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Fictitious excitations in the classical Heisenberg antiferromagnet on the kagome lattice
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Using an advanced Monte Carlo algorithm and high-precision spin dynamics simulation, we investigated the
dynamical behavior of the Heisenberg antiferromagnet on a kagome lattice at extremely low temperatures. We
demonstrate that the detection and correct identification of propagating excitations depends crucially on the
choice of coordinates, and we show how modes are displaced in Fourier space if a single, global Cartesian
coordinate system is chosen.
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I. INTRODUCTION

Although frustrated magnetic systems have enjoyed the
attention of the scientific community for many years, they
remain fascinating research subjects and their rich behavior
is far from being completely understood. If only classical
interactions are considered, it is usually an easy task to find the
ground state, which is often degenerate. But once the systems
are thermally excited, intriguing effects such as vortices1 or
magnetic monopoles2 can be observed.

Computational physics provides important tools for probing
the behavior of these magnets. Furthermore, it bridges the
gap between theory and experiment by testing theoretical
predictions which are usually stated for idealized systems that
do not exist in their pure form in nature and are, therefore, not
accessible by experiments. On the other hand, more realistic
models are often too complex for rigorous analysis but are
to some extent treatable in computer simulations, which are
becoming increasingly powerful due to improved algorithms
and faster machines. Spin dynamics methods are valuable
in this respect because they allow the determination of the
dynamic structure factor, which is closely related to results of
inelastic neutron scattering experiments.

One system of great interest is the kagome Heisenberg
antiferromagnet (KHAFM) . Studies of quantum antifer-
romagnets helped pique interest in corresponding classical
systems, see Refs. 3 and 4, and both experiments and
numerical studies of quantum systems continue to this day.5,6

Twenty years ago, an extensive theoretical description3,4,7 was
developed for the classical Heisenberg model, and a number of
numerical studies8–10 have been performed since. Predictions
for dynamical behavior were, in part, confirmed by recently
published results of spin dynamics simulations.11 However,
a branch of unpredicted modes was found and its origin has
not yet been clarified. This makes a closer look at the subject
worthwhile.

The paper is organized as follows: After this introduction,
we will introduce the model and review some established
facts about its behavior. In Sec. III, the methods used in our
work for simulation and analysis are presented. Section IV
is devoted to a presentation and discussion of the results of
the Monte Carlo and spin dynamic simulations, followed by
concluding remarks in Sec. V. The paper concludes with two
Appendixes in which we discuss some calculations in greater
detail and introduce a modification of the Wang-Landau
algorithm.12–14

II. BACKGROUND

In the classical Heisenberg model, three-dimensional vec-
tors s of unit length interact via the Hamiltonian

H = −J
∑
〈ij〉

si · sj , (1)

with a negative interaction constant J favoring antiferromag-
netic spin pairs. The kagome lattice is drawn in Fig. 1. We apply
periodic boundary conditions and assume in the following
that the lattice constant |ai | = 1. If N is the number of sites,
the system contains 2N/3 triangles. The energy is minimal
(Emin = −N |J |) if the sum of the three spins belonging to
each triangle is zero. This leaves the system underdetermined
(frustrated) and the ground state is highly degenerate.

At low enough, but nonzero, temperatures, a common spin
plane is established, at least in finite systems, in a process
called “order by disorder.”9 This “coplanar” state is stabilized
by the entropy of local modes, which can be constructed on
the hexagons of the kagome lattice. Only three distinct spin
direction occur separated by angles of 2π/3, which allows the
assignment of labels σi ∈ {1,2,3} to each spin si according to
the direction toward which it is oriented.

It is then possible to classify configurations {s} according
to their labels {σ }. The ground state condition requires that
each triangle has spins with three different labels; hence, valid
{σ } are also ground state configurations of a three-state Potts
model. However, while the probability distribution over all {σ }
is uniform in the case of the Potts model, there is a selection in
the KHAFM due to entropic effects. This can be understood if
the concept of weather vane loops is employed. These loops
form when two label values are chosen and spins possessing
these values are connected along the bonds of the lattice
[Fig. 2(b)]. Because there are three ways of choosing two out
of the three possible values, three overlapping loop structures
coexist and each spin belongs to two loops. However, within a
single structure, loops never touch but are separated by spins
pointing in the third direction. Therefore, spins of a single
loop can rotate collectively around this direction while causing
only small changes to spin-spin angles and, thus, to energy.
However, unlike in the case of a true weather vane, complete
rotations rarely occur. Instead, relatively large fluctuations in
these collective degrees of freedom occur and account for the
difference between the ground state of the Potts model and
the distribution over different {σ } in the KHAFM. Because
each loop provides one degree of freedom for fluctuations,
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FIG. 1. The kagome lattice and the two lattice vectors a1 and a2.
Spins are placed at the line intersections. The [10] and [11] lattice
directions are shown by (unit) vectors e10 and e11.

a structure with many loops has a higher entropy than a
structure with few loops. In a counter effect, however, entropy
decreases if the loop number becomes very large, and the
maximum loop number does not occur in large enough systems
because it is realized in only six distinct configurations {σ }
possessing the so-called

√
3×√

3 structure (Fig. 3). In the√
3×√

3 state, each hexagon is a weather vane loop and the
loop structure is periodic in three directions with the six wave
vectors k√

3×√
3 = ± 8

3πa1, ± 8
3πa2, ± 8

3π (a1 − a2).
In an analytical study,4 Harris et al. examined the KHAFM

with and without second- and third-nearest-neighbor interac-
tions and predicted a branch of soft modes with frequencies
approaching zero as the temperature decreases as well as
a twofold-degenerate acoustic branch. In the case of only
nearest-neighbor interactions, the frequencies of the acoustic

FIG. 2. (Color online) (a) Typical configuration at low temper-
atures. Spins fluctuate around three distinct directions which are
indicated by different symbols and colors. (b) Solid lines show
weather vane loops which are constructed if spins of two “types”
are connected.

FIG. 3. (Color online) (a) The
√

3×√
3 structure. (b) Weather

vane loops for the
√

3×√
3 structure are shown by solid lines.

branch were given by

ω(k) = |J |
√

2[sin2 q1 + sin2 q2 + sin2(q1 − q2)], (2)

where q1 = kx , q2 = (kx − √
3ky)/2, and k is the wave vector.

III. METHODS

A. Alternative coordinates

Because no anisotropy and no external field are considered,
the Hamiltonian has spherical symmetry in spin space and the
system can be freely rotated. In the following, we will choose
the orientation in such a way that the spin plane coincides
with the xy plane, and we name the angle between the average
direction of the σ = 1 spins and the y axis φ. Alternative
in-plane coordinates su,sv,sz as used by Harris et al.4 are now
given by ⎛

⎜⎝
su
i

sv
i

sz
i

⎞
⎟⎠ =

⎛
⎜⎝

cos ψi sin ψi 0

− sin ψi cos ψi 0

0 0 1

⎞
⎟⎠

⎛
⎜⎝

sx
i

s
y

i

sz
i

⎞
⎟⎠ , (3)

where ψi = φ + 2π/3(σi − 1) is the angle enclosed by the y

axis, and the basic spin direction is denoted by σi . The new u

axis is perpendicular and the v axis is parallel to this direction
(Fig. 4).

B. Monte Carlo simulations

We used the simulated tempering15 technique, which
allowed us to cover a large temperature range. It provides
a generalized ensemble that is a composition of NT canonical
ensembles with a priori defined temperatures Ti . The proba-
bility to find the system in a configuration {s} at temperature
Ti is

pi({s}) = Wi

ZST
exp

(
−H({s})

kBTi

)
, (4)
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FIG. 4. (Color online) With decreasing temperature, spins tend
toward three basic directions and labels, σ , can be assigned to each
spin accordingly. Fluctuations around these directions are described
in the alternative coordinates u,v given in Eq. (4).

where Wi is a weight factor and the normalization constant
ZST is the partition sum of the entire ensemble,

ZST =
NT∑
i=1

WiZ(Ti), (5)

which is written here as a weighted sum of canonical partition
sums Z. The acceptance probability for a Monte Carlo step
from configuration {s} to configuration {s′} and temperature Ti

to temperature Tj is given by

P acc
ij ({s},{s′}) = min

(
1,

Wj

Wi

exp

(H({s})
kBTi

− H({s′})
kBTj

))
.

(6)

It follows from Eq. (6) that conformational updates can be
performed just like in a METROPOLIS simulation as long as the
temperature remains unchanged. Usually, in order to move in
temperature space, separate Monte Carlo steps which do not
alter the configuration of the system are employed. To ensure
that all temperatures are sampled with equal probability, the
weights have to be chosen such that Wi ∝ Z(Ti)−1. Since the
partition function is not known at the beginning, we performed
preliminary simulations to determine Wi using a modification
of the Wang-Landau algorithm that is described in Appendix
A. For our simulation, we used NT = 10 000 different temper-
atures distributed equidistantly on a logarithmic temperature
scale: −6 � log10(kBTi/|J |) � 3. To update configurations at
constant temperature, we mainly used the heat-bath16 method;
in doing so, we avoided the problem of too low or too high
acceptance rates as result of improperly chosen step length.
Details of the heat-bath technique for a Heisenberg spin system
have been published by Miyatake et al.17

Obtaining thermodynamic quantities from simulated
tempering simulations is relatively simple. Although the
reweighted histogram technique18 could be applied, it is not
required here. It follows from Eq. (4) that the distribution P (E)
can be written in terms of a density of states g(E):

P (E) ∝ g(E)
NT∑
i=1

Wi exp

(
− E

kBTi

)
. (7)

FIG. 5. (Color online) Spins of a weather vane loop can be
updated collectively in a reflection. The boundary spins (red)
remain unchanged. The mirror plane (rectangle) contains the average
direction of the boundary spins and is perpendicular to the (local)
spin plane.

Once the weight factors are chosen, it is easy to calculate the
sum on the right-hand side, and the density of states can be
estimated via a histogram over E.

As described above, the coplanar state is highly degenerate.
Different configurations {σ } exist in great number and,
although requiring no increase in energy, transitions between
them are inhibited by entropic bottlenecks. Hence, autocorrela-
tion times are large in the coplanar state and ergodicity might
even be broken at very low temperatures. This is partially
corrected for by use of a generalized ensemble method, such
as simulated tempering in our case, but further improvement
is possible if jumps between different configurations σ are
enabled at low T . To do this, we introduce a Monte Carlo
step that is designed to “flip” all spins along a weather vane
loop. Here, “flipping” means exchanging spin directions σ

that already occur in the loop, i.e., if a weather vane loop is
composed of spins with numbers li ,i � Nloop and σli = 1 or
σli = 2 for all spins in the loop, then in the modified loop it is
still σ ′

i = 1 or 2 for all i but at exchanged positions σi �= σ ′
i

(Fig. 5). A local reference frame is established with the use
of the loop spins and the neighboring (boundary) spins bi , for
which in this example σbi

= 3.
The first step is the identification of a weather vane loop.

While this can be done on a global scale by determination
of the configuration {σ }, we used a more flexible procedure
that, in principle, can result in accepted updates even if the
system is in a disordered state. In the beginning, one spin is
randomly chosen as the first spin of the loop sl1 and one of
its neighbors is—again randomly—drawn as the second sl2 .
Their common neighbor is recognized as a boundary spin sb1

which is not, and cannot be, part of the loop. To continue the
construction of the loop, the following procedure is repeated
until the loop is closed: Assuming that n spins are part of
the incomplete loop, then one neighbor of sln is part of the
loop (sln−1 ) and one neighbor is the boundary spin sbn−1 . The
next spin (sln+1 ) must, thus, be chosen from the two remaining
neighbors sm1 and sm2 , which are neighbors themselves. Given
the nature of a weather vane loop, this spin has to be oriented
in approximately the same direction as sln−1 , so ln+1 = m1 if
sln−1 · sm1 > sln−1 · sm2 and ln+1 = m2 otherwise. The spin that
is not chosen is consequently the boundary spin sbn

. If during
this procedure a spin is included that is already a boundary
spin or part of the loop but not sl1 , the procedure has failed and
the Monte Carlo move is rejected.
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There are two intuitive possibilities to update the loop.
The first one is a rotation of the spins of the loop in spin
space by an angle of π around the direction given by the
boundary spins. This, however, also alters the orientation
of the spins with respect to the spin plane. A spin that is
pointing above the plane will afterward point below it and vice
versa. This is not desirable because each spin also belongs
to a second loop, and the out-of-plane component of the spin
coordinates is mainly determined by the collective excitation
of each loop. Hence, a switch in this component distorts the
second loop and increases the energy. One has to choose the
alternative, which can be described as a reflection on a plane
spanned by the direction of the boundary spins and the normal
vector on the spin plane leaving the out-of plane component
untouched.

If a closed loop could be constructed, then two vectors vb,vl

spanning the local spin plane could easily be found. The first
one is the sum of all boundary spins,

vb =
Nloop∑
i=1

sbi
, (8)

and a roughly perpendicular second vector is created by
alternating the addition and subtraction of the loop spins,

vl =
Nloop/2∑

i=1

sl2i
− sl2i−1 . (9)

A normal vector of the plane on which the spins are reflected
is then given by

u = vb × (vb × vl), (10)

and the updated spins are

s′
li

= sli − 2u
sli · u
|u|2 . (11)

After each loop flip, we must test if the above procedure would
also identify the flipped loop. If this is not the case, the inverse
move is impossible and the update has to be rejected. The spin
plane and the mirror plane will always be identified correctly
in the inverse update. Finally, the change in energy has to
be determined, and the move is accepted with the probability
given in Eq. (6).

It turns out that in the coplanar state, the acceptance rates
for this update are independent of temperature and decrease
exponentially with increasing loop length Fig. 6. This suggests
that the average change in energy is positive and proportional
to the loop length.

C. Spin dynamics simulations

Employing the described Monte Carlo algorithm, we
extracted configuration {s} from canonical ensembles at
temperatures Ti . The coupled equations of motion

ṡi(t) = JHi(t) × si(t) (12)

were then integrated over a time interval of t = 2000|J |−1

using a fourth-order Adams-Bashforth-predictor–Adams-
Moulton-corrector method19 with a time step of �t =
10−4|J |−1. Here, the local magnetic field Hi is the sum of the
spins adjacent to si . The resulting trajectory is subsequently
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FIG. 6. (Color online) Probability pL that a constructed loop is of
length L, and probability pacc

L that an attempted flip of a loop of length
L is accepted. Data in the lower right represent loops that span the
entire system, which for this case (242 × 3 spins) requires L � 24.
(Note that the number of spins in a loop Nloop is twice its length L in
units of |ai |.)

used to calculate space displaced and time displaced correla-
tion functions, e.g., correlations of the spin’s x component:

Cx
r (t) = 〈

sx
r′(0) · sx

r′+r(t)
〉
r′ , (13)

where r′ runs over all lattice sites. Finally, a space-time Fourier
transform results in the dynamic structure factor

Sx(k,ω) =
∑

r

∫
dt Cx

r (t)e−ik·re−iωt (14)

(Sy,Sz similarly), which in turn is closely related to outcomes
of inelastic neutron scattering experiments if global coordi-
nates (x,y,z) are used. For the KHAFM, the more genuine
description, however, is given by the alternative coordinates
(u,v,z) and we also calculated the respective structure factors
(Su,Sv).

Spin dynamics methods have proven to be valuable for
the study of diverse dynamic excitations, e.g., spin-waves,20

vortices,1 and solitons.21

IV. RESULTS AND DISCUSSION

A. Static properties

As a first result, we obtained the density of states g(E)
and calculated the specific heat (Fig. 7). At low T on each
of the N/3 hexagons a local soft mode can be constructed.
These modes experience anharmonic potentials of fourth order
with a thermal energy of 1

4kBT . All other degrees of freedom
contain 1

2kBT , leading to a total average energy of 〈E〉/N |J | =
11
12kBT − 1 at small T . As in previous studies,7,9,10 this
theoretical prediction characterizing the coplanar state is
fulfilled for T � 3 × 10−3|J |/kB. At intermediate tempera-
tures, C/NkB ≈ 1 and low E indicate that only short-range
correlations exist and that spherical symmetry is not yet broken
in favor of a common spin plane.
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FIG. 7. (Color online) Specific heat C/N , mean energy 〈E〉/N ,
and density of states g(E) for a system containing N = 6912
(= 482 × 3) spins. Statistical errors do not exceed the linewidth.

Note the linear shape of the density of states in the double-
logarithmic plot in the inset of Fig. 7. Although of minor
relevance here, this behavior is a general feature of classical
systems corresponding to a finite limit of the specific heat for
T → 0. This can be shown easily using the following ansatz
for the density of states:

log
g(E)

G
= γ log[(E − E0)/|J |], (15)

where E0 is the ground-state energy E0 = −N |J | and G

is a normalization constant. One finds that the specific heat
C = γ kB and the mean energy 〈E〉 = E0 + γ kBT . A fit of the
data in Fig. 7 for log10 kBT/|J | < −5.5 gives γ = 6335.9(2),
which is close to the value N × 11/12 = 6336 which we
expect for T → 0.

From simulation and theory,4,8,9 it is known that the
probability distribution over different configurations {σ } is
nonuniform and biased toward the

√
3×√

3 state. It has
been under discussion whether this distribution changes with
temperature and if long-range order is established for T → 0.
To investigate this possibility and to test the algorithm, we
produced thousands of conformations of a 432 spin system at
different temperatures, cooled them below T = 10−5|J |/kB,
and performed simulated tempering simulations without loop
flip updates at 10−6 � kBT/|J | � 10−5. Due to the low
temperature, in more than half of the simulations no loop
flips occurred spontaneously, which enabled a comparison
of average logarithmic temperatures of single configurations
{σ }. If certain configurations are favored at low temperatures,
then this would result in values closer to the lower bound,
while configurations taken at higher T would consequently
show higher average logarithmic temperatures. The results
are shown in Fig. 8, and within the precision achieved no
evidence for such a trend can be found. The exact values have
no physical meaning; with perfectly tuned weights Wi , the
distribution over the logarithmic temperature would be flat
and the averages would converge to 5.5.

We conclude that for log10(kBT/|J |) � −3, the ensemble
of loop structures is practically independent of temperature.
Consequently, no further fundamental order is established and
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FIG. 8. (Color online) If the simulation is constrained to
log10(kBT/|J |) � −5, the time-averaged logarithmic temperatures
are independent of the original temperatures Tinit. The broken line is
a guide for the eye.

changes in energy, sublattice magnetization, or other order
parameters10 are based solely on decreasing excitations on a
fixed set of ground state configurations.

It should be noted, however, that Henley22 recently studied
effective Hamiltonians and suggested that long-range order
may exist for T → 0 at length scales that exceed the size of
the systems we could investigate and which could, therefore,
be neither confirmed nor excluded by our simulations.

It is instructive to investigate the static correlations between
labels σ , which we define as

	ri−rj
= 〈δσi ,σj

〉 − 1
3 . (16)

This function bears no noticeable temperature dependence as
long as the system is in the coplanar state. This confirms once
more that the distribution over the loop structures does not
change with T . Yet 	r is best measured at lower temperatures
where {σ } can be determined most easily. As previous studies
observed, we find that the systems show

√
3×√

3 correlations
which decrease with increasing distance. The data are well
described by a power law:

	r = 	
√

3×√
3

r |r|−κ , (17)

where

	
√

3×√
3

r = 2
3 cos(rk√

3×√
3). (18)

To estimate the exponent κ , we fitted a power-law function G

with included periodic boundary conditions,

G(r) = G0

∑
i

∑
j

|r − iLa1 − jLa2|−κ , (19)

to 	r/	
√

3×√
3 and obtained κ ≈ 1. Some of the relevant data

and the fit for a system with L = 48 are shown in Fig. 9.

B. Dynamic properties

In our investigation, we consider solely wave vectors
parallel and perpendicular to the bonds of the system, which
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FIG. 9. (Color online) Static correlations 	r for a 482 × 3 lattice
follow a decaying 	

√
3×√

3
r pattern if the system occupies the coplanar

state. The solid lines show a power law ∝ |r|−1.026 with included
periodic boundary conditions. (In the [11] direction, 	r has a period
of

√
3 × 48 ≈ 83.1.)

simplifies Eq. (2) to

ω(le10) = |J |√3 − 2 cos l − cos 2l, (20)

with the unit vector e10 = a1, a2, a1 − a2, and

ω(le11) = 2|J || sin(
√

3l/2)|, (21)

with e11 = a1+a2
|a1+a2| ,

2a1−a2
|2a1−a2| ,

−a1+2a2
|−a1+2a2| (Fig. 1).

All data presented in this section are from simulations of
a system containing 482 × 3 spins at T = 10−6|J |/kB. We
produced 2457 independent configurations and performed spin
dynamics simulations of length tSD = 2000|J |−1 with a step
length of �t = 10−4|J |−1. Cauchy distributions were fitted
to the maxima, and the jackknife method was employed to
estimate statistical errors in peak positions. While we will
focus on the modes of the acoustic branch, we acknowledge
that prominent signals at ω = 0 give strong evidence for soft
modes.

We also obtained results for smaller lattices and observed
the systematic variation in the dynamic structure factor with
lattice size. The results for smaller lattices were useful for
the eventual interpretation of the large lattice data but do not
themselves show different phenomena. For this reason, we do
not show those data here.

We find that the results for alternative coordinates u,v,z

agree very well with the predictions. In both directions, the
soft modes produce prominent peaks at very low frequencies.
While no trace of acoustic modes can be found in Sv , prominent
maxima exist in Su (Figs. 10 and 11) and Sz at the frequencies
given by Eqs. (20) and (21).

The in-plane dynamic structure factor in global coordinates
Sxy = Sx + Sy , however, shows a completely different be-
havior. In the (10) direction [Fig. 12(a)], arcs of maxima
intersect, but no excitations of comparable intensity occur
at the frequencies of the acoustic branch according to
Eq. (20). In the (11) direction (Fig. 13), an almost disper-
sionless branch of maxima with high frequencies resembles
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FIG. 10. (Color online) Dynamic structure factor in the (10)
direction based on the alternative in-plane coordinate u. Maxima
agree well with the dispersion relation from Eq. (20), which is plotted
as a line in the lω plane. Due to the low temperature, systematic
deviations (inset) are very small. For the sake of convenience, we
increased S by a factor of 103 here and in Figs. 11, 12, and 13.

an optical mode and was, in fact, interpreted as such by
Robert et al.11

Additionally, numerous ridges of low intensity form
washboard-like patterns in Sxy in both directions, but these
vanish if a pure

√
3×√

3 structure is considered [Fig. 12(b)].
This washboard pattern is pronounced for small lattices but
washes out as the lattice size increases.

To understand this behavior, we need to know the relation-
ships between the in-plane correlation functions in global and
alternative coordinates. In Appendix B, we show that

Cxy
r (t) ∝ 	rC

u
r (t). (22)

It follows that C
xy
r (t) and Sxy(k,ω) depend on the underlying

loop structure {σ } even if Cu
r (t) does not. For the

√
3×√
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FIG. 11. (Color online) Dynamic structure factor for the alter-
native in-plane coordinate u in the (11) direction. The behavior is
well described by the dispersion relation in Eq. (21) (solid curve).
Deviations of peak positions are small (inset).
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FIG. 12. (Color online) Dynamic structure factor in the (10)
direction based on global in-plane coordinates. A shift in Fourier
space occurs (see text) and no signals matching the analytical
dispersion relation (continuous lines) are observed. In the canonical
ensemble (a), a washboard-like pattern is caused by the power-
law-like decay of the

√
3×√

3 correlations; (b) in the case of
long-range correlations, e.g., for the pure

√
3×√

3 structure, this
pattern vanishes.

structure, the Fourier transform of 	
√

3×√
3

r is

	̂
√

3×√
3(k) ∝

6∑
i=1

δ
(
k − ki√

3×√
3

)
, (23)

where δ is Dirac’s delta. Using the convolution theorem, we
find

Sxy(k,ω) ∝
6∑

i=1

Su
(
k − ki√

3×√
3
,ω

)
. (24)

This means that modes seen in Su contribute sixfold to Sxy

as fictitious modes displaced by ki√
3×√

3
as shown in Figs. 14

and 15. The particular choice of ki√
3×√

3
is irrelevant unless

intensities are considered. Due to the periodicity of ω, each
of the three directions will cause the same apparent branches
by shifting the center of the Brillouin zone onto a corner and
the opposite corner into the center. In the (10) directions, this
results in acoustic branches which follow the same dispersion
relation as Eq. (20) but shifted by ±2π/3.
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FIG. 13. (Color online) As in Fig. 12, a shift in Fourier space can
also be observed in the (11) direction, and modes from a different part
of the Brillouin zone manifest at frequencies given by Eq. (25), drawn
as a broken line. Peak positions used for calculating the deviations in
the inset were determined from simulations of the

√
3×√

3 structure
allowing a higher precision.

In the (11) direction, the apparent optical mode turns out
to be a part of the acoustic branch and the dispersion relation
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FIG. 14. (Color online) Analytical frequencies of the acoustic
branch as a function of wave vector k. In the (10) direction, the
shifts by k√

3×√
3 and by −k√

3×√
3 contribute differently, resulting in

two apparent branches. The gray hexagon marks the edge of the first
Brillouin zone.
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FIG. 15. (Color online) Analytical frequencies of the acoustic
branch as a function of wave vector k. In the (11) direction, the shift
by k√

3×√
3 creates a fictitious optical branch. The shift by −k√

3×√
3

(not shown) has an identical effect.

(for the shifted positions) reads

ω̃(le11) = ω(le11 ± k√
3×√

3),

=
√

7
2 + cos(

√
3l). (25)

The described behavior is induced by the
√

3×√
3 cor-

relations, which in the general case of free {σ } are present
but appear to decay in a power law (Fig. 9). This means
that we have to apply the convolution theorem a second time
to describe the shifts in k space if an ensemble of typical
loop structures (not pure

√
3×√

3) is considered. Since the
Fourier transform of the power law is again a power law,
it follows that in principle each mode can be measured
at each point in Fourier space with maximal intensity at
the position given by the initial shifts ±k√

3×√
3. This effect

causes the washboard pattern by smearing the peaks in k

space; however, as mentioned earlier, the shifted peaks can
only be observed for finite systems. We expect no signs of
acoustic modes in Sxy(k,ω) in the thermodynamic limit. If,
on the other hand,

√
3×√

3 correlations are stabilized by
second- and third-nearest-neighbor interactions,4 the shifted
acoustic branch without the washboard would be detectable in
experiments and might actually have been observed already.5

Considering the described displacements, we find that all
observations become consistent. Not only do the positions of
maxima in Su(k,ω) and Sxy(k,ω) agree nicely with theory,
the deviations caused by nonzero temperature also match.
From Figs. 10 and 13, it follows that at the corners of the
Brillouin zone, acoustic modes have frequencies above the
analytically calculated values while no deviation is noticeable
at the midpoints of the zone edges according to Figs. 10
and 11. These two plots also show that close to the center,
frequencies are slightly increased, while they are below
theoretical predictions at intermediate distance from the center
(for the latter, see also Fig. 13).

V. CONCLUSIONS

For this work, we devised a Monte Carlo algorithm that
was able to equilibrate the Heisenberg antiferromagnet on
the kagome lattice at temperatures more than two orders
of magnitude lower than previously reached. To do so, we
designed a trial move that allows the “flipping” of weather vane
loops, and we combined the simulated tempering and heat-bath
techniques with a modification of the Wang-Landau algorithm.
We were able to show that, in agreement with theory, minimal
temperature-dependent selection of loop structures occurs over
three orders of magnitude in temperature.

Extensive spin dynamics simulations at kBTi/|J | = 10−6

provided results that agree very well with analytical calcu-
lations: Using suitable coordinates, we observed harmonic
modes with the predicted frequencies directly within the
spin plane and transverse to it. Considering global Cartesian
coordinates, we showed that signals in the dynamic structure
factor are shifted due to

√
3×√

3 correlations. Apparent
in-plane excitation at the center of the Brillouin zone with
nonzero frequency actually belong to acoustic modes at the
zone edge. Hence, the classification of these signals as a branch
of optical modes by Robert et al.11 was premature.

We argue that due to the decay of the correlations, in-
plane excitations will not be measurable for large systems
unless next-nearest-neighbor interactions stabilize the

√
3×√

3 correlations.
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APPENDIX A

The Wang-Landau algorithm12–14 is a method that is
designed to adjust a weight function wi(Q) over time i such
that a flat histogram H (Q) can be produced. The parameter
Q is often the system energy which allows the determination
of thermodynamic quantities such as specific heat and mean
energy via the estimation of the density of states as a
function of energy. Because we are interested in producing
a flat histogram over a logarithmic temperature range, we
will treat Q as a general variable in these considerations.
In the simplest case, the probability of a configuration X
is desired to be proportional to w[Q(X)], which means that
the proposed Monte Carlo moves X → X′ are accepted with
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probability Pacc(X,X′) = min (1,w[Q(X′)]/w[Q(X)]). In that
way, a series of configurations Xi and values qi = Q(Xi) is
produced. To achieve flatness, we modify the weight function
after each step:

wi+1(Q) =
{

wi (Q)
f

if Q = qi,

wi(Q) otherwise,
(A1)

where f is a modification factor which is initially set to
f = e (Euler’s constant) and gradually reduces to unity, thus
causing decreasing changes to w. We propose a modification
of the original Wang-Landau algorithm which is based on the
assumption that especially early in the iteration, the deviations
from the detailed balance criterion can be reduced by delaying
the modification of the weight function. It is self-evident that
a change in w affects the simulation’s balance most if it is
performed in the proximity of the current position qi of the
system. We therefore introduce a delay for the modification
of d time steps which allows the simulation to proceed
undisturbed, decorrelate, and be less influenced by alterations
of w. When a modification at qi−d is eventually made, it is
necessary to take into account the changes of w at that position
between time i − d and i. The corrected modification formula
reads

wi+1(Q) =
{ wi (Q)

f

wi (qi−d )
wi−d (qi−d )

if Q = qi−d ,

wi(Q) otherwise.
(A2)

Note that these equations become equal to Eq. (A1) if d = 0,
i.e., in the case of no delay. To calculate this formula, it is
necessary to know qi−d and wi−d (qi−d ), i.e., at each time i

the values qi and wi(qi) have to be stored for d time steps
giving a total of 2d numbers to be held in memory. On modern

computers, this can be done for large values of d; however, we
found that a good compromise between increased balance and
fast convergence is achieved at d ≈ 103,104.

It turns out that systematic errors are much smaller in the
beginning of the simulations and that the overall convergence
is often faster, but in our experience never slower, than in
the original Wang-Landau method. In the past, this method
was used successfully to calibrate one- and two-dimensional
weight functions for polymer simulations.23,24

In the present study, the weight function w corresponds to
the weight factors Wi , and the quantity Q is log10 kBT/|J |.
Modifications of W were performed after each temperature
update.

APPENDIX B

Consider the product of the x components of two spins as a
function of local coordinates su. The three main spin directions
lie in the xy plane, while one of which and the y axis include an
angle φ (Fig. 4). Instead of taking the average over all possible
angles φ, we average only over circular permutations of spin
directions σ , which corresponds to rotations of all spins by
angles ± 2

3π around the z axis.
If σi = σj ,〈

sx
ri
sx

rj

〉 = 1
3 su

ri
su

rj

[
cos2 φ + cos2

(
φ + 2

3π
)

+ cos2 (
φ − 2

3π
)]

,

= 1
6 su

ri
su

rj

[
3 + cos 2φ + cos

(
2φ + 4

3π
)

+ cos
(
2φ − 4

3π
)]

,

= 1
2 su

ri
su

rj
. (B1)

If σi �= σj ,

〈
sx

ri
sx

rj

〉 = 1
3 su

ri
su

rj

[
cos φ cos

(
φ + 2

3π
) + cos φ cos

(
φ − 2

3π
) + cos

(
φ + 2

3π
)

cos
(
φ − 2

3π
)]

,

= 1
6 su

ri
su

rj

[
cos

(
2φ + 2

3π
) + cos

(− 2
3π

) + cos
(
2φ − 2

3π
) + cos

(
2
3π

) + cos(2φ) + cos
(

4
3π

)]
,

= 1
6 su

ri
su

rj

[
cos

(− 2
3π

) + cos
(

2
3π

) + cos
(

4
3π

)]
,

= − 1
4 su

ri
su

rj
. (B2)

In both cases, the contributions of φ vanish, which means
that the average is equivalent to an average over φ. Further-
more, 〈sx

ri
sx

rj
〉{σ } = 〈sy

ri
s
y
rj

〉{σ } even if φ is constant because an
average over all loop structures {σ } involves the average over
permutations. Following Harris et al.,4 we exploit the fact that
collective harmonic excitations su are independent of the spin
configuration {σ } and average over all {σ }:

〈
sx

ri
sx

rj

〉
{σ } = su

ri
su

rj

(
	̃ri−rj

2
− 1 − 	̃ri−rj

4

)
,

= su
ri
su

rj

(
3

4
	̃ri−rj

− 1

4

)
, (B3)

where 	̃ri−rj
denotes the probability for σi = σj :

	̃ri−rj
= 〈δσi ,σj

〉, (B4)

with δ being the Kronecker delta. Inserting the aforementioned
correlation function 	, we obtain〈

sx
ri
sx

rj

〉
{σ } = 3

4 su
ri
su

rj
	ri−rj

. (B5)

It follows that

Cx
r (t) = 3

4	rC
u
r (t) (B6)

and

Cxy
r (t) = Cx

r (t) + Cy
r (t) = 3

2	rC
u
r (t). (B7)
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