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We present calculations of magnetostriction constants for the spinel ferrites CoFe2O4 and NiFe2O4 using
density functional theory within the GGA + U approach. Special emphasis is devoted to the influence of different
possible cation distributions on the B-site sublattice of the inverse spinel structure on the calculated elastic and
magnetoelastic constants. We show that the resulting symmetry lowering has only a negligible effect on the elastic
constants of both systems as well as on the magnetoelastic response of NiFe2O4, whereas the magnetoelastic
response of CoFe2O4 depends more strongly on the specific cation arrangement. In all cases our calculated
magnetostriction constants are in good agreement with available experimental data. Our work thus paves the
way for more detailed first-principles studies regarding the effect of stoichiometry and cation inversion on the
magnetostrictive properties of spinel ferrites.
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I. INTRODUCTION

Magnetostriction describes the deformation of a ferro-
or ferrimagnetic material during a magnetization process.1–7

Thereby, one can distinguish between the spontaneous volume
magnetostriction, which is independent of the magnetic field
direction, and the so-called linear magnetostriction which
characterizes the change of length along a certain direction that
depends on the orientation of the applied magnetic field. The
same magnetoelastic interaction that causes magnetostriction
also leads to changes in the magnetic anisotropy as function
of an externally applied strain.

Magnetostrictive materials are very important for applica-
tions as magnetic field sensors and magneto-mechanical actu-
ators, where a large (and often also preferably linear) magnetic
field response is essential.8 On the other hand magnetostriction
also causes noise and frictional losses in magnetic transformer
cores, so that in this context a minimization of magnetostriction
is desirable.

CoFe2O4 (CFO) is known to have one of the largest mag-
netostrictions among magnetic materials that do not contain
any resource-critical rare-earth elements.9 It has thus recently
come into focus for use in magnetostrictive-piezoelectric
composites,10–12 where the goal is to achieve cross coupling
between magnetic and dielectric degrees of freedom. Due to its
insulating character and high magnetic ordering temperature,
CFO together with NiFe2O4 (NFO) and other spinel ferrites
is also a very attractive candidate for spintronics applications,
in particular for spin-filtering tunnel barriers.13,14 For many of
these applications, thin films of CFO and NFO are epitaxially
grown on substrates with different lattice constants. The result-
ing substrate-induced strain can then lead to distinctly different
properties of the thin films compared to the corresponding bulk
materials.

In view of this, a good quantitative understanding of magne-
toelastic properties of spinel ferrites, that provides a solid basis

for the interpretation of experimental results and allows for
further optimization of magnetostrictive properties, is highly
desirable. In particular, the ability to accurately predict effects
of cation off-stoichiometry or surface and interface effects can
provide valuable insights into the fundamental mechanisms
determining the observed properties.

In previous work we have shown that first-principles
calculations based on density functional theory (DFT) pro-
vide a suitable description of the magnetoelastic properties
of spinel ferrites,15,16 thus demonstrating the feasibility of
more detailed studies into strain-induced effects in thin-film
structures composed of CFO and NFO. Here we extend our
previous study, in order to provide a more comprehensive
picture of the magnetoelastic response of CFO and NFO,
in particular including first-principles calculations of the
complete set of cubic magnetoelastic and magnetostrictive
coefficients. Most importantly, we investigate the influence
of different possible cation distributions on the spinel B-site
sublattice on the magnetoelastic response of these materials.
The purpose of the present work is to provide a first-
principles-based description of magnetoelastic coupling in
spinel ferrites that can be used as a basis for further studies
of the effect of cation substitution or off-stoichiometry on
the magnetostrictive properties of this important class of
materials.

This paper is organized as follows. In Sec. II A the spinel
crystal structure is discussed, with special emphasis on cation
inversion and different possible cation arrangements on the B-
site sublattice. A general overview of magnetoelastic theory in
cubic and tetragonal crystals is given in Sec. II B. Section II C
describes how we determine all elastic and magnetoelastic
coefficients from total energy electronic structure calculations,
while Sec. II D provides some more technical details of our
calculations. Our results for CFO and NFO are presented
in Sec. III, and our main conclusions are summarized in
Sec. IV.

014406-11098-0121/2012/86(1)/014406(10) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.86.014406


DANIEL FRITSCH AND CLAUDE EDERER PHYSICAL REVIEW B 86, 014406 (2012)

II. THEORETICAL BACKGROUND AND
COMPUTATIONAL METHOD

A. Inverse spinel structure and different cation distributions

Both CFO and NFO crystallize in the cubic spinel structure
(see Fig. 1), which belongs to space group Fd3̄m (No.
227). The spinel structure contains two inequivalent cation
sites, a tetrahedrally coordinated A site and an octahedrally
coordinated B-site. In the normal spinel structure each of these
sites is occupied by a particular cation species (e.g., divalent
Mn2+ on the A site and trivalent Fe3+ on the B site in the
case of MnFe2O4). However, in the inverse spinel structure,
the more abundant cation species (here: Fe3+) occupies all
A sites and 50% of the B-sites, with the remaining 50% of
B-sites occupied by the less abundant cation species (here:
Co2+ or Ni2+). In practice, intermediate cases can also occur,
characterized by an inversion parameter λ, ranging from λ = 0
for the normal spinel structure to λ = 1 for complete inversion.

Both CFO and NFO are experimentally found to be
inverse spinels, with λ ≈ 1 for NFO but only incomplete
inversion for CFO (with λ between 0.76 and 0.93, depending
strongly on sample preparation conditions).9,18 Both materials
are generally found to be perfectly cubic, with a random
distribution of divalent and trivalent cations over the B-site
sublattice. However, indications for short-range cation order
on the B-sites have been reported recently for the case of NFO,
both in bulk single crystals as well as in thin films.19,20

In the present work we represent the inverse spinel structure
within a tetragonal unit cell containing 4 formula units (see
also Ref. 21) using lattice vectors �a1 = (a/2, − a/2,0), �a2 =
(a/2,a/2,0), and �a3 = (0,0,c), so that c/a = 1 corresponds to
the unstrained, nominally cubic case. By distributing equal
amounts of Co (respectively Ni) and Fe on the 8 B-sites
within this unit cell, 70 cation arrangements belonging to
8 different space groups can be generated. In the following

FIG. 1. (Color online) The spinel structure consists of an fcc
network of oxygen anions (small red spheres) with cations occupying
different interstitial sites of the fcc lattice, resulting in tetrahedrally
coordinated A sites (purple) and octahedrally coordinated B-sites
(brown). Picture has been reproduced from Fig. 1(a) in Ref. 15 and
has been generated using VESTA (Ref. 17).

we consider only the three high-symmetry arrangements
shown in Figs. 2(a)–2(c), plus one additional low-energy
configuration for CFO, corresponding to 75% inversion, shown
in Fig. 2(d). The specific cation arrangements shown in
Fig. 2 in combination with the periodic boundary conditions
corresponding to the tetragonal lattice vectors reduce the space
group symmetries to P 4122 (No. 91), Imma (No. 74), and
P 4̄m2 (No. 115) for the fully inverse configurations, and to
P 1 (No. 1) for the case with 75% inversion. As we have
previously shown,21 both P 4122 and Imma correspond to
low-energy configurations for the fully inverse case, with
P 4122 slightly lower in energy than Imma for both CFO
and NFO, whereas the P 4̄m2 configuration is energetically
much less favorable. The P 1 structure represents a low-energy
configuration for the case λ = 0.75.21 We also note that
the P 4122 configuration corresponds to the local structure
suggested for the experimentally observed short-range order
in NFO,19,20 whereas the Imma configuration is equivalent to
the one used in our previous study of magnetoelastic effects in
CFO and NFO.15,16 The corresponding results for the elastic
and magnetoelastic properties are included here for better
comparison. In addition, we have reproduced the Imma results
using the larger tetragonal unit cell and a setup identical to that
for all other configurations and did not find any quantitative
differences compared to Ref. 15.

B. Magnetoelastic theory

Within the phenomenological theory of magnetoelasticity,
the magnetoelastic energy density f = E/V is expressed in
terms of the direction cosines of the magnetization vector,
αi (i = x,y,z), and the components of the strain tensor εij ,
relative to a suitably chosen (nonmagnetic) reference state.1–7

This energy density can be divided into a purely elastic term,
fel, and a magnetoelastic coupling term, fme, which is usually
taken as linear in the strain components. For a cubic crystal
these terms have the following form:22

f cubic
el = 1

2C11
(
ε2
xx + ε2

yy + ε2
zz

) + 2C44
(
ε2
xy + ε2

yz + ε2
zx

)
+ C12(εyyεzz + εxxεzz + εxxεyy) (1)

and

f cubic
me = B0(εxx + εyy + εzz) + B1

(
α2

xεxx + α2
yεyy + α2

z εzz

)
+ 2B2(αxαyεxy + αyαzεyz + αzαxεzx), (2)

where C11, C12, and C44 are elastic and B0, B1, and B2 are
magnetoelastic coupling constants.

The relative length change along an arbitrary (measuring)
direction with direction cosines βi is given by

�l

l
=

∑
i,j

εijβiβj , (3)

where the strain components depend on the magnetization
directions. These equilibrium strains as a function of the
magnetization direction can be found by minimizing the sum
of the two energy expressions (1) and (2) with respect to all
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FIG. 2. (Color online) Cation distribution of Fe (brown/light gray) and Co (Ni) (blue/dark gray) on the B-sites of the spinel structure for the
different configurations used in our calculations. Note that only the B sublattice is shown. From left to right the depicted structures correspond to
space groups (a) P 4122 (No. 91), (b) Imma (No. 74), and (c) P 4̄m2 (No. 115). Panel (d) on the right displays the CFO low-energy solution with
incomplete degree of inversion, λ = 0.75, corresponding to space group P 1 (No. 1) (Ref. 21). Pictures have been generated using VESTA (Ref. 17).

strain components. This results in

�l

l

∣∣∣∣
cubic

= λα + 3

2
λ100

(
α2

xβ
2
x + α2

yβ
2
y + α2

zβ
2
z − 1/3

)
+ 3λ111(αxαyβxβy + αyαzβyβz + αxαzβxβz).

(4)

Here, λα = −(B0 + B1/3)/(C11 + 2C12) describes a pure vol-
ume magnetostriction that is independent of the magnetization
direction (this term is sometimes omitted from the above
formula and is of no concern in the present work). The widely
used magnetostriction constants of a cubic crystal are given by

λ100 = −2

3

B1

C11 − C12
(5)

and

λ111 = − B2

3C44
. (6)

These two coefficients measure the fractional length change
along the [100] (βx = 1,βy = βz = 0) and [111] (βi = 1/

√
3)

directions, when the sample is magnetized to saturation along
the [100] (αx = 1,αy = αz = 0) and [111] (αi = 1/

√
3) direc-

tions, relative to an ideal demagnetized reference state which
is defined by 〈α2

i 〉 = 1/3 and 〈αiαj 〉 = 0. In a polycrystalline
sample one can only measure a direction average over both
λ100 and λ111 given by2

λS = 2
5λ100 + 3

5λ111. (7)

As noticed in Sec. II A, the cation arrangements used to
describe the inverse spinel structure within our calculations
lower the cubic symmetry of the ideal spinel structure to
tetragonal (P 4122 and P 4̄m2), orthorhombic (Imma), or even
triclinic (P 1). A full first-principles description of magnetoe-
lastic effects within these lower symmetries would require the
calculation of 6 (9, 21) different elastic and 7 (12, 36) mag-
netoelastic coupling constants for the mentioned tetragonal
(orthorhombic, triclinic) space groups, respectively.4 Due to
the resulting large computational effort, and considering the
fact that experimentally both CFO and NFO are found to be
cubic, we do not attempt such a full determination of all elastic
and magnetoelastic coefficients within the lower symmetries,
and instead evaluate our results using the relations for the
cubic case described above (i.e., similar to our previous work

in Refs. 15 and 16). To estimate the degree to which the lower
symmetry affects our calculated coefficients, we also compare
some of our data to the correct formulas corresponding to the
lower symmetry. For simplicity we hereby restrict ourselves
to the tetragonal case. The required equations are presented in
the following.

Within the lower tetragonal symmetry there are six inde-
pendent elastic and seven different magnetoelastic coupling
constants, in contrast to the three elastic and three magnetoe-
lastic coefficients in the cubic case.4 The resulting expressions
for fel and fme then read6

f tet
el = 1

2c11
(
ε2
xx + ε2

yy

) + 1
2c33ε

2
zz

+ c12εxxεyy + c13(εxx + εyy)εzz

+ 2c44
(
ε2
yz + ε2

xz

) + 2c66ε
2
xy, (8)

with cij denoting the six different tetragonal elastic constants,
and

f tet
me = b11(εxx + εyy) + b12εzz + b21

(
α2

z − 1/3
)
(εxx + εyy)

+ b22
(
α2

z − 1/3
)
εzz + 1

2b3
(
α2

x − α2
y

)
(εxx − εyy)

+ b′
3αxαyεxy + b4(αxαzεxz + αyαzεyz), (9)

with the various b’s denoting the seven different tetragonal
magnetoelastic coupling constants. The corresponding cubic
expressions (1) and (2) can then be obtained from (8) and
(9) with the additional symmetry constraints c11 = c33 = C11,
c12 = c13 = C12, c44 = c66 = C44, b11 = b12 = B0 + 1/3B1,
b22 = −2b21 = b3 = B1, and b′

3 = b4 = B2.

C. Determination of elastic and magnetoelastic constants

In order to determine the (cubic) elastic constants for CFO
and NFO, we first perform a full structural relaxation of
both systems. Similar to our previous investigations,15,16,21

we thereby constrain the lattice vectors to “cubic” symmetry
(c/a = 1) and fix the internal coordinates of the A and B
cations to ideal values corresponding to the cubic spinel struc-
ture; i.e., we only allow for an optimization of the total volume
and the oxygen positions. We then determine the three indepen-
dent cubic elastic constants C11, C12, and C44 and the two cubic
magnetoelastic coupling constants B1 and B2 by distorting
the equilibrium crystal structure in three different ways: (i)
isotropic volume expansion, (ii) constraining two of the three
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lattice dimensions and relaxing the third (“epitaxial strain”),
and (iii) by applying a volume-conserving shear strain.

(i) Isotropic volume expansion. The dependence of the
total energy Etot on the unit cell volume V provides the bulk
modulus B, which is defined as

B = V0

(
∂2Etot

∂V 2

)∣∣∣∣
(V =V0)

, (10)

with V0 being the equilibrium volume. According to Eq. (1)
the bulk modulus B of a cubic crystal can be expressed in
terms of the elastic moduli C11 and C12 as follows:

B = 1
3 (C11 + 2C12). (11)

(ii) Epitaxial strain. We follow the approach of Ref. 15
to obtain a second independent elastic constant by applying
epitaxial strain; i.e., we constrain the “in-plane” lattice
constant to values ranging from −4% to +4% relative to
the theoretical equilibrium lattice constant a0, and we relax
the “out-of-plane” lattice constant and all internal structural
parameters of the oxygen anions. The relation between the
relaxed out-of-plane strain ε⊥ and the fixed in-plane strain
ε|| then defines the so-called two-dimensional Poisson ratio
ν2D . It follows from Eq. (1) that for a cubic system ν2D is
given as

ν2D = −ε⊥
ε||

= 2
C12

C11
. (12)

The elastic moduli C11 and C12 can then be obtained
from Eqs. (11) and (12) using the bulk modulus and two-
dimensional Poisson ratio calculated from DFT.

For the cation arrangements with tetragonal, orthorhombic,
or triclinic symmetry depicted in Fig. 2 the ratio ε⊥/ε|| can
be different for different orientations of “out-of-plane” and
“in-plane” directions relative to the crystal axes. To quantify
the resulting difference we perform calculations for two
symmetry-inequivalent orientations of the applied strain ε||.
In particular we apply the epitaxial constraint first within
the xy plane (ε|| = εxx = εyy and ε⊥ = εzz) and then also
within the yz plane (ε|| = εyy = εzz and ε⊥ = εxx). Using the
tetragonal energy expressions of Eqs. (8) and (9) together with
the definition of ν2D in Eq. (12) one obtains ν

(xy)
2D = 2c13/c33

and ν
(yz)
2D = (c12 + c13)/c11 for these two cases. The difference

between these two values for ν2D thus gives a measure for
the difference between c11 and c33 as well as between c12

and c13.
To obtain the magnetoelastic coupling coefficient B1 we

monitor the total energy differences for different orientations
of the magnetization as a function of the applied in-plane
constraint ε|| and relaxed out-of-plane strain ε⊥ = −ν2Dε||.
Using the cubic expression (2) for fme one can see that
the strain dependence of the energy density for all in-plane
orientations of the magnetization is given by B1ε||, whereas
the strain dependence for out-of-plane orientation is given
by −B1ν2Dε||. The strain dependence of the total energy
difference between out-of-plane versus in-plane orientation
of the magnetization is thus given by23

�E/V = −(ν2D + 1)B1ε‖. (13)

The coefficient B1 can therefore be obtained from the calcu-
lated strain-dependent magnetic anisotropy energies (MAEs)
and the previously determined two-dimensional Poisson ratio
ν2D . While B1 is not directly accessible by experimental
investigations, it is related to the magnetostriction constant
λ100 via Eq. (5).

In the tetragonal case the monitored strain dependence
of the total energy difference between out-of-plane versus
in-plane directions of the magnetization will depend on
the orientation of “out-of-plane” and “in-plane” directions
with respect to the tetragonal crystal axes. For the epitaxial
constraint applied within the xy plane (i.e., ε‖ = εxx = εyy ,
leading to a Poisson ratio ν

(xy)
2D = 2c13/c33) and using the

tetragonal energy density [Eqs. (8) and (9)], the following
expression for the strain dependence of the total energy
difference between in-plane and out-of-plane magnetization
can be obtained:

(�E)(xy)/V = (
2b21 − ν

(xy)
2D b22

)
ε‖, (14)

which is valid for all in-plane orientations of the magnetization.
In contrast, for the epitaxial constraint applied within the
yz plane [i.e., ε|| = εyy = εzz, leading to a Poisson ratio
ν

(yz)
2D = (c12 + c13)/c11] the resulting (�E)(yz)/V depends on

the specific in-plane direction and is given by

(�E)(yz)/V =

⎧⎪⎨
⎪⎩

(− 1
2b3

(
ν

(yz)
2D + 1

) − (
b21 + b22 − ν

(yz)
2D b21

))
ε‖ for (�E)(yz) = E100 − E001,(−b3

(
ν

(yz)
2D + 1

))
ε‖ for (�E)(yz) = E100 − E010,(− 3

4b3
(
ν

(yz)
2D + 1

) − 1
2

(
b21 + b22 − ν

(yz)
2D b21

))
ε‖ for (�E)(yz) = E100 − E011/011̄.

(15)

(iii) Volume-conserving shear strain. The third cubic elastic
modulus C44 is calculated according to Mehl,24 by applying
a volume-conserving monoclinic shear strain in the xy

plane [ε‖ = εxy , ε⊥ = εzz = ε2
‖/(1 − ε2

‖), εxx = εyy = εyz =
εzx = 0]. The resulting change in total energy can then be
written as

E(±ε‖) = 2V C44ε
2
‖ + O[ε4

‖] , (16)

which allows for a straightforward determination of
C44.

For the cation arrangements with tetragonal, orthorhombic,
or triclinic symmetry depicted in Fig. 2 different shear planes
(εxy , εyz, εzx) are connected to different elastic moduli cii .
Using the tetragonal energy expressions of Eqs. (8) and (9)
together with the volume-conserving monoclinic strain in the
xy plane described above, one notices the connection of εxy

and c66. However, choosing a volume-conserving monoclinic
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strain in the yz plane [ε‖ = εyz, ε⊥ = εxx = ε2
‖/(1 − ε2

‖),
εyy = εzz = εxy = εzx = 0] yields directly c44, allowing for
a comparison with c66.

Similar to the first magnetoelastic coupling constant B1,
the second coefficient B2 is determined by monitoring the
total energy differences between different orientations of the
magnetization as a function of the applied strain ε‖. Depending
on whether the shear strain ε‖ is applied within the xy or yz

plane, we consider the following energy differences:

(�E)(xy) = E110 − E100/010 = E100/010 − E11̄0, (17)

(�E)(yz) = E011 − E010/001 = E010/001 − E011̄. (18)

In all cases, the strain-dependence of these total energy
differences can be written as

�E/V = B2ε‖. (19)

Thus, the strain dependence of these energy differences is
governed by the magnetoelastic coupling constant B2, which
can be determined from the calculated �E/V (ε‖).

Similar to B1, the magnetoelastic coupling constant B2 is
also not directly accessible by experiment, but it is related
to the magnetostriction constant λ111 via Eq. (6). Once the
magnetostriction constants λ100 and λ111 are obtained, the aver-
age magnetostriction constant λS , suitable for polycrystalline
samples, can be calculated from Eq. (7).

D. Other computational details

All calculations presented in this work are performed using
the projector-augmented wave (PAW) method,25 implemented
in the Vienna ab initio simulation package (VASP 4.6).26–29

Standard PAW potentials supplied with VASP were used in
the calculations, contributing nine valence electrons per Co
(4s23d7), 16 valence electrons per Ni (3p64s23d8), 14 valence
electrons per Fe (3p64s23d6), and 6 valence electrons per O
(2s22p4).

The generalized gradient approximation according to
Perdew, Burke, and Ernzerhof (PBE)30 is used in combination
with the Hubbard “ + U” correction,31 where U = 3 eV
and J = 0 eV is applied to the d states on all transition
metal cations. We have shown in Refs. 15, 16, and 21 that
this gives a realistic description of the electronic structure
of CFO and NFO and leads to results which are in good
overall agreement with available experimental data. Since
here we are focusing on the comparison between various
cation arrangements with different symmetries, we have not
attempted a further optimization of the parameters U and J .
Furthermore, we have verified that a variation of U within a
reasonable range results only in small changes of the electronic
structures of both CFO and NFO.

All structural relaxations are performed within a scalar-
relativistic approximation, whereas spin-orbit coupling is
included for the calculation of the MAEs. A plane wave energy
cutoff of 500 eV is used, and the Brillouin zone is sampled
using a 
-centered 5 × 5 × 3 k-point grid both for the structural
optimization and for all total energy calculations. We have
verified that all quantities of interest, in particular the magnetic
anisotropy energies, are well converged for this k-point grid
and plane wave energy cutoff.

III. RESULTS AND DISCUSSION

A. Structural properties

The equilibrium lattice constants a0, bulk moduli B,
two-dimensional Poisson ratios ν2D , and resulting elastic
constants C11 and C12 as well as C44 obtained for the different
cation arrangements for both CFO and NFO are given in
Table I. One notices that the calculated lattice constants
for the two low-energy configurations Imma and P 4122
are very similar to each other, and that the ones for the
higher energy P 4̄m2 configuration and for the case with
75% inversion for CFO are slightly larger than that (by less
than 0.2%). This increase in lattice constant is mirrored by a
corresponding decrease in the bulk modulus (by about 3%).
Overall, the variation of both bulk modulus and equilibrium
lattice constant between different cation distributions is much
smaller than the slight under- and overestimation of these
quantities with respect to the experimental value, which is
within the usual limits of the PBE + U approach (see also
Ref. 15).

It can also be seen that the difference in the two-dimensional
Poisson ratios obtained for two different orientations of ε⊥ is
rather small and of magnitude similar to the differences be-
tween the various cation arrangements. This indicates that the
symmetry lowering due to the different cation arrangements
has only a small effect on the elastic properties, which can
still to a good approximation be described by cubic elastic
constants C11 and C12.

TABLE I. Optimized equilibrium lattice constant a0, bulk modu-
lus B, two-dimensional Poisson ratio ν2D , and elastic moduli C11,
C12, and C44 for CFO and NFO, obtained for different cation
arrangements and strain orientations (ε⊥ = εzz = z and ε⊥ = εxx =
x) in comparison to experimental data. The experimental ν2D has been
evaluated from Eq. (12) using the experimental elastic constants. P 1
in the case of CFO refers to the low-energy solution with incomplete
degree of inversion, λ = 0.75 (Ref. 21).

CFO a0 B ε⊥ ν2D C11 C12 C44

(Å) (GPa) (GPa) (GPa) (GPa)

Imma32 8.463 172.3 z 1.132 242.5 137.3 94.9
x 1.147 240.8 138.1 83.2

P 4122 8.464 170.8 z 1.129 240.7 135.9 84.7
x 1.147 238.7 136.9

P 4̄m2 8.473 168.0 z 1.132 236.4 133.8 92.3
x 1.128 236.8 133.6

P 1 8.477 167.8 z 1.155 233.6 134.9 87.7
x 1.146 234.6 134.4

Exp. (Ref. 33) 8.392 185.7 1.167 257.1 150.0 85.3

NFO a0 B ε⊥ ν2D C11 C12 C44

(Å) (GPa) (GPa) (GPa) (GPa)

Imma32 8.426 177.1 z 1.106 252.2 139.5 93.2
x 1.115 251.2 140.0 87.6

P 4122 8.428 175.4 z 1.116 248.7 138.8 87.4
x 1.116 248.7 138.8

P 4̄m2 8.435 173.3 z 1.116 245.7 137.1 91.0
x 1.102 247.3 136.3

Exp. (Ref. 33) 8.339 198.2 1.177 273.1 160.7 82.3
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Applying the volume-conserving monoclinic strain as
described in Sec. II B yields the remaining elastic modulus C44

which is in very good agreement with the experimental values
for both CFO and NFO. To evaluate the influence of different
orientations of ε⊥ on C44 we applied ε⊥ = εxy and ε⊥ = εyz

with the respective ε‖ to the low-energy orthorhombic Imma

symmetry. The difference in the obtained C44 is slightly larger
compared to the difference in the C11 and C12, but still within
the typical uncertainties of first-principles methods.

Overall it appears that the agreement between the calculated
and experimental lattice constants and elastic moduli is quite
good and within the typical uncertainties of state-of-the-art
first-principles methods. We note that all calculated values
correspond to 0 K, whereas the experimental values listed
in Table I were measured at room temperature. However,
and more importantly, the uncertainties resulting from the
symmetry-lowering cation arrangements are significantly
smaller than the typical deviations between calculated values
and experimental data. Therefore, the elastic properties of the
various cation arrangements of lower symmetry can be well
described by cubic elastic constants.

B. Magnetoelastic properties

1. NFO

Next we focus on the magnetoelastic coupling in NFO. The
calculated MAEs necessary to determine the magnetoelastic
coupling constant B1 are depicted in Fig. 3. As described in
Sec. II C these MAEs are defined here as the energy differences
for various orientations of the magnetization with respect to
the magnetization direction perpendicular to the applied strain
plane, i.e., [001] for ε‖ = εxx = εyy and [100] for ε‖ = εyy =
εzz. According to Eq. (13) the slope of the curves given in Fig. 3
is directly related to the magnetoelastic coupling constants B1.
At first sight, the slopes of all curves in all panels are very
similar and negative, thus leading to a positive B1 (the range
of the y axes is the same in all panels to allow for a direct
inspection of slope differences).

In the tetragonal symmetries (P 4122 and P 4̄m2) all curves
fall on top of each other for ε⊥ = εzz (left panels), whereas
there is a small offset between the curves in all other cases, due
to the lower symmetry. In the even lower Imma symmetry this
offset is also present for ε⊥ = εzz. Nevertheless, the variation
with strain is very similar in all cases, and the values for B1,
obtained by averaging over all curves corresponding to the
same symmetry and strain orientation, are given in Table II.
These values range from 6.1 MPa to 6.9 MPa, depending on
the specific cation arrangement and strain orientation. Due
to these rather small variations, we can conclude that the
magnetostrictive response in NFO can to a good approximation
be described as cubic.

Together with the respective elastic constants from Table I
the magnetostriction constants λ100 can be obtained via Eq. (5),
and are also listed in Table II. It can be seen that there is
only a weak influence of either cation arrangement or different
strain planes on the NFO magnetostriction constant λ100, which
ranges from −35.9 × 10−6 to −41.3 × 10−6. This agrees
perfectly with experimental data ranging from −36.0 × 10−6

to −50.9 × 10−6.
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FIG. 3. Total energy difference �E per two formula units (f.u.)
of NFO as a function of the epitaxial constraint ε‖ for different cation
arrangements. The left (right) panels correspond to the case with ε⊥ =
εzz (ε⊥ = εxx). The panels from top to bottom refer to symmetries
P 4122, Imma (see also Ref. 15), and P 4̄m2, respectively. In the
case of ε⊥ = εzz (ε⊥ = εxx) the depicted energy difference �E is
taken with respect to the [001] ([100]) direction, with the symbols
denoting � [100] ([010]), � [010] ([001]), � [11̄0] ([011̄]), and �
[110] ([011]), respectively.

The calculated strain-dependent MAEs necessary for the
determination of B2 are shown in Fig. 4. The different curves

TABLE II. Magnetoelastic coupling constants (B1, B2) and
magnetostriction constants (λ100, λ111, λS) for NFO using different
cation arrangements and strain planes according to ε⊥ = εzz = z

(ε⊥ = εxx = x) in comparison with available experimental data. The
average magnetostriction constant λS has been obtained using Eq. (7).

ε⊥ B1 λ100 B2 λ111 λS

(MPa) (×10−6) (MPa) (×10−6)

P 4122 z 6.6 −40.1 2.5 −9.7 −21.9
x 6.4 −38.6

Imma32 z 6.1 −35.9 0.9 −3.4 −16.4
x 6.7 −40.3 1.9 −7.3 −20.5

P 4̄m2 z 6.5 −40.0 1.4 −5.3 −19.2
x 6.9 −41.3

Exp. Ref. 34a −36.0 −4.0 −16.8
Ref. 35b −50.9 −23.8 −34.6
Ref. 36c −43.0 −20.1 −29.3

aSingle crystals with Ni0.8Fe2.2O4 composition (300 K).
bSingle crystals of NiFe2O4 (4 K).
cSingle crystals of NiFe2O4 (77 K).
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FIG. 4. Total energy difference �E per two formula units (f.u.) of NFO as function of shear strain for different cation arrangements.
The panels from left to right refer to symmetries P 4122 (ε‖ = εxy), Imma (ε‖ = εxy), Imma (ε‖ = εyz), and P 4̄m2 (ε‖ = εxy), respectively.
The depicted energy differences �E correspond to [110]-[100] (�), [110]-[010] (�), [100]-[11̄0] (�), and [010]-[11̄0] (�), respectively, for
ε‖ = εxy and equivalent directions for ε‖ = εyz.

are adjusted to match at ε‖ = 0 in order to remove the
corresponding offset which is irrelevant for the present work.
The MAEs are chosen according to Eqs. (17) and (18) as
energy differences between different in-plane orientations of
the magnetization with respect to the applied shear strain ε‖.
According to Eq. (19) the slope of the curves given in Fig. 4
is directly related to the magnetoelastic coupling constant B2.
From Fig. 4 it can be seen that the slopes of these curves
are positive, corresponding to positive B2. There are slightly
stronger nonlinearities in the curves in each of the panels
compared to Fig. 3, as well as a stronger influence of the
explicit cation arrangements. The resulting magnetoelastic
coupling constants B2 are listed in Table II and range from
0.9 MPa to 2.5 MPa, leading to magnetostriction constants
λ111 ranging from −3.4 × 10−6 to −9.7 × 10−6. These values
are compatible with the lower experimental values, which
themselves range from −4.0 × 10−6 to −23.8 × 10−6. The
last column in Table II also lists the averaged λS suitable for
polycrystalline materials using Eq. (7).

Overall, the different cation arrangements and strain planes
have only a rather weak influence on the calculated magne-
tostriction constants of NFO, which agree very well with the
range of reported experimental data. We can therefore confirm
our earlier finding,15 that DFT + U methods are suitable for
a quantitative description of magnetoelastic properties in this
material. Moreover, although the symmetries of the investi-
gated cation arrangements are not cubic, the magnetostrictive
properties of NFO are very well described within the cubic
theory.

2. CFO

Now we turn to our results for CFO. The calculated MAEs
for the determination of the magnetoelastic coupling constant
B1 are depicted in Fig. 5. At first sight, one notices again that
all slopes are negative, leading to a positive magnetoelastic
coupling constant B1. However, in contrast to NFO, the values
are now much larger and also depend more strongly on the
specific cation arrangement and orientation of the strain plane.
In all cases except for the case of P 4̄m2 with ε‖ = εxx = εyy ,
we again obtain an offset between the different curves, which
is due to the lower symmetry of the specific cation distribution.
The differences in slopes observable between the various
curves in the left panel of P 4122 symmetry are due to the fact
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FIG. 5. Total energy difference �E per two formula units (f.u.)
of CFO as function of the epitaxial constraint ε‖ for different
cation arrangements. The left (right) panels correspond to the case
with ε⊥ = εzz (ε⊥ = εxx). The panels from top to bottom refer to
symmetries P 4122, Imma (see also Ref. 15), and P 4̄m2, and P 1
[low-energy solution for cation inversion λ = 0.75 (Ref. 21)]. In the
case of ε⊥ = εzz (ε⊥ = εxx) the depicted energy difference �E is
taken with respect to the [001] ([100]) direction, with the symbols
denoting � [100] ([010]), � [010] ([001]), � [11̄0] ([011̄]), and �
[110] ([011]), respectively.
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TABLE III. Magnetoelastic coupling constants (B1, B2) and
magnetostriction constants (λ100, λ111, λS) for CFO using different
cation arrangements and strain planes according to ε⊥ = εzz = z

(ε⊥ = εxx = x) in comparison with available experimental data. The
average magnetostriction constant λS has been obtained using Eq. (7).

ε⊥ B1 λ100 B2 λ111 λS

(MPa) (×10−6) (MPa) (×10−6)

P 4122 z 18.9 −120.1 −8.4 32.9 −28.3
x 32.8 −215.0

Imma32 z 39.7 −251.7 −11.6 40.9 −76.1
x 29.2 −189.7 −12.2 48.8

P 4̄m2 z 42.0 −272.7 −14.6 52.7 −77.5
x 30.9 −199.4

P 1 z 29.1 −196.3 −7.6 28.8 −61.2
x 24.2 −160.9

Exp. Ref. 37a −225.0
Ref. 34b −250.0
Ref. 34c −590.0 120.0 −164.0

aPolycrystalline CoFe2O4 (300 K).
bSingle crystals with Co1.1Fe1.9O4 composition (300 K).
cSingle crystals with Co0.8Fe2.2O4 composition (300 K).

that in this case the system adopts an orbitally ordered ground
state with symmetry lower than that of the underlying crystal
structure. Strongest deviations from linearity are observed
in the low-energy solution with symmetry P 1 belonging to
incomplete inversion λ = 0.75.

The determined magnetoelastic coupling constants B1 are
given in Table III, ranging from 18.9 MPa to 42.0 MPa. The
largest influence of the strain plane orientation is observed
for P 4122 symmetry. Overall, the specific cation arrangement
has a much larger influence on the obtained magnetoelastic
coupling constants in CFO compared to NFO. However,
we note that even though there are pronounced differences
between the two different strain orientations (left and right
panels in Fig. 5) for the same cation arrangements, the strain
dependence of the various calculated energy differences for the
same strain orientation (different curves within each panel) are
very similar in each case. From expression (15) for tetragonal
symmetry, we can therefore empirically observe that the
following approximate relationship holds between the various

magnetoelastic coefficients:

1
2b3(ν2D + 1) ≈ b21 + b22 − ν2Db21. (20)

However, since the slopes in the left and right panels of
Fig. 5 differ, the stronger condition b3 = b22 = −2b21, which
would be valid within cubic symmetry, is not fulfilled in CFO.
The deviation from cubic symmetry caused by the specific
cation arrangements is therefore more strongly manifested
in the magnetoelastic response of CFO compared to NFO.
Nevertheless, the approximate relation Eq. (20) indicates that
some residue of the approximate structural cubic symmetry is
still present also in the case of CFO.

The magnetostriction constants of CFO can now be ob-
tained via Eq. (5) and using the elastic constants in Table I.
The resulting values are listed in Table III and range from
−120.1 × 10−6 to −272.7 × 10−6. This agrees well with the
lower range of available experimental data, which itself varies
between −225 × 10−6 and −590 × 10−6.

The strain-dependent MAEs necessary for the determina-
tion of B2 are shown in Fig. 6, analogous to the NFO case.
Most strikingly, and in contrast to NFO, the corresponding
slope is negative, thus leading to a negative B2 in CFO. The
spread in slopes in each of the panels is comparable to NFO.
While we obtain quite similar values for Imma and P 4̄m2
symmetry (middle three panels), and also for P 4122 and P 1,
the latter two symmetries lead to somewhat smaller values for
B2 than the former.

Overall, B2 ranges from −8.4 MPa to −14.6 MPa for the
symmetries corresponding to complete cation inversion, and
−7.6 MPa for the case with λ = 0.75 (P 1). The resulting
magnetostriction constants λ111 of CFO range from 28.8 ×
10−6 to 52.7 × 10−6, respectively. These values are lower than
the (to the best of our knowledge only available) value of
120 × 10−6 reported experimentally.

In view of the relatively strong dependence on the spe-
cific cation arrangement, no particular trend is apparent on
how the magnetostriction constants change with reduced
cation inversion (P 1 structure compared to the other cases
with full inversion). Taking a closer look at the individual
magnetostriction constants λ100 for all investigated cation
arrangements and strain planes, one can notice that the largest
magnetostriction occurs for cases where the cation species are
arranged in alternating planes parallel to the applied strain
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FIG. 6. Total energy difference �E per two formula units (f.u.) of CFO as function of shear strain for different cation arrangements. The
panels from left to right refer to symmetries P 4122 (ε‖ = εxy), Imma (ε‖ = εxy), Imma (ε‖ = εyz), P 4̄m2 (ε‖ = εxy), and P 1 [ε‖ = εxy ,
low-energy solution for cation inversion λ = 0.75 (Ref. 21)], respectively. The depicted energy differences �E correspond to [110]-[100] (�),
[110]-[010] (�), [100]-[11̄0] (�), and [010]-[11̄0] (�), respectively, for ε‖ = εxy and equivalent directions for ε‖ = εyz.
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plane, e.g., ε⊥ = εzz = z for Imma and P 4̄m2 symmetry
(see Fig. 2). Furthermore, if one compares the two different
strain orientations for P 4122 symmetry, the magnetostriction
is larger for ε⊥ = εxx = x, where the strain plane contains
chains of B-site cations with two equal cations next to
each other in each chain. The magnetostriction value for
the strain plane containing alternating cation chains within
P 4122 symmetry is the smallest observed here. However, at
present it is unclear whether these correlations between cation
arrangement and λ100 are mostly coincidental, or whether
they indeed indicate a deeper relationship between these two
properties. In any case our results give clear evidence that a
fully quantitative model of anisotropy and magnetostriction
in CFO needs to include crystal- or ligand-field effects that
go beyond the immediate nearest neighbor shell of the Co2+
cation.

The effect of different distributions of Co2+ and Fe3+
cations on the B-sites surrounding a specific Co B-site has
been taken into account in the theory of magnetic anisotropy
for CFO by Tachiki38 and is also discussed by Slonczewski.39

It was shown that the corresponding crystal-field component
can have a strong effect on the resulting cubic magnetic
anisotropy constants. The noticeable dependence of our calcu-
lated magnetoelastic coupling constants on the specific cation
arrangement in CFO indicates that this crystal-field component
is indeed quite strong and needs to be taken into account within
a quantitative theory of anisotropy and magnetostriction in
spinel ferrites.

IV. SUMMARY AND CONCLUSIONS

In summary, we have presented a detailed first-principles
study of elastic and magnetoelastic properties of the inverse
spinel ferrites NFO and CFO. We have calculated all cubic
elastic and magnetoelastic constants from a variety of distorted
crystal structures. Thereby, we have considered different
possible cation arrangements to represent the inverse spinel
structure, and in the case of CFO we also considered a cation
distribution corresponding to incomplete inversion with λ =
0.75. The magnetoelastic coefficients are obtained from the
strain dependence of the MAEs for two different deformations
of the crystal structure.

Even though the symmetry of the considered cation ar-
rangements is lower than cubic, our results show that the elastic
response of both NFO and CFO can to a good approximation
be described using cubic elastic constants. Since the elastic
constants are mainly determined by the strength of the
chemical bonding, this indicates that Co, Ni, and Fe all form
bonds of similar strength with the surrounding atoms.

Similarly, the magnetoelastic response of NFO can also to
a good approximation be described using the cubic expression
for the magnetoelastic energy density [Eq. (2)]. This is
indicated by the relatively small quantitative differences in
the calculated magnetoelastic coefficients for the various
cation arrangements. On the other hand, the magnetoelastic
coefficients of CFO show a stronger dependence on the specific
cation arrangement and the orientation of the applied strain, so
that the cubic approximations is less justified in that case. In
addition, the overall magnetoelastic response is much stronger
in CFO than in NFO.

Both of these observations can be understood from the
d7 electron configuration of the Co2+ cation, which leads to
stronger spin-orbit effects compared with the d8 configuration
of Ni2+. In the latter, the orbital magnetic moment is strongly
quenched by the dominant octahedral component of the crystal
field, and the system is less sensitive to additional crystal-
field components of lower symmetry. In contrast, the orbital
moment is not fully quenched by the octahedral crystal field for
the d7 configuration of Co2+, and additional splittings, which
are created by the different arrangements of the surrounding
B-site cations, can have much stronger effects on the electronic
ground state within the partially filled minority-spin t2g orbital
manifold.

Both sign and magnitude of the calculated magnetostriction
constants agree well with available experimental data. Even
for CFO, where the calculated magnetostriction depends more
strongly on the specific cation distribution than for NFO,
the resulting uncertainty is within the spread of available
experimental data.

Further experimental data for single crystals is therefore
required for a more accurate comparison. We note that a
number of obstacles can in principle affect an accurate
comparison between theory and experiment. Apart from
potential influences of varying sample stoichiometry, degree
of inversion, and measuring temperature, the preparation
of an ideal demagnetized state with an essentially random
orientation of magnetic domains is relatively hard to achieve.
For example, a state with 50% of domains oriented paral-
lel and 50% of domains oriented antiparallel with respect
to a certain axis would have zero magnetization but the
magnetostrictive strain would already be saturated along
that direction. Furthermore, for systems with very strong
magnetic anisotropy, such as CFO, it can be very difficult
to achieve full saturation along the hard direction.40 Other
sources of disagreement between theory and experiment could
be due to the neglect of higher order terms in the energy
expression (2),2 or most likely due to deficiencies in the
exchange correlation potential used in the DFT calculations.
However, based on the currently available experimental data
it can be concluded that the GGA + U method used in the
present work is sufficiently accurate for further investigation
on the effects of cation distribution, degree of inversion, and
stoichiometry on the magnetostrictive properties of spinel
ferrites.

Our work thus provides a sound basis for future investiga-
tions of magnetostriction and anisotropy in spinel ferrites as
well as for future first-principles studies of magnetoelectric
coupling in artificial multiferroic heterostructures containing
either CFO or NFO in combination with ferroelectric and/or
piezoelectric materials.
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