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Quantum kinetic theory of current-induced torques in Rashba ferromagnets
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Motivated by recent experimental studies of thin-film devices containing a single ferromagnetic layer, we
develop a quantum kinetic theory of current-induced magnetic torques in Rashba-model ferromagnets. We
find that the current-induced spin densities, responsible for the switching behavior, are due most essentially
to spin-dependent quasiparticle lifetimes and derive analytic expressions for relevant limits of a simple model.
Quantitative model parameter estimates suggest that spin-orbit coupling in the adjacent metal normal magnetic
layer must play an essential role in the strength of the switching effect.
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I. INTRODUCTION

The central goal of spintronics is the discovery of efficient
mechanisms for electrical control of nanomagnet orienta-
tion. The past 15 years have witnessed many advances
(see reviews,1–3 and references therein) that are potentially
important for information storage technologies and, because
they depend on improved understanding of nonequilibrium
collective properties, also interesting from a fundamental point
of view. A breakthrough has recently been achieved with
the demonstration4,5 of reliable electrically controlled mag-
netization switching in trilayer thin-film devices, illustrated
schematically in Fig. 1, that have a single perpendicular-
anisotropy magnetic layer. [Magnetization control with weak
current-induced torques had been observed previously6 in
(Ga,Mn)As.] In the demonstration devices the ferromagnetic
layer was Co, the normal metal layer Pt, and the insulator
AlOx . (Reference 5 also studied other insulators to partially
demonstrate the universality of the effect.) Although they
appear to be observing the same effect, Refs. 4 and 5
ascribe the current-induced torques to different mechanisms.
Reference 4 speculates that the effect is due to Rashba
spin-orbit (SO) interactions of carriers in the ferromagnet
and that it is analogous to the surprising semiconductor
two-dimensional electron gases (2DEGs) ẑ direction spin
densities induced by current flow parallel to an applied
magnetic field.7,8 On the other hand, Ref. 5 argued that the
torques are due to a large spin Hall current in Pt that flows
vertically into the magnetic layer. The two effects are identical
from the symmetry point of view, as already observed in
Ref. 4.

The spin-Hall-effect point of view has been elaborated
on rather extensively in Ref. 5. The model we study in this
paper is most closely related to the Rashba effect interpreta-
tion. Current-induced torques in uniform ferromagnets have
been recognized theoretically for several years as a general
consequence of spin-orbit coupling (see Refs. 9–11, as well
as review,3 and references therein). For Rashba ferromagnets
with ẑ direction inversion symmetry breaking, out-of-plane
spin densities can be explained8 only by a full solution of
the two-band quantum kinetic equation. With this motivation
we report on a full quantum kinetic theory of current-induced
torques in a ferromagnetic conductor with structural inversion
asymmetry.

The rest of the paper is organized as follows. In Sec. II
we describe a model for a ferromagnet with Rashba spin-orbit

interaction used here. In Sec. III we calculate the current-
induced torques appearing in the latter model by solving the
appropriate quantum kinetic equation, and finally discuss the
obtained results in Sec. IV.

II. RASHBA FERROMAGNETS

Quantitative microscopic theories of transport in transi-
tion metal ferromagnets are complicated by the presence at
the Fermi energy of several 3d- and 4s-derived electronic
bands that have complicated Fermi surfaces. Most transport
properties of collinear ferromagnetic conductors, including
the important giant and tunnel magnetoresistance effects,
can nevertheless be understood qualitatively in terms of a
simple two-channel model12–15 in which ↑-spin and ↓-spin
carriers conduct in parallel with conductances that depend
strongly on the magnetization direction and its space depen-
dence. The direction dependence is due to a combination
of spin-split band structure and spin-dependent scattering
effects. We will see that the spin-dependent transport is also
important for the present problem. We take the point of
view that qualitative insights can be achieved by studying
a simplified single band model to account for the interplay
between structural inversion asymmetry and spin-dependent
transport.

Cobalt is a strong ferromagnet16 in which the majority-spin
Fermi surface intersects only a high-velocity free-electron-
like (s) band with a substantial conductance, while the
minority-spin Fermi surface intersects several complex bands
with generally small velocities, large densities of states,
and dominant atomiclike d character. Minority-spin states at
the Fermi energy have strongly hybridized free-electron-like
and d amplitudes. Even high-velocity minority-spin states
contribute less effectively to transport because they scatter
rapidly into the many available d states. To capture the essential
physics we employ a phenomenological two-band model
with short-lifetime minority spins and long-lifetime majority
spins, neglecting the d-orbital contribution to transport as is
customary in theories of giant magnetoresistance.12–15 We
do acknowledge, however, that band crossings between the
high-velocity s-like states we model and the low-velocity
minority-spin d-like states we neglect could play an important
quantitative role. Scattering is spin-dependent because any
crystal defect will produce different potentials for majority
and minority electrons when strong exchange is taken into
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FIG. 1. (Color online) Schematic view of trilayer devices for elec-
trical magnetic switching. A perpendicular-anisotropy ferromagnetic
layer (Co) is sandwiched between a metallic layer (for example, Pt)
and an insulating (for example, AlOx) capping layer. The transport
current, jtr, flows in the itinerant ferromagnet and normal metal in the
direction parallel or antiparallel to the external magnetic field, Bext.

account, and because minority s electrons can scatter into
empty minority d-electron states. As is common in model
studies, we add spin-orbit coupling and vertical structural
inversion asymmetry to the two-band model by adding a
Rashba SO term to the Hamiltonian.

These considerations lead to a Rashba-model ferromagnet
with band Hamiltonian:

Hs =
∫

dr �†
σ

(
ε̂p − 1

2
Bpσ + Ûdis

)
�σ . (1)

Here ε̂p denotes the operator for the band energy of spin-
orbit and exchange uncoupled itinerant electrons. Because
the Co layer is thick enough (∼10 Å) to support several
two-dimensional (2D) subbands, we take p to be a 3D vector.
The vector of Pauli matrices, σ , acts on the electron’s spin
index, and the momentum-dependent effective magnetic field
includes an exchange contribution in the direction m of
the d-electron magnetization and a spin-orbit field in the
ẑ × p direction: Bp = −�xcm + 2αẑ × p, α and �xc being
the strength of the Rashba and exchange couplings, respec-
tively, while m describes the direction of the ferromagnet’s
magnetization. (We neglect Zeeman coupling in comparison,
assuming that it is important only in helping to fix the
direction of m.) To avoid confusion in what follows, we
define m to be the direction of local magnetization. Thus
the majority (minority) electrons have their spins antialigned
(aligned) with the local magnetization, which corresponds to
�xc > 0. Ûdis is the disorder potential. We adopt a short-
range-disorder model with a spin dependence that is dictated
by m:

Ûdis =
∑

i

δ(r − ri)(u↓P 0
+ + u↑P 0

−), (2)

where the index i labels the impurity positions ri , P 0
± = (1 ±

σ · m)/2 are projectors onto the local direction of the exchange
field, and u↑ and u↓ characterize the strengths of majority-
and minority-spin scattering, respectively. Because majority-
spin electrons have a higher mobility we must chose u↓ > u↑.
Our model neglects inelastic phonon and magnon scattering

which should be relatively unimportant in highly disordered
ultrathin films even at room temperature. Below we refer to the
high-velocity electrons described by the Rashba ferromagnet
model as the transport electrons, and to the spin density of the
d electrons as the magnetization.

III. CURRENT-INDUCED TORQUES

Because the dynamics of the itinerant electrons in magnetic
conductors is much faster than that of the magnetization, it is
sufficient to consider the kinetics of transport electrons in a
static exchange field.

The effective magnetic field exerted on the magnetization
by the transport electrons is due to their mutual exchange
interaction10 and therefore proportional to �xc:

Heff = − 1

MS

δ〈H 〉s
δm

= −�xc

MS

〈ŝ〉s . (3)

The subscript “s” on the angle brackets indicates the expected
value in the transport steady state. Here ŝ is the transport
electron spin-density operator ŝ = h̄�†

σσ σσ ′�σ ′/2 and MS is
the d-electron spin density. The theory of current-induced
torques is therefore equivalent to a theory of 〈ŝ〉s . The required
transport theory differs essentially from the 2DEG problem
considered in Ref. 8, since the spin dependence of transport
comes primarily from the spin dependence of impurity scatter-
ing in an itinerant ferromagnet and the presence of a minority
Fermi surface for d-like electronic bands, rather than solely
from band-structure spin splitting and angular dependence of
scattering as in a 2DEG.8 (Below we will also present the
leading-order results for the latter case.) The component of
〈ŝ〉s perpendicular to the magnetization, which is responsi-
ble for magnetization switching in the devices of interest,
depends essentially on current-induced interband coherence
and must be evaluated using a two-band quantum kinetic
theory.

The kinetic equation can be obtained along the route
outlined in Ref. 17. In this paper we do not, however, switch
to the energy representation, choosing to work in the more
intuitive p representation. The final form of the equations we
use is therefore slightly different.

To facilitate the discussion that follows, we first establish
some notation. In the absence of disorder, the eigenvalues of
Hamiltonian (1) are given by

εpν = εp − 1
2νBp, (4)

where the index ν = ± distinguishes majority (+) and minor-
ity (−) bands. The projection operators onto the corresponding
eigenstates are

Ppν = 1

2

(
1 + ν

σ · Bp

Bp

)
. (5)

We assume that the impurities are sufficiently weak, such
that the Born approximation applies. For disorder of the form
specified in Eq. (1), the disorder self-energy is

	̌(r) = niγ̂ Ǧ(r,r)γ̂ , γ̂ = u↓P 0
+ + u↑P 0

−, (6)
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where the check accent denotes matrices in Keldysh space,18

and ni is the impurity concentration.
The quantum kinetic equation for the two-band density

matrix f̂p, linearized with respect to a time-independent
uniform external electric field E, is

∂t f̂p + 1

2

{
∂pεp − 1

2
∂p(Bpσ ),∂rf̂p

}
− i

2
[Bpσ ,f̂p]

+ eE∂pf̂
eq
p = Îst . (7)

In the above equation, square, [. . .], and curly, {. . .}, brack-
ets denote commutators and anticommutators, respectively.
Further, f̂p is 2 × 2 matrix in spin space and f̂

eq
p =∑

ν Ppνfth(εpν), where fth(E) is the Fermi function, is the
equilibrium distribution function. Disorder effects appear in
the collision integral Îst which takes the form

Îst = −πni

∑
ν,ν ′

∫
d3p′

(2π )3
δ(εpν − εp′ν ′ )(Ppν f̂pγ̂ Pp′ν ′ γ̂

+ γ̂ Pp′ν ′ γ̂ f̂pPpν − Ppν γ̂ f̂p′Pp′ν ′ γ̂ − γ̂ Pp′ν ′ f̂p′ γ̂ Ppν).

It is easy to check that the collision integral vanishes when f̂p

is replaced by f̂
eq
p .

In what follows, we assume that the spin splitting of the
transport electrons Bp is small compared to their Fermi energy
EF . In the analogous semiconductor 2DEG kinetic equation8

one has to keep at least the terms linear in Bp/EF in the kinetic
equation in order to consistently describe the coupling between
charge currents and spin densities. In the present case, (Bp/EF )
still playing the role of the small expansion parameter in the
theory, the spin and charge densities are already coupled at
(Bp/EF )0 level because of spin-dependent scattering. In order
to isolate the essential physics as transparently as possible we
initially neglect Fermi surface splitting in the field-generation
and collision terms. It is legal to keep the precession term,
which is linear in Bp, since it competes with relaxation rates
only. We comment further on the influence of spin-split bands
below.

We now specialize to the stationary and uniform case.
After straightforward manipulations, using

∑
ν Ppν = 1, per-

forming the integrals over p′ in the collision integral, and
representing the distribution function as a sum of scalar and
vector parts using f̂p = np + σ · fp, we obtain the following
equations:

eE∂pfth = − 1

τs
(np − np) − m

τd
· (fp − fp),

Bp × fp = −m
τd

(np − np) − 1

τs
(fp − fp)

− 1

τ⊥
m × fp × m, (8)

where 1/τs,d = πniN0(u2
↓ ± u2

↑) > 0, N0 being the density
of states at the Fermi level, and the overbar accent denotes
the average over the directions of p. The spin-decoherence
rate, 1/τ⊥, i.e., the rate of local relaxation of spin components
perpendicular to m, is equal to πniN0(u↓ − u↑)2 in this model,

and thus is a function of 1/τs,d . We keep it as an independent
parameter to recognize that this property does not hold for
general spin-dependent disorder models.19 Longitudinal spin
density (aligned with m) is not generated to linear order in
the spin-orbit interaction in the present case and we therefore
do not need to the introduce the corresponding relaxation
time.

The solution of Eq. (8) is straightforward. The scalar
equation is used to eliminate the charge response from the
vector equation, thereby introducing a generation term and
an additional relaxation term in the equation for fp. To linear
order in α, we first obtain an equation for the longitudinal spin
response (the component of fp parallel to m), which does not
directly produce a torque. When this solution is substituted into
the equation for the transverse response it adds a generation
term to the equation for the perpendicular component because
of its precession in the spin-orbit field. The current-induced
spin densities and currents are then obtained by summing the
scalar and vector responses over p.

Using Eq. (3), we finally obtain the following expressions
for the effective magnetic fields that act on the ferromagnet’s
magnetization, and for the current density flowing in the film
in x̂ direction:

HR
eff = αmjtr

|e|MS

τ↑ − τ↓
τ↑ + τ↓

�2
xcτ

2
⊥

1 + �2
xcτ

2
⊥

m × ŷ × m,

HS
eff = αmjtr

|e|MS

τ↑ − τ↓
τ↑ + τ↓

�xcτ⊥
1 + �2

xcτ
2
⊥

ŷ × m, (9)

jtr = ntre
2

m
(τ↑ + τ↓)E.

where jtr is the transport current density, ntr is the transport
electron density per spin; we assumed for simplicity a
parabolic spectrum of transport electrons, and introduced m,
the corresponding band mass (the same for majority and
minority electrons). The latter assumption is not crucial,
and has been invoked only for reasons of clarity of the
expressions. Finally, τ−1

↓,↑ = τ−1
s ± τ−1

d are the minority (1/τ↓)
and majority (1/τ↑) spin scattering rates. These expressions
are the main result of this work. We identify the field HR

eff ,
which produces a torque identical to a field in the ŷ direction
and cannot switch a perpendicular film as the Rashba field.
We note that the expression for the Rashba field given here
is parametrically larger than the one in existing literature,9

which contains an additional �xc/EF smallness factor. If
Ref. 20 was analyzed using our expression it would decrease
the experimental estimate of the Rashba coupling parameter.
The field HS

eff produces a torque that has the same dependence
on magnetization as the torque produced by a ŷ-polarized
spin-current flowing into the magnetic layer, and can switch
out-of-plane magnetic moments.4,5

In the general case of spin-dependent scattering and
exchange fields of arbitrary strength the two-band quantum
kinetic equation cannot be solved analytically. There are
however other limits in which instructive analytic results
can be obtained. One interesting limit is that of a 2D
Rashba ferromagnet with spin-independent disorder and a spin
splitting that is larger than the Bloch state lifetime. Results for
the effective field, heff , to the leading order in α and in the
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clean limit, Bpτ 	 1, are

hR
eff = αmjtr

2|e|MS

�xc

EF

ŷ,

(10)

hS
eff = −γ0

αmjtr

2|e|MS

�xc

EF

1

�xcτ

mxmz

1 + m2
z

m.

In the above expressions γ0 = (pF

vF

∂vF

∂pF
− 1), pF and vF being

the Fermi momentum and Fermi velocity, respectively, is the
nonparabolicity parameter, introduced in Ref. 8. In Eqs. (10),
the field hR

eff is the Rashba field found earlier in Ref. 9. The
field hS

eff , despite being aligned with the magnetization, can in
principle lead to switching since it is odd in mz. The factor
1 + m2

z in the denominator of the expression for hS
eff can be

traced to the fact that for a 2DEG with a Rashba SO, the
Dyakonov-Perel21 in-plane spin-relaxation time is twice as
long as the out-of-plane one. We have dropped contributions
to heff that are proportional to γ0 but even in mz since they
cannot lead to switching. Terms with the symmetry of HS

eff
from Eq. (9) do appear at O(α3) order, and are also proportional
to γ0, but the corresponding expressions are cumbersome and
are not shown.

By examining these two analytically accessible limits, we
have concluded that the crucial ingredient in the switching
behavior is spin-dependent scattering. It seems likely to us
that the most important source of this spin dependence in Co
is the presence at the Fermi energy of minority spin d electrons
which is captured in Eqs. (9).

IV. DISCUSSION

The physical origin of the effects described here is the
fact that when an electric field is applied to a ferromagnet
with different majority and minority mobilities, the two spin
species react to it differently. This creates spin polarization in
momentum space, whose angular dependence “matches” the
angular dependence of the y component of Rashba SO field.
In this way a component of spin polarization perpendicular to
the ferromagnet’s magnetization is generated. This component
then precesses around the exchange field, and gets relaxed ei-
ther by magnetic scattering or the Dyakonov-Perel mechanism.
A similar scenario was outlined previously8 in connection with
the explanation for out-of-plane spin polarizations in in-plane
fields in 2DEGs with Rashba interactions.

Despite the similar underlying mechanism, the leading
order results in the two models we considered, Eqs. (9) and (10)
have different form. In particular, Eqs. (9) correspond to the
case of spin-dependent impurity scattering, and Eqs. (10)
are those for the case of a spin-split band structure and
spin-independent impurity scattering. The difference is thus
not surprising: since the origin of the spin-dependent scattering
is different in the two models, generation and relaxation terms
have different dependence on the Rashba SO strength.

There is some correspondence between the current-induced
fields and torques that we have evaluated for a Rashba
ferromagnet model, and those found experimentally. The
torques exerted on the magnetization by HS

eff , Eqs. (9), have the
same symmetry properties as the experimental current-induced
torques in Refs. 4 and 5. In addition, the field has the same
sign as observed experimentally, since it implies switching

from up to down direction for current flowing in the direction
of the applied external in-plane magnetic field, if α is positive.
The fact that it is positive in the experiments of Miron et al.
follows from their observation that HR

eff points in the positive ŷ

direction (the coordinate system used in this work is identical to
theirs). This universality is ensured by the transport properties
of Co, in which the majority electrons have a much larger
lifetime. In the case of a 2DEG, Eqs. (10), the direction of the
switching field is less universal, in the sense that it depends on
the details of the band structure through the nonparabolicity
parameter γ0.

The magnitudes of the effective fields in a Rashba ferro-
magnet, Eqs. (9), depend on two parameters, α and �xcτ⊥,
which could be estimated by detailed first principles studies of
Co/Pt multilayers in the presence of a structural asymmetry. By
comparing the ratio of switching and Rashba fields in Eqs. (9),
we observe that the values of HR

eff/jtr ≈ 10−8 T cm2A−1

claimed in Ref. 20, and HS
eff/jtr ≈ 10−9 T cm2A−1, claimed

in Ref. 4 in a similar setup, yield a plausible value of
�xcτ⊥ ∼ 10.

For large �xcτ⊥ our results for the Rashba spin-density
correspond to

sR

ntr
∼ αpF

�xc

vD

vF

, (11)

where vD ∼ eEτ/m is the transport drift velocity. In Co we
estimate that vD ∼ 100 m/s at a current density of 1012 A/m2,
compared to a transport electron Fermi velocity ∼106 m/s.
To estimate the Rashba coupling parameter of Co on Pt, we
assume an electric potential drop of several electronvolts,
roughly comparable to the Fermi energy, over the thickness
tCo of the Co layer. The Rashba coupling strength at the
Fermi energy αpF is then ∼E2

F /(mc2pF tCo), which should
be around 105 times smaller than �xc. We conclude that it is
hard to explain dimensionless current-induced spin densities
much larger than ∼10−9 at 1012 A/m2 in Co based on this
bulk mechanism. On the other hand, the quantitative analysis
in Ref. 5 suggests a switching dimensionless spin-density at
this current level that is ∼10−6. This disparity in orders of
magnitude is consistent with the null result in Ref. 5 for the
magnetic moment tilting in the ŷ direction as a function of
current. We thus note that a substantial enhancement of SO
interactions is needed to attempt explaining the experimental
switching current densities based on the Co Rashba mecha-
nism. This enhancement could come from the hybridization
of Co transport electrons with Pt d orbitals, analogous to SO
enhancement by surface alloying with heavy elements.22 This
hybridization must play an essential role in the switching effect
in both Rashba coupling and spin-Hall scenarios. We therefore
propose that the effect is strongest when these bands are closely
aligned. If so, this may explain the efficacy of Co/Pt structures
and also suggest strategies for optimizing the effect.
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