance with the
inequality |J ′

2| < 6.97 K obtained in Ref. 21. It should be
noted that small discrepancies in these values are attributed
to the fact that the interchain interaction is taken into account
exactly at H � Hs in general equations which are solved in
Ref. 21 numerically whereas our analytical results are obtained
to second order in J ′

2.
It becomes very important at H < Hs that the model we

discuss is two dimensional. General result for the condensate
density in 2D Bose gas44 reads in our notation at H ≈ Hs as

ρ = Z2

8π
√

D‖D⊥
(Hs − H ) ln

(√
D‖D⊥

Hs − H

)
, (B10)

where Z is given by Eq. (36). Equation (B10) is valid at

Hs − H � √
D‖D⊥. (B11)

One obtains
√

D‖D⊥ ≈ 0.37 T in LiCuVO4 using Eqs. (33)
and (B8). We find from Eqs. (71) and (B10) for the static

susceptibility

χ (H ) = d

dH

(
1

N

∑
j

〈
Sz

j

〉) = (1 + J )2

1 + 2J

Z2

4π
√

D‖D⊥

×
[

1 + ln

(√
D‖D⊥

Hs − H

)]
. (B12)

The static susceptibility has been measured recently30 in
LiCuVO4. One of the main results was an observation of a
cusp in χ (H ) upon entering into the nematic phase with the
field increasing. Then, it was found that χ (H ) ≈ Msat/2Hs

in the nematic phase, where Msat is the saturation value of
the magnetization per ion. This finding turns out to be in
agreement with the prediction of Ref. 21 according to which
χ (H ) ≈ 0.54Msat/Hs .

Although Eq. (B12) is valid quite close to Hs , when
inequality (B11) holds, one can estimate χ (H ) at Hs − H ≈√

D‖D⊥ using Eq. (B12). We obtain from this equation by
discarding the logarithm χ (H ) ≈ 0.40Msat/Hs , where Msat =
1/2 is implied. This result agrees well with the experiment
in view of the fact that Eqs. (B10) and (B12) are valid at
Hs − H ≈ √

D‖D⊥ up to a constant of order unity.
It should be noted that a small interaction between chains

making the system three dimensional would screen the
logarithm in Eqs. (B10) and (B12) and stabilize the long-range
nematic order at finite T . Our finding that Hs(0) − Hs(T ) ∝
T 3/2 as well as Eqs. (56), (60), (66)–(71), and (73) can be
checked in further experiments on LiCuVO4 which should
confirm also that the phase observed just below Hs is really
the quadrupolar phase.

*syromyat@thd.pnpi.spb.ru
1A. F. Andreev and I. A. Grishchuk, Sov. Phys. JETP 60, 267 (1984).
2L. P. Gorkov and A. V. Sokol, JETP Lett. 52, 504 (1990); P. Chandra
and P. Coleman, Phys. Rev. Lett. 66, 100 (1991); A. V. Chubukov,
Phys. Rev. B 44, 5362 (1991).
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