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We use high-pressure magnetic x-ray diffraction and numerical simulation to determine the low-temperature
magnetic phase diagram of stoichiometric CeFe,. Near 1.5 GPa we find a transition from ferromagnetism to
antiferromagnetism, accompanied by a rhombohedral distortion of the cubic Laves crystal lattice. By comparing
pressure and chemical substitution we find that the phase transition is controlled by a shift of magnetic frustration
from the Ce-Ce to the Fe-Fe sublattice. Notably the dominant Ce-Fe magnetic interaction, which sets the
temperature scale for the onset of long-range order, remains satisfied throughout the phase diagram but does not
determine the magnetic ground state. Our results illustrate the complexity of a system with multiple competing
magnetic energy scales and lead to a general model for magnetism in cubic Laves phase intermetallic compounds.
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I. INTRODUCTION

Many materials exhibit multiple magnetic interactions with
a broad range of interaction energies. In such cases the crystal
lattice typically prohibits the formation of an ordered state in
which the magnetic interaction energies of all possible pairs
of ions are simultaneously minimized, and the system often
has to “choose” among competing configurations, with each
carrying a different amount of frustration. If the dominant
interaction is geometrically frustrated, this competition may
even result in a disordered magnetic ground state with no
long-range order. Prominent examples include spin glasses
made of randomly separated magnetic ions,' and spin ices or
liquids on geometrically constrained two-dimensional kagome
and three-dimensional pyrochlore lattices.>™

Even if the major interaction is satisfied and long-range
order is established, frustration can still play a role in deter-
mining the magnetic ground state, due to competition between
weaker magnetic interactions. A well-known example is that
of Heisenberg spins on a square lattice with antiferromagnetic
nearest-neighbor and next-nearest-neighbor interactions. In
this case, the magnetic order depends on the relative strength
of the two magnetic interactions, which can be tuned through
a sequence of quantum phase transitions.’ Likewise, in the
pyrochlore oxides Gd;Sn,O; and Gd,Ti,O; the balance
between second and third nearest-neighbor interactions is
responsible for the emergence of multiple antiferromag-
netic phases with varying magnetic wave vectors.® From a
conceptual standpoint, geometrical frustration of secondary
interactions (i.e., magnetic interactions much weaker than the
primary interaction) is interesting because ostensibly minor
phenomena can play an outsized role in determining the
magnetic ground state. Identifying frustration and competition
among weaker degrees of freedom may then provide a
vantage point for studying the complex magnetic behavior
of interesting and potentially useful magnetic materials with
nontrivial magnetic phase diagrams.
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Here we focus on the rare-earth intermetallic ferromagnet
CeFe,,”!! which is a metallic compound with cubic Laves
crystal symmetry, and is related to a broader class of pyrochlore
lattice systems.> The Fe ions are located on a pyrochlore
sublattice of corner-sharing tetrahedra, which can be viewed
as a collection of alternating, two-dimensional kagome and
triangular lattice planes stacked along the (111) direction.
The triangular Fe lattices are woven through by Ce ions in a
corrugated manner. In Fig. 1 we show a perspective stretched
along the (111) direction for clarity.

Many metallic cubic Laves systems exhibit either
ferromagnetic or antiferromagnetic long-range order.””'* Fer-
romagnetic CeFe, is close to a magnetic instability and
can be switched to an antiferromagnet with either chem-
ical doping or applied pressure. In this work we quan-
titatively demonstrate how the competition between two
secondary magnetic interactions determines the magnetic
phase diagram of CeFe,. The primary magnetic interac-
tion, which sets the temperature scale for the onset of
long-range order, remains satisfied throughout the phase
diagram. However, this is not sufficient to determine the
magnetic ground state. The ferromagnetic-antiferromagnetic
transition is instead driven by the transfer of frustration
between two sets of secondary magnetic interactions.

II. GENERIC PHASE DIAGRAM FOR CeFe,

There exists extensive literature on chemically doped
CeFe,, with numerous choices of dopants replacing either Ce,
or Fe, or both.!>"?? The ferromagnetic ground state of CeFe,
undergoes a phase transition to an antiferromagnet with small
amounts of chemical doping on the Fe site by one of many
elements including Al, Co, Ru and Ir.'>?? Previous work
on stoichiometric CeFe, found evidence for a new phase at
high pressure which, by comparison with the doped systems,
was suggested to be the antiferromagnetic phase.”> > The
proximity of stoichiometric CeFe, to an antiferromagnetic
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FIG. 1. (Color online) (a) Perspective of the cubic Laves lattice
of CeFe,, emphasizing the layered structure and elongated along the
(111) axis for clarity. The structure consists of stacked sheets of 3e-Fe
sites in a kagome lattice, alternating with corrugated sheets of Ce sites
and 1b-Fe sites in a triangular lattice. Not all atoms are shown for the
sake of clarity. Solid lines indicate the nearest-neighbor pairing and
dashed lines indicate next-nearest-neighbor pairing. (b)—(d) Clusters
of twelve nearest neighbors are shown surrounding each type of
atomic site.

instability is also supported by the observation of antiferro-
magnetic fluctuations within the ferromagnetic phase.’!%2*

It is useful to compare the phase diagram of CeFe,
under pressure to the results of doping with Al, Co, Ru,
and Ir. We choose specifically these dopants because they
preserve the cubic Laves structure when fully replacing
Fe in CeFe,.?® Phase diagrams were collected from the
literature for CeFe, under pressure,’>?*?> Ce(Fe,_,Co,), at
both ambient (up to 16%)'7?22> and high pressure (for 5, 7, and
10%),7>> Ce(Fe|_,Al, ), (up to 15%),'® Ce(Fe,_,Ruy), (up to
15%),'® and Ce(Fe;_,Ir, ), (up to 8%).20 The lattice constants
are interpolated from published data for Ce(Fe;_,Co,),,>!
Ce(Fe;_;Al,),," and Ce(Fe;_,Ru,),.'"® No lattice constant
data for Ce(Fe;_,Ir,), is available so we used Vegard’s law
to interpolate between CeFe, and Celr,.?’ Lattice constants
of CeFe, under pressure were taken from our own results.
We also assume that the low-temperature compressibility of
Ce(Fe;_,Co,), is the same as our measured value for CeFe,.

The compiled phase diagrams are plotted in Fig. 2(a). We
note that although the antiferromagnetic state is consistently
reached with chemical doping or applied pressure, the lattice
constant does not vary uniformly with these tuning parameters.
Applying pressure and doping with Co compresses the lattice,
while doping with Al, Ru, or Ir expands the lattice. The
apparent insensitivity of the ferromagnetic-antiferromagnetic
phase transition to the lattice spacing shows that the doping
phase diagram is not controlled by “chemical pressure,”
whereby the effect of chemical substitution is merely to expand
or contact the lattice. Rather, we show in Fig. 2(b) that the
pressure and doping phase diagrams can be collapsed into
a single generic phase diagram using a tuning parameter 7,
which is a linear combination of pressure P (in GPa) and
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FIG. 2. (Color online) (a) Compilation of published data on the
magnetic phase behavior of stoichiometric and chemically doped
CeFe,. Magnetic transition temperatures are plotted as a function of
lattice constant a. The paramagnetic (PM), ferromagnetic (FM), and
antiferromagnetic (AF) phases are indicated. The AF phase can be
reached with both decreasing and increasing lattice constant. (b) A
generic phase diagram for CeFe, is created by collapsing the phase
diagrams shown in (a) using a tuning parameter 1, which is a linear
combination of pressure P (in GPa) and doping x (in %) according to
n= P + Ax. A is a positive, dopant-specific scaling factor with A =
0.20, 0.65, 0.55, and 0.55 GPa/% for Co, Al, Ru, and Ir, respectively.

doping x (in %): n = P + Ax. Here A is a numerical factor
that is specific to the individual dopant and is always positive.
Importantly, the effective parameter 5 scales the horizontal
axis but not the temperature axis. The collapse of the phase
diagrams, and in particular the multicritical point between the
paramagnetic, ferromagnetic, and antiferromagnetic phases
around 150 K, suggests that there is a primary magnetic
energy scale which determines the critical temperature for the
onset of long-range order. This energy scale is independent of
the tuning parameter n that determines the type of magnetic
ground state. What Fig. 2(a) implies is that n should not have a
simple, monotonic dependence on lattice, and thus is unlikely
to be due to a single energy scale.

III. EXPERIMENTAL METHODS

Single crystals of CeFe, were grown from a Ce-rich binary
melt with initial composition Cey ¢Feg 4. High purity Ce (Ames
Lab) and Fe were sealed into a three-cap Ta crucible?® and
subsequently sealed into a silica ampule. The ampule was
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heated from room temperature to 1100 °C over 6 hours, cooled
to 950 °C over 3 hours and then slowly cooled to 700 °C over
120 hours. Once at 700 °C the excess liquid was decanted from
the single crystals.?

With sensitivity to both lattice and magnetic symme-
try, and compatibility with high-pressure diamond anvil
cells, synchrotron x-ray diffraction is well suited for
studying the pressure-temperature phase diagram of an
antiferromagnet.”*° X-ray diffraction measurements were
performed at beamline 4-ID-D of the Advanced Photon
Source. A double-bounce Si (111) monochromator and a
pair of palladium (with a K edge at 24.35 keV) coated
mirrors produced a focused beam of 20 keV x rays free
from contamination by higher harmonics. CeFe, crystals of
typical dimensions 70 x 70 x 40 um?® were loaded in the
diamond anvil cell in an argon atmosphere to avoid oxidation.
The pressure medium was a 4:1 (volume) methanol:ethanol
mixture. A polycrystalline silver grain was used as an in situ
manometer.’’ A helium-membrane-tuned diamond anvil cell
was used to continuously vary pressure at the cryostat base
temperature of 3.5 K. Nonresonant x-ray magnetic diffraction
was carried out in the transmission geometry and within the
vertical scattering plane for high momentum space resolution.
The use of 70° full cone Boehler-Almax diamond anvils
allowed access to a wide range of reciprocal space. A total
of four samples were studied under pressure at T = 3.5
K. The FWHM of the sample mosaic curve never exceeded
0.10° under pressure. The possibility of contamination by
second harmonic x rays was ruled out by monitoring a
secondary detection channel set to count 40 keV x rays on the
Nal scintillation detector. The null signal on this secondary
channel and the extremely low intensity of the observed (1/2,
1/2, 1/2)-type peaks (Fig. 4) rule out the charge scattering
contribution to the measured magnetic diffraction peaks.

IV. DIRECT MEASUREMENTS OF LATTICE SYMMETRY
AND ANTIFERROMAGNETISM UNDER PRESSURE

We plot in Fig. 3 the response of the crystal lattice to applied
pressure, P, at low temperature. Near P = 1.5 GPa the lattice
undergoes a transition from cubic to rhombohedral symmetry.
The rhombohedral distortion is a compression along one of
the four cubic body diagonals, and splits the cubic crystal
into four types of rhombohedral crystal domains. Using high-
resolution x-ray diffraction it is possible to index diffraction
peaks by their rhombohedral domain type. The compressibility
By is determined by fitting the lattice constant a(P) to a one-
parameter Birch equation®® with By = 90 4 4 GPa and 105 +
5 GPa in the low- and high-pressure phases, respectively. In
the high-pressure phase the unit cell angle « deviates from 90°
by 0.327° 4 0.002°. The data also show clear evidence for a
regime of phase coexistence between 1.3 and 1.8 GPa. The
presence of a structural phase transition and a regime of phase
coexistence are consistent with magnetic susceptibility studies
of CeFe, under pressure, which found the ferromagnetic phase
boundary to be difficult to pin down at low temperature.?> Note
also that a rhombohedral distortion is known to accompany
the ferromagnetic-to-antiferromagnetic phase transition in Ru-
, Al-, and Co-doped CeFe,, with « in the range 90.2°-90.31°."°
The discovery that stoichiometric CeFe, experiences a similar
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FIG. 3. (Color online) Evolution of the CeFe, crystal lattice with
pressure at 7 = 3.5 K. (a) Longitudinal (6 — 20) scans of the (2, 2, 0)
and (3, 1, 1) Bragg peaks at three pressures: in the low-pressure cubic
phase, in the regime of phase coexistence, and in the high-pressure
rhombohedral phase. The peak splitting at high pressure is evidence
of the rhombohedral distortion. The splitting of the (2, 2, 0) peak at
P = 1.8 GPaindicates a regime of phase coexistence; for the (3, 1, 1)
reflection at 1.8 GPa the peak from the cubic phase is indistinguishable
from the rhombohedral (3, 1, —1) peak within our measurement
resolution (we follow the convention that the rhombohedral distortion
compresses the (111) axis). (b) Dependence of the lattice constant
a and the cell-axis angle « on pressure. The shaded area marks the
phase coexistence regime. Fits to a(P) (dashed lines) are based on
the one parameter Birch equation.

rhombohedral distortion supports the notion that the magnetic
phase diagram in Fig. 2 is controlled by symmetry, rather than
by chemical pressure or the effects of disorder.

Using nonresonant magnetic x-ray diffraction we searched
for and found the high-pressure antiferromagnetic phase in
the form of (1/2, 1/2, 1/2)-type Bragg diffraction peaks
that are associated with antiferromagnetic period doubling.
The longitudinal magnetic peak widths are limited by the
instrument resolution as shown in Fig. 4(a), meaning that the
coherence length of the antiferromagnetic domains is at least
1500 A. This direct observation of antiferromagnetic order
in compressed, stoichiometric CeFe,, not just in its doped
analogues, is essential justification for positing the generic
phase diagram drawn in Fig. 2.
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FIG. 4. (Color online) Direct observation of antiferromagnetism
at P =3.3GPaand T = 3.5 K. (a) Longitudinal line scans of magnetic
peaks (red) normalized to the lattice peaks (blue) respectively. (b)
Quantity |Sf,e'® i - $,|? calculated using Eq. (1) for six measured
diffraction peaks (black solid circles). Also shown are the sensitivity
limits of null measurements at three positions (black error bars with
downward arrows). Calculated values (purple line) are given for the
model described in the text.

We show in Fig. 4(b) antiferromagnetic reflections at nine
positions in reciprocal space, all corresponding to a single
rhombohedral domain type at P = 3.3 GPaand T = 3.5 K.
The nine positions yielded six measurable peaks and three
null measurements, all of which can be used to constrain the
magnetic structure. The orbital contributions to the magnetism
in CeFe, are negligible compared to the spin contribution for
both Ce and Fe.” The nonresonant magnetic diffraction cross
section is thus dominated by the projection of the spin onto
the direction (S,) perpendicular to the scattering plane. The
experimentally measured quantity is the ratio of diffraction
intensity from the antiferromagnetic and the lattice Bragg
peaks and is expressed as

Lar(hk, ) \mec? 8 foelar

Here (h, k, ) are Miller indices of the unit cell before
antiferromagnetic period doubling. The summations in the
numerator and denominator run over all scattering sites in

Iap(2, 5L h L LI ?
AF(Hz)—( © L Im€Th- %) Gaoe )
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the magnetic and lattice unit cells, respectively, and the factor
of eight in the denominator accounts for the difference in
size between the magnetic and lattice unit cells. Zw is the
x-ray energy, 20 is the diffraction angle of (h/2, k/2, 1/2),
and f,, and f, are the magnetic and atomic form factors.”
In Fig. 4(b), | Zf,,e'® i - 85| is plotted for all nine measured
antiferromagnetic reflections.

V. REFINEMENT OF ANTIFERROMAGNETIC
STRUCTURE

In order to constrain the magnetic structure, we resort
to a general treatment of antiferromagnetic order on a face-
centered lattice.3'3? The antiferromagnetic order doubles the
unit cell along all three axes in real space. For a face-centered
lattice the basis therefore increases from one to eight points,
forming a bipartite lattice consisting of basis points (1,2,3,4)
and (1',2/,3,4’) (Fig. 5), with the condition that the primed
and unprimed points are magnetically distinguishable. There
is some freedom in assigning the basis points, and in Fig. 5
we choose the assignment most natural to a structure layered
along (111). Bear in mind that the Laves basis consists of six

FIG. 5. (Color online) Spin structure of antiferromagnetic CeFe;.
(a) Schematic showing the bipartite sublattice points (1,2,3,4) and
(1,2,3',4') for a face-centered antiferromagnet.’'*> Each sublattice
point is associated with a complete Laves basis; the Ce sites for
points 1'—4’ are omitted for clarity. The magnetic structure on site 1
is explicitly drawn. The spin orientations on site 1’ are the inverse of
those on site 1, and likewise for the other pairs. (b) The kagome sheets
consisting of 3e-Fe spins in a given sublattice are ferromagnetically
aligned. (c) The 1b-Fe spins have an effective antiferromagnetic
interaction and form a plane of frustrated triangular plaquettes. The
degeneracy associated with the choice of antiferromagnetic pairs
leads to a magnetic domain structure; only a single domain is drawn
here for clarity.
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atomic sites (four Fe and two Ce) at each point of the bipartite
lattice.

The antiferromagnetic structure previously proposed for
Ce(Fe;_,Co,), on the basis of neutron and resonant x-
ray diffraction measurements!®!! consists of ferromagnetic
kagome sheets of 3e-Fe spins (each carrying 1.61 up)
polarized along (111), with the spins inverted on adjacent
sheets. The Ce spins (0.13 ) are also parallel to (111) and
are ordered antiferromagnetically within each (111) plane.
The azimuthal dependence of the resonant x-ray diffraction
intensity shows that the 1b-Fe moments (1.12 ppg) are not
colinear with the 3e-Fe moments, and are likely polarized
in the (111) plane.'” This is understood as the result of
frustration: the 1b-Fe spins are ferromagnetically coupled
to two oppositely polarized kagome sheets of 3e-Fe spins
[Fig. 1(d)], and therefore are forced to lie in the (111) plane.

This spin structure models well the published magnetic
diffraction data on Ce(Fe;_,Co,),. However, there remains
ambiguity about the orientation of the 15-Fe spins in the (111)
plane!®!! and the related issue of magnetic domain degeneracy
due to the three-fold symmetry about the (111) axis. The spin
model proposed by Refs. 10 and 11 for Ce(Fe;_,Co,), as-
sumes that within each triangular lattice plane the 1b-Fe spins
are ferromagnetically polarized along (1,—1,0) and that this
polarization reverses direction between subsequent triangular
lattice planes along the (111) direction. In this model the
bipartite lattice points 1-4 (Fig. 5) would have identical spin
orientations, and the spins on points 1'—4’ are inverted relative
to those on 1-4. In addition, degenerate magnetic domains
with 1b-Fe spins polarized along (1,0,—1) and (0,1,—1)
should also exist as required by symmetry. It is straightforward
to show that this model produces nonzero antiferromagnetic
structure factors only for magnetic reflections (h/2, k/2,1/2)
with those odd £, k, [ indices, which simultaneously satisfy the
three relations & + k,k +1,h + 1 = 4n + 2.'%3! However, all
six of the magnetic reflections that we observe at high pressure
violate this selection rule. Therefore, symmetry arguments
show that the published model for!®!" Ce(Fe,_,Co,), is
not directly transferrable to antiferromagnetic CeFe, at high
pressure.

Nonetheless, this model can be made to agree with our data
with one modification. Notice that the interaction between
the 1b-Fe spins and their orientation within the (111) plane
remain undetermined. If this next-nearest-neighbor interaction
is antiferromagnetic, rather than ferromagnetic as assumed by
Refs. 10 and 11 then the triangular plaquettes of 1b-Fe sites are
magnetically frustrated, and the spins would be noncolinear.
This introduction of nonequivalent spins on the bipartite lattice
points 1-4 produces nonzero structure factors for our observed
reflections.

Considering a (111) plane of triangular plaquettes of
antiferromagnetically coupled 1b-Fe spins, with the magnetic
moments confined to the plane by the effect of interactions with
3e-Fe spins, we arrive at the model shown in Fig. 5. Imposing
the periodicity of the bipartite lattice basis points, and summing
only over the neighboring 1b-Fe spin interactions, shows that
the minimal semiclassical energy is obtained if the spins form
antiferromagnetically aligned pairs along two independent
polarization axes [such as pairs 1-2 and 3-4 in Fig. 5(c)].
The angle & between these two spin axes only affects the free
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energy at higher order, and here we take it to be fixed at§ = 60°
without loss of generality.

There is degeneracy associated with the choice of these
antiferromagnetically aligned pairs of 1b-Fe spins, giving rise
to a threefold magnetic domain structure that is derived from
the symmetry about the (111) axis. For a given domain some
but not all of the reflections shown in Fig. 4(b) have nonzero
structure factors. We have no knowledge of the magnetic
domain population in our sample, nor of the possible variation
of the angle ¢ between different domains. Rather than using
these quantities as a source of spurious free variables, we
constrain our fit of the experimental data by assuming the
simplest possible domain configuration. We thus consider
three equally populated domains, which differ in their values of
the angle ¢ by 120° between domains, illustrated in Fig. 5(c).
By optimizing this model to our data we determine the 15-Fe
moment to be 1.80 £0.04 wp. The diffraction intensities
calculated from this model are within a factor of two of
the observed values shown in Fig. 4(b) for all but one of
the measured intensities, which span over two decades in
intensity. The three null measurements are also consistent with
the model, which predicts diffraction intensities well below our
sensitivity limits. Given the assumptions made, the quantitative
agreement between predicted and observed intensities appears
satisfactory. The agreement could be improved by assuming
unequal magnetic domain populations and/or by optimizing
the angles ¢ and &, but we feel such an analysis is unjustified
given that these quantities are not independently constrained
by data.

VI. COMPETING MAGNETIC INTERACTIONS
AND GENERIC PHASE DIAGRAM

We are now able to draw detailed spin structures for
the ferromagnetic and antiferromagnetic phases (Fig. 6).
The physics underlying the generic phase diagram can be
explained by considering a hierarchy of magnetic interactions
between different pairs of spins, and the competition between
different magnetic configurations that inevitably leave some
interactions frustrated. First we point out that in both the
ferromagnetic and antiferromagnetic phases, Ce possesses
a nearly constant, nonvanishing moment.®!%!133 Thus the
magnetism of Ce is likely to be intrinsic and not induced by the
Fe moments. Furthermore, the Ce spins are always anti-aligned
with the majority of the Fe spins.®!%!! This suggests that an an-
tiferromagnetic coupling (with exchange energy J;) between
the Ce and Fe spins is the dominant magnetic interaction in this
system. This coupling is expected to arise from the exchange
interaction between the localized Fe moments and the itinerant
Ce electrons, which are hybridized from Ce 4 f and 5d states.
Antiferromagnetic exchange between rare-earth and transition
metal ions has been reported for CeFe,,” Laves systems in
general,'>** and other intermetallic compounds.

The dominant antiferromagnetic Ce-Fe interaction deter-
mines the relatively high transition temperature for both the
ferromagnetic and antiferromagnetic phases, but does not by
itself determine the magnetic ground state. To understand the
magnetic phase transition one has to look to the secondary
magnetic interactions. The bonds between Fe nearest neigh-
bors are ferromagnetic with exchange energy J,. We observe
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FIG. 6. (Color online) Monte Carlo simulation of the generic
magnetic phase diagram. Although the energy scale is set by the
strongest magnetic interaction, J;, the phase diagram is controlled
by competition between the antiferromagnetic Ce-Ce interaction
(exchange strength J3), and the ferromagnetic Fe-Fe nearest neighbor
interaction (J). The insets show the spin structure of CeFe, in both
the ferromagnetic (FM) and antiferromagnetic (AF) phases for the
1b-Fe site and its twelve nearest neighbors. The FM spin structure is
actually ferrimagnetic, as discussed in Ref. 7. In the ferromagnetic
phase, the Ce-Ce bonds are frustrated, while the bonds between 1b-Fe
and 3e-Fe become frustrated in the antiferromagnetic phase.

that the Ce spins are antiferromagnetically aligned in the
high-pressure phase. The proximity of the magnetic phase
transition in CeFe; to ambient pressure, and the insensitivity
to the interatomic distances (Fig. 2), are strong indications that
the magnetic interactions will not be qualitatively different
on opposite sides of the transition. We therefore propose
that the Ce-Ce interaction is always antiferromagnetic (with
exchange energy J3). In the ferromagnetic phase the Fe-Fe
interactions are satisfied and the Ce-Ce interactions are frus-
trated. In the antiferromagnetic phase the Fe-Fe interactions
are partially frustrated for those involving 1b-Fe sites, while
most of the Ce-Ce interactions are satisfied. In fact, given
the dominant antiferromagnetic interaction between Ce and
Fe spins, it is impossible to simultaneously satisfy both the
antiferromagnetic Ce-Ce and Ce-(1b-Fe) interactions within
each triangular layer. Thus, there always exists some degree
of magnetic frustration in CeFe;. It is the balance between the
antiferromagnetic coupling of the Ce-Ce neighbors and the
ferromagnetic coupling of the 1b-Fe to the 3e-Fe spins that
determines the magnetic ground state. At the ferromagnetic-
antiferromagnetic phase transition the effective interaction
between kagome layers switches from ferromagnetic and me-
diated by the 1b-Fe spins, to antiferromagnetic and mediated
by the Ce spins.

We point out that the next-nearest-neighbor interaction
between 1b-Fe spins does not play an important role. The 1b-
Fe spins are frustrated in the antiferromagnetic phase because
of their interaction with 3e-Fe spins in the kagome layers. This
frustration does not constrain 1b-Fe spins orientation within
the (111) plane. Therefore, the difference in the 15-Fe spin

PHYSICAL REVIEW B 86, 014422 (2012)

structure between our model for CeFe, under pressure and
the published model for'®!" Ce(Fe,_,Co, ), can be viewed as
a relatively minor refinement due to the availability of new
data. We believe that our understanding of the phase diagram
as driven by competing and frustrated secondary magnetic
interactions may apply to the entire family of compounds
represented in Fig. 2.

To further test our proposed mechanism for arriving at a
generic phase diagram, we construct a semiclassical model,
taking into account only the interactions Ji, J», and J3 (Fig. 1).
We use the Hamiltonian H =) J;; 3‘,- .S i, where the site
index (i, j) runs over all pairs of neighboring spins, both within
and between unit cells, and the spins are treated as classical
Ising spins. Within the mean-field approximation, minimum
energy states with both ferromagnetic and antiferromagnetic
arrangements can be identified. The mean-field result is con-
firmed by numerically examining the stability of the uniformly
ordered ferromagnetic and antiferromagnetic spin structures
within a classical Monte Carlo routine, which was carried out
on a lattice of 288 unit cells and periodic boundary conditions,
with 24 atoms per unit cell. The resulting phase diagram is
shown in Fig. 6. Even at this level of approximation, the
theoretical model clearly reproduces the qualitative features
of the experimental phase diagram.

The generic nature of the magnetic phase diagram in
Fig. 2(b) can now be understood, including the phenomenon
that doped systems with both expanded and contracted lattices
can be collapsed onto a single plot. The low-temperature,
ambient-pressure phase of CeFe, is ferromagnetic, but it sits
close to an antiferromagnetic phase transition and J3/J, is
close to the critical value. Since Al, Co, Ru, and Ir all replace
Fe atoms upon being doped into CeFe,, they affect the Fe-Fe
bonds more strongly than the Ce-Ce bonds. The dopants which
end up on 1b-Fe sites decrease the energetic cost of the
antiferromagnetic stacking of 3e-Fe layers and thus effectively
increase J3/J,. On the other hand, the application of pressure
mainly affects the interatomic distances, and therefore affects
both the ferromagnetic and the antiferromagnetic bonds. The
latter are more sensitive to the changing overlap integrals due
to the itinerant character of the Ce electrons, thus shifting J3/J,
towards higher values under pressure. The horizontal scaling
of the different magnetic phase diagrams for chemical doping
and applied pressure results from the fact that there is only a
single parameter, J3/J,, which controls the transition between
the ferromagnetic and antiferromagnetic phases. By contrast,
the thermal transition into the paramagnetic phase is controlled
by Jj, the Ce-Fe spin coupling. This strong interaction is little
affected by either pressure or doping, and the vertical axes of
the different phase diagrams thus line up with no additional
scaling.

VII. CONCLUSION

The picture that emerges for CeFe, contains multiple
magnetic energy scales which compete in a landscape of mag-
netic frustration. The dominant Ce-Fe interaction is satisfied
throughout the phase diagram, and appears to be “agnostic”
with respect to the ferromagnetic-antiferromagnetic transition.
This primary interaction arises due to hybridization between
itinerant Ce states and localized Fe 3d orbitals, is responsible
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for the high transition temperatures of both magnetic phases
in CeFe;, and is typical of intermetallic magnets containing
a rare-earth and a transition metal.”-'>33> This primary
interaction sets the temperature scale for the thermal transition
to long-range magnetic order, but does not select the magnetic
ground state. The transition between ferromagnetism and
antiferromagnetism is instead determined by the competition
between the weaker, secondary interactions. If the coupling
between Fe ions wins this competition then the material is a
ferromagnet, and the antiferromagnetic bonds between neigh-
boring Ce spins are frustrated. If the coupling between Ce ions
wins the competition then the material is an antiferromagnet,
and the frustration shifts to the Fe sublattice.

Our work underscores the value of collecting concomitant
structural and magnetic information in stoichiometric mate-
rials that are free of the influence of chemical disorder. The
high-pressure tuning variable provides a valuable complement
to studies on chemically doped compounds, allowing us to
disentangle the roles played by lattice spacing, symmetry,
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disorder, frustration, and competing interactions in deter-
mining the overall phase diagram. The resulting model of
frustration being shifted between sublattices may serve more
generally for understanding magnetism in cubic Laves and
other pyrochlore-structured intermetallic magnets.
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