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Mode conversion from quantized to propagating spin waves in a rhombic antidot lattice supporting
spin wave nanochannels
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We report spin wave excitations in a nanopatterned antidot lattice fabricated from a 30-nm thick Ni80Fe20

film. The 250-nm-wide circular holes are arranged in a rhombic unit cell with a lattice constant of 400 nm.
By Brillouin light scattering, we find that quantized spin wave modes transform to propagating ones and vice
versa by changing the in-plane orientation of the applied magnetic field H by 30◦. Spin waves of either negative
or positive group velocity are found. In the latter case, they propagate in narrow channels exhibiting a width
of below 100 nm. We use the plane wave method to calculate the spin wave dispersions for the two relevant
orientations of H. The theory allows us to explain the wave-vector-dependent characteristics of the prominent
modes. Allowed minibands are formed for selected modes only for specific orientations of H and wave vector.
The results are important for applications such as spin wave filters and interconnected waveguides in the emerging
field of magnonics where the control of spin wave propagation on the nanoscale is key.
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I. INTRODUCTION

Spin wave (SW) modes in individual mesoscopic magnets1

and in antidot lattices (ADLs),2–11 i.e., thin ferromagnetic
films that are periodically structured with holes, have attracted
considerable interest in recent years. The dynamic response
of magnetic antidots has been investigated from the GHz up
to the optical frequency regime.12,13 For antidot lattices, it has
been found that the holes’ edges lead not only to distinct quan-
tization conditions for spin waves due to lateral confinement.
They also generate a periodically modulated internal magnetic
field Hint due to the demagnetization effect. In squared antidot
lattices, the inhomogeneous field Hint has been found to
provoke coexisting localized and extended modes depending
on the magnetic field H.12,14–19 Rhombic and honeycomb
antidot lattices have so far been less investigated20–22 and
experimental data have been presented for a wave vector
q = 0 only.23 Considering an antidot array as a mesh of
interconnected waveguides, it is interesting to study spin wave
propagation and possible anisotropic behavior at q �= 0. It is of
particular interest whether the periodic arrangement of holes
forms an artificial crystal for spin waves, i.e., a magnonic
crystal (MC),24–26 and gives rise to miniband formation as well
as forbidden frequency gaps. In this paper, we investigate spin
wave modes in an antidot lattice where nanostructured holes
are arranged on a rhombic lattice [see Fig. 1(a)]. Using all-
electrical broadband spectroscopy, Brillouin light scattering
(BLS)27,28 and micromagnetic simulations we address spin
excitations for different orientations (angles φ) of an in-plane
magnetic field. BLS is exploited to access magnetostatic sur-
face spin waves (MSSW) and magnetostatic backward volume
waves (MSBVW) with wave vectors q �= 0 with the mag-

netic field H applied along high-symmetry directions of the
ADL. Only specific modes are observed to exhibit positive
or negative propagation velocities for φ = 0◦ and 30◦. Prop-
agation is found to occur, in particular, for a coherently
coupled edge mode at low frequency f and in narrow
channels with a width of slightly below 100 nm. We im-
plement the plane wave method (PWM) to calculate spin
wave dispersions and mode intensities to interpret the BLS
data. From this, we find that allowed minibands exhibiting
a periodic dispersion relation f (q) in reciprocal space are
formed only under specific conditions. The findings are
relevant for research on magnonic crystals25 as well as spin
wave filters and waveguides based on periodically patterned
nanomagnets.24,29–32

The paper is organized as follows: in Sec. II, we outline
experimental techniques and introduce angular dependent spin
wave spectroscopy data obtained at wave vector q close to zero.
Basic assumptions for simulations and the PWM are discussed
in Sec. III. In Sec. IV, we first explain SW excitations at q = 0
using micromagnetic modeling. In particular, we present the
angular dependence and define the relevant high-symmetry
directions (see Sec. IV A) where BLS is used to explore
SW dispersion relations f (q) in detail. These results are
presented in Sec. IV B. Section V is devoted to the results and
band structures extracted from the PWM. First, we provide
the specific approximations and relevant formalism based on
which we performed the calculations (see Sec. V A). Second,
we compare in detail calculated dispersion relations with
BLS data for specific high-symmetry directions and scattering
geometries (see Sec. V B). In Sec. VI, we discuss the final
outcome and conclude. Appendix addresses the block-matrix
M̂ of the eigenvalue problem.
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FIG. 1. (Color online) (a) Scanning electron microscopy image
of the rhombic permalloy antidot lattice. The holes (black) have a
diameter of 250 nm. The lattice constant is 400 nm. φ is the in-plane
angle defined between H and the reference axis (broken arrow). (b)
Data for q = 0 from Ref. 23. They have been obtained by, both,
all-electrical broadband spectroscopy (gray-scale plot) and Brillouin
light scattering (symbols) at different angles φ for μ0H = 90 mT.
Dark color encodes the excitation of eigenmodes.

II. EXPERIMENTAL TECHNIQUES AND DEFINITION
OF RELEVANT FIELD AND WAVE

VECTOR ORIENTATIONS

The antidot array was fabricated from a permalloy
(Ni80Fe20, Py) film using optical lithography at 248-nm
exposure wavelength [see Fig. 1(a)].33 The thickness d was
30 nm. We prepared the rhombic lattice with primitive lattice
vectors of length a = 400 nm. Before performing the BLS
experiments with wave vectors q > 0, we used all-electrical
broadband spectroscopy to explore how spin wave excitations
with q ≈ 0 depended on the direction of the in-plane magnetic
field H.23 In the experiment, spins were excited by placing the
array on top of a coplanar waveguide (CPW) connected to a
vector network analyzer (VNA) providing a continuous-wave
sinusoidal output voltage with a frequency f between 10 MHz
and 26 GHz.34–36 The CPW was aligned collinearly with the
reference axis using a rotatable sample holder.37 It had an inner
conductor width w of 20 μm, which was much smaller than
the lateral width of the antidot array which was on the mm
scale. In fact, this is a different experimental regime compared
to the previously known VNA-FMR technique where the
ferromagnetic resonance (FMR), i.e., uniform precession, and
further standing spin-precessional excitations were addressed
in ferromagnetic nanostructures being in particular smaller
than the width of the inner conductor of the CPW.34 For VNA-
FMR experiments, the boundary conditions for spin waves
in the individual ferromagnetic element and the symmetry of
the excitation field are key for the excited modes. When the
sample is larger than the width of the CPW, the scenario is
different and the CPW transfers a specific regime of wave
vectors q to the spin system that is given by the design
of the CPW. Thereby, one might address propagating spin
waves as well.17,38 It has been shown that this leads to a
characteristic broadening of the linewidth that is not relevant

for the VNA-FMR experiments.39,40 Depending on the design
of the CPW, the uniform mode might not be excited.40 [Since
excited wave vectors are nonzero and depend decisively on the
design of the emitter antenna (being a transmission or stripline,
straight CPW, meander-type CPW, etc.), one might avoid the
term VNA-FMR as the general term for such a broadband
all-electrical spin wave spectroscopy technique. The term
VNA-FMR might provoke confusion for nonspecialists when
the uniform precession (FMR) is not excited due to the specific
CPW design.40] In the experiment reported here, the trans-
ferred wave vector was around 0.008 × 105 rad/cm,17 being
orders of magnitude smaller than the values of q addressed in
the BLS experiments outlined later. For this reason, we will
refer, hereafter, to the data as being obtained at the center of
the Brillouin zone (BZ) (i.e., the � point) and will not discuss
the linewidth broadening.39,40 The angle φ was varied by using
correctly balanced currents in two pairs of coils generating the
in-plane vector magnetic field H. To measure the spin wave
spectra for different angles φ, a field of 90 mT was applied
that ensured sample saturation in all the in-plane directions.33

By this means, we observed the expected sixfold angular
dependence22 and determined the high-symmetry directions
relevant for the wave-vector dependent BLS studies. We show
all-electrical spin wave spectroscopy data of the relevant
angular regime in Fig. 1(b) and introduce the mode labels there.

BLS from thermally excited spin waves was performed
using a Sandercock type (3 + 3)-pass tandem Fabry-Perot
interferometer. Laser light with a wavelength λ of 532 nm
and power of 200 mW from a solid state laser was focused
on the sample surface. The diameter of the laser spot was
about 30 μm causing a local heating of about 40 K.41 This
temperature variation, however, did not result in an appreciable
decrease of the saturation magnetization, as will be shown by
the good quantitative agreement of BLS and all-electrical spin
wave spectroscopy data [c.f. Fig. 1(b)].

For BLS, the sample was placed on a two-axis goniometer
that allowed us to choose a specified angle of incidence of
light (θ ) as well as to rotate the sample around the surface
normal (azimuthal rotation, φ). Because of the backscattering
configuration used here and the conservation of momentum
in the scattering process, the magnitude of the in-plane
transferred wave vector q depended on the incidence angle of
light θ according to q = (4π/λ) sin θ . The angle θ was defined
with respect to the sample normal. The wave vectors addressed
in the BLS experiments ranged from 0 to 2.0 × 105 rad/cm
by varying θ from 0◦ to 60◦, respectively. It should be noticed
that the maximum transferred wave vector was beyond the
boundary of the first BZ of the rhombic antidot lattice with
a primitive vector of length a = 400 nm. For q > 0 data,
we focus on φ = 0◦ and 30◦ with two different relative
orientations between q and H corresponding to either the
MSBVW geometry (where q is parallel to H) or the MSSW
geometry (where q is perpendicular to H).

III. SIMULATIONS AND THEORETICAL APPROACH

A. Micromagnetic modeling

The commercial software package MICROMAGUS42 was
used to calculate the static magnetization pattern as well as the
mode eigenfrequencies and spatial profiles of spin precession
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amplitudes at q = 0. Two-dimensional (2D) periodic boundary
conditions were applied. Parameters were a cell size of
6 × 6 × 30 nm3 (30 nm is valid for the out-of-plane direction),
saturation magnetization of 827 kA/m, exchange (damping)
constant of 1.3 × 10−11 J/m (0.01). These parameters are
consistent with Ref. 23. To explore excitations with q = 0, a
homogeneous field pulse μ0hrf of 3-ps duration and amplitude
of 4 mT was applied, directed 45◦ out of the plane. This was
done to excite several SW modes of different symmetry.

B. The plane wave method

The band structures of spin wave excitations (frequency
versus wave vector q) in materials with discrete transla-
tional symmetry, including electronic, photonic, phononic,
and magnonic crystals, can be calculated by the PWM. This
method is a popular tool because of its conceptual simplicity
and its applicability to any type of lattice and any shape
of scattering centers.43–47 The method is being constantly
improved, with its field of application extending to new
problems,47–49 like the calculation of the spin wave spectra
of one-dimensional (1D) and 2D MCs of finite thickness.50,51

This requires the inhomogeneity of the internal magnetic field
to be taken into account in the calculations. The PWM has been
employed in Ref. 11 for calculating the spin wave spectra of
2D ADLs based on a square lattice for the first time. Here,
we apply the same technique to a 2D ADL having a rhombic
lattice considering the above defined MSSW and MSBVW
geometries.

In the classical approach, the spin wave dispersion relation
is determined from the Landau-Lifshitz (LL) equation, i.e., the
equation of motion of the magnetization vector M(r,t):

∂M(r,t)
∂t

= γμ0M(r,t) × Heff(r,t), (1)

where γ is the gyromagnetic ratio, Heff denotes the effective
magnetic field acting on the magnetic moments, and r and t

are the spatial and time coordinates, respectively. Equation (1)
applies to the case of negligible relaxation. It is expressed
in SI units, used throughout this paper, with μ0 denoting
the permeability of vacuum. We assume γμ0 = −2.21 ×
105 (A/m)−1s−1.

A uniform static magnetization in the magnetic material of
the ADL is assumed, allowing us to use the linear approxima-
tion and a global coordinate system in which the y and z axes
define the plane of periodicity, and the x axis is normal to the
surface of the ADL. In our calculations, the static magnetic
field is assumed to be oriented always along the z axis [c.f.
Fig. 5(a)]. In the linear approximation, the component Mz(r)
of the magnetization vector parallel to the static magnetic field
is constant in time, and its magnitude is much greater than that
of the perpendicular components m(r,t): |m(r,t)| � Mz(r)
with M(r,t) = Mz(r)ẑ + m(r,t) (x̂, ŷ, and ẑ are unit vectors).
Thus we can assume Mz ≈ MS, MS being the saturation
magnetization, and neglect all the terms with squared m(r,t)
and dynamical components of Hms(r,t) (defined below).
We search only for solutions of Eq. (1) corresponding to
monochromatic spin waves: m(r,t) ∼ exp(iωt), ω = 2πf

being the wave frequency.

The effective magnetic field Heff acting on the mag-
netic moments is, in general, the sum of several com-
ponents. However, here we consider only three contribu-
tions: a uniform and constant applied magnetic field H
(applied along the z axis), the exchange field Hex and
the magnetostatic field Hms. The latter two, i.e., the ex-
change field and the magnetostatic field, are space and time
dependent:

Heff(r,t) = H + Hex(r,t) + Hms(r,t). (2)

The magnetostatic field provides one of the main challenges
in spin wave calculations in magnetic systems. We decom-
pose this field into the static and dynamic components,
Hms(r) and hms(r,t), respectively. The time dependence of
the dynamic magnetostatic field has the same form as that
of the dynamic component of the magnetization vector:
hms(r,t) = hms(r)eiωt . The geometrical structure and magnetic
configuration of the ADL imply special approximations to
be used. We will discuss these approximations later in
detail in Sec. V A after presenting relevant results from
micromagnetic simulations and BLS experiments in the next
section.

IV. EXPERIMENTAL RESULTS AND
MICROMAGNETIC MODELING

A. Excitations for zero wave vector: angular dependence and
spin-precession profiles

Before discussing the wave-vector dependent BLS data and
dispersion relations f (q) for specific high symmetry directions
it is instructive to analyze the dependence of SWs with q = 0
(i.e., at the � point) on the in-plane angle φ of the applied
magnetic field [as defined in Fig. 1(a)]. For this, we perform
all-electrical broadband spectroscopy and BLS at q = 0 for
different φ. Numerous eigenmodes are found that exhibit a
sixfold rotational symmetry.22,23 Relevant data are contained in
Fig. 1(b) in the angular regime between φ = 0◦ and 45◦. Dark
color encodes the excitation of eigenmodes, i.e., an absorption
signal in the CPW due to spin precession in the ADL. The
symbols in Fig. 1(b) represent the BLS data taken at θ = 0◦,
i.e., q = 0, and they are labeled from A to E. We observe
a very good agreement with the all-electrical broadband
spectroscopy data. Mode F is additionally observed in the
BLS experiment. The PWM provides even more modes as will
be detailed later. In Fig. 2(a), we show the field dependence
as obtained from micromagnetic simulations for q = 0.23

Figures 2(b)–2(d) depict relevant spin precession profiles to
illustrate the different excitations. The spin precession profiles
reflect different kinds of modes either being localized in
specific regions or extending through the lattice in a nearly
stripelike manner [broken lines in Figs. 2(b) to 2(d)]. The
direction of the stripes depends on both the eigenfrequency
and the orientation of H.

The most intense peaks of the BLS spectra at φ = 0◦
belong to modes A and D. The images presented in Figs. 2(b)
and 2(c) for φ = 0◦ show that the modes reside mainly between
nearest (mode A) and next-nearest (mode D) neighboring
holes at φ = 0. Mode D shows a localized nature and is
quantized in two spatial directions by the existing holes
whereas mode A has an extended character along the field
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FIG. 2. (Color online) (a) Excitation spectra at q = 0 simulated
as a function of φ at μ0H = 90 mT. Dark color encodes eigenfrequen-
cies. Local spin-precession amplitudes for modes (b) A, (c) D, and (d)
E. The spatial spin-precession profiles are shown for three different
angles φ = 0◦,15◦, and 30◦ as labeled on the top (from left to right).
Dark (bright) encodes zero (maximum) precession amplitude. Dashed
lines highlight stripelike precession profiles extending through the
lattice.

direction. This is highlighted by the dashed horizontal lines
in Fig. 2(b). Its spatial distribution (standing wave profile)
strongly oscillates because of the hybridization with other
modes. Large spin precession amplitudes of mode A are
found mainly in stripes where the field Heff is large, i.e.,
the demagnetization effect originating from the holes is weak
compared to the regions where mode D exhibits large spin-
precession amplitudes. This explains to a large amount the
large eigenfrequency of mode A compared to mode D. Relating
the spin-precession profiles of Figs. 2(b) and 2(c) at φ = 0◦
with the magnetic configuration shown in Fig. 3(a), we find
that both modes exhibit large spin-precession amplitudes in
regions where the local magnetic moments tend to align with
the applied field. The demagnetization effect of the holes,
however, prevent the moments from being strictly collinear
with H.

Considering the dashed horizontal lines in Fig. 2(b) the
width of a stripe amounts to 400 nm × sin (60◦) − 250 nm =
96 nm. The corresponding magnetic configuration displayed
in Fig. 3(a) resembles a magnetic nanowire that is mag-
netized in longitudinal direction. Due to the holes the
microscopic magnetic moments follow, however, a wavy
pattern.

When the direction of the external field is rotated to φ =
15◦, the mode profiles shift. Large spin precession amplitudes
remain in the regions where the static magnetization tends
to align with the field. Mode A, however, does not show
an extended character along the field direction any longer,
and, increasing φ further, it clearly localizes between nearest-
neighboring holes at φ = 30◦ [see Fig. 2(b), right]. The

FIG. 3. (Color online) Simulated magnetic configurations of the
antidot lattice for μ0H = 90 mT applied under an angle of (a) φ = 0◦

and (b) 30◦. Arrows illustrate the local orientation of the microscopic
magnetic moments averaged over several simulation cells for clarity.
The dashed lines reflect the 96-nm-wide stripes defined in Figs. 2(b)
to 2(d).

opposite evolution with increasing φ is observed for modes
D and E. Initially localized at φ = 0◦, modes D and E get an
extended character at φ = 30◦ [see Fig. 2(c), right]. The large
spin-precession amplitudes occur along stripes perpendicular
to H which are enclosed by holes. The stripes (between dashed
lines) have again a width of 96 nm. Considering the magnetic
configuration displayed in Fig. 3(b), these stripes resemble
magnetic nanowires, which are magnetized in transverse
direction, and thereby experience a small field Heff. Again,
a wavy pattern of the magnetization M is superimposed due
to the holes.

Interestingly, the low-frequency mode E corresponds to
a so-called edge mode [see Fig. 2(d)]. For this mode, large
spin-precession amplitudes occur in spin wave wells,1 i.e.,
local minima of Heff generated by stray fields right at the
edges of holes. At φ = 0◦ and φ = 15◦ in Fig. 2(d) the edge
excitations exhibit large spin precession amplitudes only at
opposing edges of holes. Tilting φ moves these local amplitude
maxima in space. At φ = 30◦ in Fig. 2(d), large amplitudes
are found also in-between holes forming a zigzaglike shape of
the spin-precession profile. The zigzaglike shape is along the
stripe marked by dashed lines in Fig. 2(d) at φ = 30◦. Here,
edge excitations couple from edge to edge. The eigenfrequency
given by the micromagnetic simulation at this angle is too
small [see Fig. 2(a)] compared to the experimental data [see
Fig. 1(b)]. For the simulation, we have assumed hole edges
that are almost perfect, i.e., the edges are rough only on the
lateral scale of the implemented cell size. A cubic-shaped
simulation cell covers an area of 6 × 6 nm2 in the plane of the
magnetic film. This small residual roughness is in particular
deterministic throughout the lattice due to the 2D periodic
boundary conditions. In contrast to this, the roughness in the
real sample is larger as seen in Fig. 1 and irregular, i.e., it
varies from hole to hole. The discrepancies between simulated
and experimental eigenfrequencies of mode E are attributed to
imperfections of the real antidot lattice modifying the internal
field.57
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From the data in Figs. 1(b) and 2, we extract that the
two angles φ = 0◦ and 30◦ are, in particular, interesting.
For these two specific angles, mode A (E) exhibits its local
frequency minimum and maximum (maximum and minimum),
respectively. The dispersion relations obtained by both BLS
and PWM for these angles will be presented and discussed in
the next sections.

B. Brillouin light scattering for q �= 0

In the upper row of Fig. 4, we define the different scattering
geometries used in the present study [see Figs. 4(a), 4(d), 4(g),
and 4(j)]. In the center row, we depict corresponding BLS
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FIG. 4. (Color online) Each column reflects a specific scattering
geometry as illustrated in (a), (d), (g), and (j). (b), (e), (h), and
(k) Sequences of BLS spectra for μ0H = 90 mT taken at different
values of the in-plane transferred wave vector q in the scattering
geometries depicted above. The numbers denote the values of q in
units of 105 rad/cm. Broken lines interconnect peaks reflecting the
same eigenmode as labeled. In (c), (f), (i), and (l), we show the spin
wave frequencies as extracted from the corresponding BLS spectra
and summarize them as a function of q. The values q go beyond the
boundary of the first BZ as indicated in Fig. 5(b). Broken lines are
guides to the eyes. Gray-shaded areas indicate regimes where BLS
spectra are not evaluated due to stray light.

spectra in Figs. 4(b), 4(e), 4(h), and 4(k).58 In the bottom
row [see Figs. 4(c), 4(f), 4(i), and 4(l)], we summarize the
spin wave eigenfrequencies as a function of q. We report
BLS data for frequencies f being smaller than the first-order
perpendicular standing spin wave mode occurring at 21 GHz.
It can be seen that, remarkably, many modes exhibit a constant
eigenfrequency and do not depend on q, i.e., the group velocity
vg = d(2πf )/dq is zero. Such a strong suppression of spin
wave propagation and quantization of spin waves are different
from square lattices investigated recently.17 However, such
effects might be expected if one considers the rhombic lattice
to be equivalent with a rectangular lattice that incorporates
an additional hole in the unit-cell center. The additional hole
reduces the Ni80Fe20 filling fraction17 to a small number and
fosters a high degree of quantization. However, mode A in the
MSBVW geometry [see Fig. 4(c)] and mode E in the MSSW
geometry [see Fig. 4(l)] clearly have a finite slope as a function
of q, i.e., a dispersive behavior. In Fig. 4(c), we observe that
the eigenfrequency of mode A decreases with increasing q.
The corresponding group velocity extracted near q = 0 is
vg ≈ −0.7 km/s. A negative slope is known from a MSBVW
in a continuous permalloy film. For increasing wave vector q,
the absolute value of the group velocity is found to decrease.
This behavior is known from a MSBVW in a continuous
film up to the crossover from dipolar to exchange-dominated
modes. This crossover takes place with increasing wave vector
q. For the three other scattering geometries studied below,
mode A shows a constant eigenfrequency (within the error
bar) as a function of q [see Figs. 4(f), 4(i), and 4(l)]. In
Fig. 4(c), mode E has first an almost constant frequency up to
about 1 × 105 rad/cm and then splits into a doublet. The upper
branch of this doublet is characterized by a slightly positive
group velocity, while the latter one (EAS) by a negative value.
The wave vector 1 × 105 rad/cm is close to the boundary of
the first BZ.

Turning to the MSSW geometry [see Fig. 4(l)], it can be
seen that the frequency of mode E increases with a positive
slope up to 1 × 105 rad/cm and then becomes almost flat. The
slope at small q corresponds to vg ≈ 2.2 km/s. This value
is comparable to typical group velocities ranging from 2 to
4 km/s found for propagating modes in squared ADLs of large
Ni80Fe20 filling fraction.11,17 For further scattering geometries,
mode E is nearly constant with q [see Figs. 4(f) and 4(i)].

Interestingly, in the rhombic lattice, a mode that is prop-
agating for φ = 0 (mode A) becomes quantized for 30◦ and
vice versa (mode E). Such an opposing mode conversion has
not been reported for the squared antidot lattices.

V. BAND STRUCTURES AND
WAVE-VECTOR-DEPENDENT SPIN PRECESSION
PROFILES FROM THE PLANE WAVE METHOD

A. Specific approximations and the PWM formalism
for a rhombic lattice

In the PWM calculations, we assume that the applied
magnetic field is strong enough to enforce a parallel alignment
of all the magnetic moments. Limitations of this approach will
be discussed later. The exchange field is assumed to have the
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FIG. 5. (Color online) (a) Rhombic-lattice based ADL considered
in this study. Antidots are represented by white holes with radius R.
For the PWM, we assume the magnetic field to be always oriented
along the z axis, i.e., in the φ = 0◦ geometry along the horizontal
line and in the φ = 30◦ geometry along the line clockwise-rotated
by 30◦. For the PWM, we thus rotate the in-plane components of
the coordinate system consistent with a rotation of the magnetic
field. The x direction points out of the plane. (b) Reciprocal space
for the structure shown in (a) with indicated high-symmetry points
�, K, and M in the center and at the border of the first BZ,
respectively. Solid (dotted) lines represent the wave-vector range
studied in BLS experiments, i.e., from 0 to 2.0 ×105 rad/cm along H
and perpendicular to H in φ = 30◦ (φ = 0◦) geometry.

form that can be obtained directly from the exchange-energy
functional in the linear approximation:

Hex(r,t) = (∇ · l2
ex(r,t)∇)

m(r,t), (3)

where lex =
√

2A

μ0M
2
S

. (4)

In magnetically inhomogeneous materials the spatial in-
homogeneity of both the exchange constant A(r) and the
spontaneous magnetization MS(r) must be taken into account
in the definition of the exchange field.

Crucial for the magnonic nature of the considered struc-
ture is the assumption that the material parameters in the
above equations, namely, A and MS, and, consequently, also
l2
ex, are periodic functions of the in-plane (parallel-plane)

position vector r = (y,z), with a period equal to the lattice
vector a.

In MCs composed of two materials, each of these material
parameters can be expressed by two terms, MS,A, MS,B and AA,
AB, representing its respective values in each of the constituent
materials. In the case of the ADL considered in this study, MS,A

refers to the air holes and is set to a small value close to zero
(see below). MS,B refers to permalloy. The lattice vector a in
a rhombic lattice is a superposition of two primitive vectors:
at φ = 0◦, we consider a1 = aẑ, a2 = a/2(

√
3ŷ − ẑ). At φ =

30◦, the primitive vectors read a1 = aŷ/2 + √
3aẑ/2 and a2 =

aŷ/2 − √
3aẑ/2, where a is the lattice constant [see Fig. 5(a)].

To solve Eq. (1), we will use Bloch’s theorem, which
asserts that a solution of a differential equation with periodic

coefficients can be represented as a product of a plane-wave
envelope function and a periodic function:

m(r) =
∑

G

mq(G)ei(q+G)·r, (5)

where G = (Gy,Gz) denotes a reciprocal lattice vector of
the considered structure; in the case of the rhombic lattice,
we get for φ = 0 G = 2π

a
( 2ny−nz√

3
, − nz) and for φ = 30◦,

G = 2π
a

(ny,(2nz − ny)/
√

3); ny , and nz are integers. The
Bloch wave vector q = (qy,qz) refers to those spin waves
that, according to Bloch’s theorem, can be limited to the first
BZ. The reciprocal lattice of the rhombic structure is shown
in Fig. 5(b). The M and K points are at the boundary of
the first BZ. The M point is in a distance of 2π/(a

√
3) =

0.907 × 105 rad/cm from the BZ center (� point) and the K
point is in a distance of 4π/3a = 1.05 × 105 rad/cm from
the BZ center. The solid (dotted) lines along two orthogonal
directions represent the wave-vector range studied in BLS
experiments for the φ = 30◦ (φ = 0◦) geometry. The maximum
value q of the BLS experiment goes beyond the boundary of the
first BZ as noted above. φ is the angle between bias magnetic
field H and the dotted horizontal line in the structure presented
in Fig. 5(a).

In the next step, we perform the Fourier transformation
to map the periodic functions MS and l2

ex in Eq. (1) to the
reciprocal space. The transformation formulas are

MS(r) =
∑

G

MS(G)eiG·r, (6)

l2
ex(r) =

∑
G

l2
ex(G)eiG·r. (7)

In the case of circular antidots, the Fourier components of
the saturation magnetization MS(G) and the squared exchange
length l2

ex(G) can be calculated analytically. The formula for
the saturation magnetization reads

MS(G) =
{

(MS,A − MS,Py) 2πR2√
3a2 − MS,Py, for G = 0,

(MS,A − MS,Py)2 2πR2√
3a2

J1(GR)
GR

, for G �= 0,
(8)

where J1 is a Bessel function of the first kind, R is the radius of
a hole, MS,Py is the saturation magnetization of Py, and MS,A

is the nonzero magnetization, which we intentionally attribute
to the holes. A nonzero value is needed for the convergence
of the PWM. We take a magnetization at least ten times lower
than MS,Py.59 The formula for l2

ex(G) has the same form.
We need formulas for the static and dynamic demagnetizing

fields, Hms,z(r,x), hms,x(r,x), and hms,y(r,x), to finalize the
formalism, in which an eigenvalue problem in the reciprocal
space is derived from Eq. (1). The details of derivation and
formulas for Hms,z(r,x), hms,x(r,x), and hms,y(r,x) can be
found in Ref. 11 [see Eqs. (5)–(7) there]. Because the slab is
thin enough (which is the case of the considered ADL structure
with d = 30 nm), the nonuniformity of the demagnetizing field
across its thickness can be neglected, and the value of the
respective demagnetizing field for x = 0 will be used in the
PWM calculations.

The substitution of the Eqs. (5)–(8) and Eqs. (5)–(7) from
Ref. 11 into Eq. (1) leads to the algebraic eigenvalue problem
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with eigenvalues iω/γμ0H :

M̂mq = i
ω

γμ0H
mq, (9)

where the eigenvector reads

mT
q = [mx,q(G1), · · · ,mx,q(GN ),my,q(G1), · · · ,my,q(GN )],

(10)

when a finite number N of reciprocal lattice vectors is used
in the Fourier series of Eqs. (5) and (7). The elements of the
matrix M̂ are specified in Appendix.

We solve the system of equations defined by Eq. (9) using
standard numerical procedures designed for solving complex
matrix eigenvalue problems. All the eigenvalues found by
these procedures must be tested for convergence, though. A
satisfactory convergence of numerical solutions of Eq. (9) for
all the structures considered proves to be assured by the use of
1681 reciprocal lattice vectors.

A remark must be made on the application of the PWM to
the calculation of the magnonic band structures of ADLs with
nonmagnetic inclusions such as holes. The difficulties lie in the
very formulation of the equations of motion (the LL equation)
for inhomogeneous media. The LL equation describes the
dynamics of the magnetization vector in magnetic materials;
in nonmagnetic media the magnetization is zero, and the LL
equation becomes undefined. This implies the occurrence of
nonphysical solutions, describing the dynamic components of
the magnetization vector in the nonmagnetic material, in the
total set of solutions.

In the ADL under consideration, the static magnetization
cuts across the borders between a ferromagnet and a non-
magnetic material. This results in an inhomogeneous static
demagnetizing field, locally reducing the magnetic field in
the magnetic material. At the same time, the stray field
substantially increases the value of the internal magnetic field
in the holes. This can be observed in Figs. 6(a) and 6(c),
where the component Hdem,z of the static demagnetizing field
parallel to H is shown as a color-coded map. We consider
the ADL in the two configurations φ = 0◦ [see Fig. 6(a)] and
φ = 30◦ [see Fig. 6(c)]. In other words, the stray field shifts
up the nonphysical solutions to higher frequencies. The exact
frequency range in which the nonphysical solutions occur
depends on the structure of the ADL and the ferromagnet. If the
shift is not sufficient to push away the nonphysical solutions,
a further shift in frequency is required. For this purpose, we
propose the introduction of an inhomogeneous field of uniaxial
anisotropy along the direction of the applied magnetic field.
With assumed values being bigger than 1 T in the hole region
and 0 T in the magnetic material, the uniaxial anisotropy field
shifts the nonphysical solutions far enough, above 16 GHz,
while the frequencies of the other solutions remain unaffected.

In Figs. 6(b) and 6(d) we show the component of the static
demagnetizing field Hdem,y (perpendicular to H ) calculated
from formulas derived in the same way as Hdem,z in Eq. (5) in
Ref. 11. The regions of the ADL with maximum and minimum
values of Hdem,y correspond to the regions where the direction
of the static magnetization can deviate from the saturated state
assumed in the PWM formalism. Neglecting the nonuniform
static magnetic field perpendicular to H is justified for, both,
strong external fields that saturate the ADL and those SW
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FIG. 6. (Color online) Components Hdem,z (upper row) and Hdem,y

(lower row) of the static demagnetizing field calculated according to
Eq. (5) from Ref. 11 in an ADL for the two different orientations of
H with respect to the crystallographic structure: (a) and (b) φ = 0◦

(left column) and (c) and (d) φ = 30◦ (right column). Negative values
of Hdem in the upper row are opposite to the bias field H, which is
assumed to point in the horizontal direction for all panels. Note that the
lattice is rotated by 30◦ between the left and right columns. For these
graphs, H is always in horizontal direction and the ADL is rotated.

modes that have large precession amplitude concentrated in
the regions with negligible Hdem,y, e.g., for the edge modes. It
means also that PWM results for the SWs that have precession
amplitudes spread across the ADL can be used only for the
qualitative interpretation of the experimental results.

We performed calculations for the 30-nm-thick ADL made
of Py with a rhombic arrangement of holes [see Fig. 5(a)].
The lattice constant was taken to be a = 400 nm. To obtain
agreement with experimental results, especially for the edge
modes, we had to increase the radius of the holes to the value
R = 130 nm. It was 4% larger than the nominal value. For
the PWM calculations, we used MS = 800 kA/m and A =
1.0 × 10−11 J/m. We note that the magnetic parameters used
in the PWM to remodel the wave-vector-dependent BLS data
differed by 3% (MS) and 30% (A) from the parameters taken
for the micromagnetic simulations valid at q = 0. The value of
the exchange constant was, in particular, relevant to account
for the wave vector dependence at large q, which was not
relevant for Ref. 23 and the micromagnetic simulations in
Fig. 2. To model the q-dependent BLS data in the present
manuscript, we needed to refine the value of A. We considered
μ0H = 90 mT being directed along the z axis. To address
the two configurations studied in the experiments (φ = 0◦ and
30◦), we rotated the ADL including the in-plane components
of the coordinate system while the bias field remained in the
same direction [see Fig. 5(a)].

The solution of Eq. (9) yields both eigenfrequencies ω

and eigenvectors mq. The latter are the Fourier coefficients
of the dynamic magnetization components. Spatial profiles of
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these components can be determined on the basis of Bloch’s
theorem [see Eq. (5)] and the eigenvectors mq found for a given
q. When the eigenvectors in Eq. (5) are known the relative
intensities of BLS spectra for different angles of the incident
light can be calculated.52 For propagating SWs, only the
perpendicular-to-the-ADL-film component of the dynamical
magnetization mx(r) ∝ ei(q·r+ωt) will contribute to the inelastic
light scattering process at the incident angle of the light which
determines the wave vector q. If the investigated spin wave
mode is described by a mode profile m(r), the intensity I is
determined by the Fourier component mx(q) of the mode:

I ∝ |mx(q)|2. (11)

This means that the square of the modulus of the fundamental
harmonics mx(q) is proportional to the signal strength detected
by BLS.16 [The formula does not consider microscopic details
of the inelastic light scattering process itself and thus does not
account for asymmetries encountered experimentally between
Stokes and anti-Stokes processes in BLS (c.f. Fig. 4).] In
this description, q does not need to be limited to the first
BZ and can span over any point of the reciprocal space.
The range of wave vectors investigated in this study are
marked by solid and dashed lines in Fig. 5(b). In Eq. (11),
we do not take into account both the asymmetry of the
efficiency of the magneto-optical interactions and the con-
tribution of the in-plane component of the magnetization
vector.

In the next section, we will show the results of the PWM
calculations for φ = 0◦ and φ = 30◦. In both cases, the two
relevant wave vector directions are addressed according to
the MSBVW (q‖H) and MSSW (q ⊥ H) geometries. The
magnonic band structures, measured BLS intensities and
calculated spin-precession profiles are discussed for each
scattering geometry at the two different angles φ.

B. Comparison between BLS results and PWM calculations

For φ = 30◦, the magnonic band structure does not exhibit
mirror symmetry at the border of the first BZ for wave vectors
perpendicular to H, i.e., along qy shown by the solid line in
Fig. 5(b). Note that the paths in the BZ from � to K point (qy ≈
1.05 × 105 rad/cm) and beyond K point are not equivalent.
This is contrary to the propagation along the z axis (along H).
In this case there is mirror symmetry in the magnonic band
structure. The two different symmetries are reflected in PWM
results and in BLS spectra.

1. MSSW geometry for φ = 30◦ with qy �= 0

For the MSSW geometry with φ = 30◦, the magnonic band
structure and relative BLS intensities calculated by the PWM
are shown in Figs. 7(a) and 7(c), respectively. In Fig. 7(a),
the PWM results (lines) are superimposed on the BLS data
(circles). Magnonic bands with predicted large scattering cross
sections are emphasized by bold lines. In agreement with BLS
data, the intensity of the low-frequency edge mode, i.e., mode
E, disappears at the border of the first BZ [K point in Fig. 5(b)]
where mode EAS starts to be visible. From the calculated
spin-precession amplitudes [see Fig. 7(b)], we see that two
modes E and EAS are edge modes with in-phase (symmetric)
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FIG. 7. (Color online) (a) Magnonic band structure in MSSW
geometry for φ = 30◦ (qz = 0). Circles represent peaks in BLS
spectra. Thin lines are PWM results. Bold and dashed bold lines
emphasize intense excitations as predicted by PWM. The vertical
dashed line marks the border of the first BZ (i.e., the K point) while
the dotted line indicates the q vector where spin-precession profiles
of panel (b) have been calculated. (b) Maps show spin-precession
profiles, i.e., modulus of the amplitude of the component mx of the
dynamic magnetization, for qy = 0.41 × 105 rad/cm. We display the
most intense modes E, EAS, D, F, and A. Modes E and EAS are edge
modes. Mode A has a spin-precession profile resembling mode A
found in the micromagnetic simulations. (c) Relative values of BLS
intensities as calculated by PWM for different values of qy given in
units of 105 rad/cm. The intensities of E and EAS modes interchange
at qy = 0.79×105 rad/cm.

and π phase-shifted (antisymmetric) oscillations, respectively,
in the unit cell. The EAS mode is visible at large wave vectors q

when the mode wavelength matches the one probed by BLS. In
agreement with the experimental results, the PWM calculation
shows that mode E exhibits a significant dispersion in the first
BZ. The PWM provides a group velocity 2.6 km/s at qy =
0.05 × 105 rad/cm, being in good quantitative agreement with
the measured value. We attribute the relatively large group
velocity to a strong interaction between the edge excitations
of neighboring holes which oscillate in phase. The strong
coupling allows spin waves to propagate from hole to hole.
The PWM thus substantiates deep-submicron SW channels
between rows of holes [see mode E in Fig. 7(b)]. For the mode
E, the PWM calculations predict the formation of a miniband
that has not been resolved experimentally due to the low cross
section of this mode for qy > 0.8 × 105 rad/cm. In contrast,
the mode EAS is almost independent on q in the first BZ.
The out-of-phase edge modes between neighboring holes are
much less coupled and, as a consequence, spin waves can not
propagate.

From Fig. 7 we find that the rhombic lattice gives rise
to numerous modes of different intensity at large f . Many
of them exhibit only a small or vanishing slope 2π

df

dq
as a

function of qy . The BLS data reflect the most prominent ones
exhibiting nearly constant eigenfrequencies. Still, there are
discrepancies between the calculated and measured intensities
of the modes at large f . We attribute these discrepancies to
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FIG. 8. (Color online) (a) Magnonic band structure in MSBVW
geometry for φ = 30◦ (qy = 0). Circles represent peaks from BLS
spectra. The thin lines are the PWM results. Bold lines emphasize the
modes with large intensity calculated by PWM. The vertical dashed
line marks the border of the first BZ (i.e., the M point) while the
dotted line indicates the q vector where mode profiles of panel
(b) have been calculated. (b) Maps show modulus of component
mx of the dynamical magnetization of modes E, EAS, F, C, and A
for qz = 0.41 × 105 rad/cm. (c) Relative values of BLS intensities
calculated by PWM for different values qz (values are given in units
of 105 rad/cm). The intensity of mode EAS is close to zero near the
BZ center and starts to appear at qz = 0.41×105 rad/cm. Then, its
intensity increases with increasing qz. In BLS spectra, mode EAS

starts to be visible only around 1.15 ×105 rad/cm.

the approximations made in the PWM calculations, where we
assumed magnetic saturation all over the ADL and neglected
the components of the static demagnetizing field that were
perpendicular to the external magnetic field.

2. MSBVW geometry for φ = 30◦ with qz �= 0

In Fig. 8(a), the experimental and calculated frequencies
are depicted for the MSBVW geometry for φ = 30◦. In
this geometry, nearly all the modes exhibit a q independent
eigenfrequency, i.e., they are quantized. In Fig. 8(b), we show
the modulus of the amplitude of the x component of the
dynamical magnetization vector for the most intense modes
at qz = 0.41 × 105 rad/cm. From Figs. 8(a) and 8(b), we find
that the edge excitations (mode E) do not couple significantly
for q being perpendicular to the SW nanochannels. In Fig. 8(b),
we see that the amplitude of the mode A is concentrated
between holes along the direction perpendicular to H. This
spin-precession profile is consistent with micromagnetic sim-
ulations for mode A shown in Fig. 2(b). The mode is the most
intense one for small values of qz [see Fig. 8(c)], but starting at
qz ≈ 1.78 × 105 rad/cm the intensity of the mode C becomes
comparable. Mode C is similar to mode A, but with one nodal
plane along H. This means that this mode can be interpreted as
a higher-order magnetostatic backward volume wave, thereby
residing at smaller eigenfrequency.
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FIG. 9. (Color online) (a) Magnonic band structure in MSSW
geometry for φ = 0◦ (qz = 0). Circles represent peaks of the BLS
spectra. The thin lines are the PWM results. Bold lines emphasize
modes with large intensity calculated by PWM. The vertical dashed
line marks the border of the first BZ (i.e., the M point) while the
dotted line indicates the q vector where mode profiles of panel (b)
have been calculated. (b) Maps show modulus of the component mx

of the dynamic magnetization vector for φ = 0◦ and qy = 0.41 ×
105 rad/cm for modes EAS, E, D, C, and A. Modes EAS and E are
edge excitations of different symmetry. Mode D has a spin-precession
profile resembling mode D found in micromagnetic simulations. (c)
Relative values of BLS intensities predicted by PWM for different
values of qy given in units of 105 rad/cm. There is a good agreement
between PWM and BLS data for the edge excitations: mode EAS is
extremely weak, while mode E has a significant intensity.

3. MSSW geometry for φ = 0◦ with qy �= 0

For wave vectors qy perpendicular to H applied along the z

axis, the dispersion relation f (q) exhibits mirror symmetry
with respect to the boundary of the first BZ at φ = 0◦.
The PWM results (lines) are superimposed on the measured
BLS frequencies (circles) in Fig. 9(a). The magnonic bands
with large scattering cross section are emphasized by bold
lines. In Fig. 9(c) relative intensities calculated by PWM are
presented.

The spin-precession profiles of modes with most intense
peaks for qy = 0.41 × 105 rad/cm are shown in Fig. 9(b).
The edge excitations forming the low-frequency mode EAS are
found to precess out of phase. The scattering cross section is
small and, consistently, mode EAS is not detected by BLS in
the whole wave vector range explored. The next higher lying
mode E has a nonzero peak in the BLS spectra consistent
with the large intensity predicted by the PWM [bold line in
Fig. 9(a)]. The PWM predicts mode E to form a narrow allowed
miniband with the frequency minimum at q = 0 and frequency
maximum at the BZ boundary. However, the BLS data show
more or less a constant eigenfrequency as a function of qy .
Numerous further modes of weak intensities are predicted by
the PWM. They give rise to an involved band structure at high
frequencies with several crossings and avoided crossings. The
modes detected by BLS exhibit almost no variation with q.
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FIG. 10. (Color online) (a) Magnonic band structure in MSBVW
geometry (qy = 0) for φ = 0◦. Circles represent the points from the
BLS measurements, the thin lines are the PWM results. Bold lines
emphasize the modes with high intensity as calculated in PWM. The
vertical dashed line marks the border of the first BZ (i.e., the K point)
while the dotted line indicates the q vector where mode profiles
of panel (b) have been calculated. (b) Maps show modulus of the
dynamic component mx for φ = 0◦ and qz = 0.41 × 105 rad/cm for
the most intense SW modes: EAS, E, D, C, and A. (c) Relative values
of BLS intensities calculated using the PWM for SWs propagating
along the z axis for different values of qz given in units of 105 rad/cm.

4. MSBVW geometry for φ = 0◦ with qz �= 0

Calculated magnonic band structure and BLS intensities are
shown in Figs. 10(a) and 10(c), respectively, considering the
MSBVW geometry at φ = 0◦. Interestingly, a low-frequency
mode appears in the BLS spectra for qz > 1.0 × 105 rad/cm
and a frequency below 5 GHz. The observation of this low-
frequency mode is consistent with PWM intensity calculations
which predict an increasing intensity [see Fig. 10(c)] for this
mode when qz is larger that 105 rad/cm. Inspection of the
spatial profile for this mode indicates that it is localized close
to the hole edges and exhibits an antisymmetric character. This
explains why it is visible only in the large wave vector range
where the mode wavelength matches the one of the probing
laser light.

The BLS data [see Fig. 10(a)] show a constant eigenfre-
quency for most of the modes. Only mode A (at about 12.5 GHz
at qz = 0) exhibits a (negative) slope with increasing qz. The
PWM predicts such a branch at a slightly higher frequency.
A miniband behavior is not found. The mode crosses the BZ
boundary qBZ with a nearly constant slope. Spin-precession
profiles of selected modes in MSBVW geometry for φ = 0◦
are presented in Fig. 10(b).

VI. CONCLUSIONS

We have reported SW modes in a periodic array of
nanoholes forming a rhombic antidot lattice in a thin permalloy
film. Using the PWM, we have substantiated spin wave propa-
gation via coherently coupled edge excitations. Applying H at
φ = 30◦, the rhombic ADL supports a propagating MSSW
mode (mode E). The mode experiences a positive group

velocity that is in good agreement with the result of PWM
calculations, which resides in a 96-nm-wide channel formed
by neighboring holes. Propagating spin waves in such ex-
tremely deep-submicron channels have not been reported when
nano-optics with spin waves was discussed.53 Only recently,
sub-100-nm spin wave channels were observed in permalloy
nanowires exhibiting a zigzaglike magnetic configuration.54,55

Though, in the antidot lattice, the internal field has a periodic
variation along the propagation direction and a full magnonic
miniband has been predicted by the PWM calculations, the
miniband behavior has not been experimentally observed. This
is different to the coupled edge excitations recently found in
a square lattice of holes.11 The PWM allows us to explain the
absence of a magnonic miniband by symmetry arguments of
the reciprocal space of the rhombic lattice and by cross-section
calculations. Propagation does not occur for a wave vector
q parallel to H at φ = 30◦, i.e., perpendicular to the SW
nanochannels. The nanochannels do not seem to couple across
the rows of holes. When the angle is changed to φ = 0◦, the
slope of f (q) is significantly reduced for mode E in both scat-
tering geometries. The BLS data provide vg ≈ 0. By changing
the angle from one to the other high-symmetry direction, the
propagation is thus suppressed. The high-frequency mode A
is found to exhibit propagation with a negative vg only for the
complementary high-symmetry direction compared to mode E.

Aside from the good agreement between PWM and BLS
data for the low-frequency edge modes, there is a quantitative
difference in BLS intensities for the modes with higher
frequencies. We think that the source of this discrepancy lays
in assumptions of the PWM. Here, we assume a uniform mag-
netization and neglect components of the static demagnetizing
field perpendicular to H. Both assumptions are connected
with each other as the demagnetizing field provokes locally
a rotation of magnetic moments away from the direction of the
bias field.

In conclusion, we have shown that rhombic antidot lattices
open novel perspectives for spin wave guiding. Spin waves
of both, positive and negative group velocities propagate
through the lattice. These dynamic properties are relevant
for the research field of magnonics where transmission and
modification of spin waves are considered for magnetic
nanodevices operating in the GHz frequency regime.
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APPENDIX

The matrix M̂ of the eigenvalue problem (9) can be written
in a block-matrix form:

M̂ =
(

M̂xx M̂xy

M̂yx M̂yy

)
. (A1)
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The submatrices in Eq. (A1) are defined as follows:

M̂xx
ij = −M̂

yy

ij = −i
qy + Gy,j

H |q + Gj |S(q + Gj )MS(Gi − Gj ), (A2)

M̂
xy

ij = δij +
∑

l

(q + Gj ) · (q + Gl)

H
l2
ex(Gl − Gj )MS(Gi − Gl) + (qy + Gy,j )2

H |q + Gj |2 [1 − C(q + Gj ,x]MS(Gi − Gj )

− (Gz,i − Gz,j )2

H |Gi − Gj |2 MS(Gi − Gj )[1 − C(Gi − Gj ,x)], (A3)

M̂
xy

ij = −δij −
∑

l

(q + Gj ) · (q + Gl)

H
l2
ex(Gl − Gj )MS(Gi − Gl) − 1

H
C(q + Gj ,x)MS(Gi − Gj )

+ (Gz,i − Gz,j )2

H |Gi − Gj |2 MS(Gi − Gj )[1 − C(Gi − Gj ,x)], (A4)

where indexes of reciprocal lattice vectors i, j, and l are integer-numbered reciprocal lattice vectors. The additional functions
used in the equations above are defined as follows:

S(q,x) = sinh (|q|x)e−|q|d/2, C(q,x) = cosh (|q|x)e−|q|d/2. (A5)
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