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We examine in details the connections between topological and entanglement properties of short-range
resonating valence bond (RVB) wave functions using projected entangled pair states (PEPS) on kagome and
square lattices on (quasi)infinite cylinders with generalized boundary conditions (and perimeters with up to 20
lattice spacings). By making use of disconnected topological sectors in the space of dimer lattice coverings,
we explicitly derive (orthogonal) “minimally entangled” PEPS RVB states. For the kagome lattice, using the
quantum Heisenberg antiferromagnet as a reference model, we obtain the finite-size scaling with increasing
cylinder perimeter of the vanishing energy separations between these states. In particular, we extract two separate
(vanishing) energy scales corresponding (i) to insert a vison line between the two ends of the cylinder and
(ii) to pull out and freeze a spin at either end. We also investigate the relations between bulk and boundary
properties and show that, for a bipartition of the cylinder, the boundary Hamiltonian defined on the edge can
be written as a product of a highly nonlocal projector, which fundamentally depends upon boundary conditions,
with an emergent (local) SU(2)-invariant one-dimensional (superfluid) t-J Hamiltonian, which arises due to
the symmetry properties of the auxiliary spins at the edge. This multiplicative structure, a consequence of the
disconnected topological sectors in the space of dimer lattice coverings, is characteristic of the topological nature
of the states. For minimally entangled RVB states, it is shown that the entanglement spectrum, which reflects the
properties of the (gapless or gapped) edge modes, is a subset of the spectrum of the local Hamiltonian, e.g., half of
it for the kagome RVB state, providing a simple argument on the origin of the topological entanglement entropy
S0 = − ln 2 of the Z2 spin liquid. We propose to use these features to probe topological phases in microscopic
Hamiltonians, and some results are compared to existing density matrix renormalization group data.
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I. INTRODUCTION

Conventional ordering in condensed matter systems is tradi-
tionally associated to symmetry breaking and to the existence
of a local order parameter (Landau theory). Topologically
ordered phases of matter1 offer completely new classes of sys-
tems for which the ground-state (GS) degeneracy depends on
topology (disk, cylinder, torus, etc.). The (short-range singlet)
resonating valence bond (RVB) wave function proposed by
Anderson2 as the parent Mott insulator of high-temperature
superconductors is a celebrated example. Such topological
phases carry emerging fractionalized excitations and raise
growing attention due to their potential to realize fault-tolerant
setups for quantum computing.3

Experimental and theoretical search for topological liquids
in quantum antiferromagnets4 and in related microscopic
models5,6 has been a long-standing quest. One major problem
is the existence of many possible (nonmagnetic) nearby
competing states such as valence bond crystals7 (sponta-
neously breaking lattice symmetry), clearly evidenced, e.g.,
in quantum dimer models.8 Recent advances in the density
matrix renormalization group (DMRG) techniques have rein-
forced the strong belief that a gapped spin liquid might be
stabilized in the nearest-neighbor (NN) S = 1/2 Heisenberg
quantum antiferromagnet (HAF).9–12 This has also triggered
the search for novel theoretical tools capable of better detecting
topological order, in particular, entanglement measures used
in quantum information. A common setup consists of dividing

the system into two regions (named A and B) and compute
the reduced density matrix (RDM) in the GS of, e.g., the A
subsystem. The entanglement entropy (EE), defined as the von
Neumann entropy of the RDM SVN = −ρA ln ρA, contains an
extensive term [proportional to the length of the boundary (area
law)] and a universal subleading constant, the topological EE.
Specific disklike setups13 or cylindrical geometries can be used
to extract the topological EE.

In fact, − ln ρA can be seen as a (dimensionless) Hamil-
tonian Hb, a key conceptual object. First, its spectrum, the
so-called entanglement spectrum (ES), has been conjectured
to show a one-to-one correspondence with the spectrum of
edge states. This remarkable property was first established
in fractional quantum Hall states14 and, then, in quantum
spin systems.15 Furthermore, projected engangled pair states16

(PEPS) offer a natural formulation of the relation between bulk
and boundary. In Ref. 17, an explicit isometry was constructed
which maps the Hamiltonian Hb onto another one H̃b acting
on the space of auxiliary spins living at the edge of region
A, while keeping the spectrum. Furthermore, for various
two-dimensional (2D) models displaying quantum phase
transitions, such as a deformed Affleck-Kennedy-Lieb-Tasaki
(AKLT) (Ref. 18) or an Ising-type19 model, it was found17 that
a gapped bulk phase with local order corresponds to a boundary
Hamiltonian with local interactions, whereas critical behavior
in the bulk is reflected in a diverging interaction length of H̃b.

Entanglement properties of 2D topological phases are
less well understood. Rokhsar-Kivelson (RK) wave functions,
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FIG. 1. (Color online) Typical valence bond configurations on
a Nv × Nh cylinder with periodic boundary conditions along the
vertical (v) direction. Ellipses represent singlets of two spins 1/2.
Open (a) or generalized (b) boundary conditions on the BL and BR

ends of the cylinder are considered (GBC can be obtained physically
by freezing some spins at the boundaries, e.g., with local magnetic
fields). The RVB wave function is defined as the equal-weight
superposition of all such configurations (for a fixed realization of
BL and BR).

defined as equal-weight superposition of fully packed dimer
coverings, exhibit critical behavior on bipartite lattices20 or
realize the simplest topological phase, the so-called Z2 liquid,
on frustrated lattices.21 The topological EE of critical and topo-
logical RK wave functions have been computed using various
topologies,22 and the boundary Hamiltonian corresponding to
the GS of Kitaev’s toric code3 was shown to be nonlocal.17

Unfortunately, RK-type wave functions are not generic (their
ES is completely dispersionless23) and do not describe real
quantum S = 1/2 spin systems.24,25 In contrast, (short-range)
RVB states, defined as linear superposition of hard-core
coverings of nonorthogonal nearest-neighbor SU(2) singlets
[see Fig. 1(a)], appear to be closer to physical systems. Very
recently, the (Renyi) EE between (finite) cylindrical regions
has been computed27 numerically for the critical28,29 RVB
state on the square lattice. Similarly, the (Renyi) topological
EE of SU(2)-symmetric gapped chiral and Z2 spin liquids was
obtained30 using Kitaev-Preskill prescription. Nevertheless,
ES and boundary Hamiltonians of such RVB/spin liquids wave
functions are unknown.

In this work, we study topological and entanglement prop-
erties of both critical (square lattice) and gapped topologically
ordered (kagome lattice) RVB wave functions29 on infinite
cylinders making use of simple PEPS representations. Let
us describe here the organization of the paper: First, in
Sec. II, we introduce RVB wave functions defined in the
space of dimer (hard-core) coverings of square and kagome
lattices. On cylinders with generalized boundary conditions,
we review the construction of four disconnected topological
sectors of dimer coverings (on the kagome lattice). Next,
in Sec. III, we introduce the PEPS representation of the
RVB wave functions and, making use of the disconnected
topological sectors, explicitly construct four orthogonal RVB
states. Using the quantum Heisenberg model as a reference
Hamiltonian, we obtain the generic behavior of their energy
splittings versus cylinder perimeter. In Sec. IV, we introduce
a partition of the cylinder and compute the corresponding
reduced density matrix (RDM). The (Hermitian) operator
defined as minus the logarithm of the RDM can be viewed
as a boundary Hamiltonian: it can be naturally expressed
in the PEPS formalism as an operator acting on the virtual

indices on the edges (up to an isometry). We show that
the boundary Hamiltonian can be written as a product of
a highly nonlocal projector, which depends fundamentally
on the boundary conditions, by a local one-dimensional t-J
model, which arises due to the symmetry properties of the
auxiliary spins at the boundary and characterizes the (gapless
or gapped) edge modes. This multiplicative structure is a direct
consequence of the disconnected topological sectors in the
space of dimer coverings of the lattice and, therefore, reflects
the topological nature of the states. For sake of conciseness,
more technical issues such as finite-size scalings, etc., are
treated in Appendixes.

II. RVB WAVE FUNCTIONS ON CYLINDERS

A. Setup and boundary conditions

Let us first start with a square lattice on a cylinder of length
Nh and circumference Nv with open boundary conditions
(OBC) as depicted in Fig. 1(a). We consider the space of
all nearest-neighbor | ↑↓〉 − | ↓↑〉 singlet coverings of the
lattice in such a way that each site belongs to one and only
one dimer (so called “hard-core” coverings). Note that all
singlets are oriented from one sublattice to the other. The
resonating valence bond state is then defined as the equal-
weight superposition of all such dimer (singlet) coverings.
Aside from OBC, we also consider generalized boundary
conditions (GBC) as in Fig. 1(b) by freezing some spins
at the two boundaries BL and BR of the cylinder: in that
case, dimers can not involve these “frozen” sites any more.
Because of the local hard-core constraints, the choice of the
boundary conditions will affect the physics in the center of the
cylinder, even in the limit of an infinitely long one. Similar
dimer coverings and RVB wave functions can be considered
on cylinders with a kagome lattice (see, e.g., Fig. 2). In that
case, singlets are all oriented clockwise in both left and right
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FIG. 2. (Color online) Two valence bond configurations on a 4 ×
2 cylinder (Nv = 4). The two configurations are obtained from each
other by translating all dimers (in purple) along a (single) closed
loop encircling the cylinder. Such configurations can be distinguished
from the parities Gh = ±1 of the number of dimers cut by open lines
along the h1 and h2 directions joining the two BL and BR ends of
the cylinder and, hence, define two different topological sectors. Two
RVB (variational) ground states with 〈Gh〉 = 0 can be constructed
as equal-weight superpositions of all dimer coverings with + or −
relative signs between the two topological sectors.
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FIG. 3. (Color online) Two valence bond configurations on a 4 ×
2 cylinder (Nv = 4 even). The two configurations are obtained from
each other by translating all dimers (in purple) along a (single) open
loop joining the two BL and BR ends of the cylinder (and adding
extra spins). Such configurations can be distinguished from the parity
Gv = ±1 of the number of dimers cut by any closed loop winding
around the cylinder along the vertical direction and, hence, define two
different “even” and “odd” topological sectors (and the corresponding
RVB states).

triangles. It is known that RVB wave functions always exhibit
short-range spin-spin correlations in two dimensions (2D)
although dimer-dimer correlations can be either short range
(kagome) or critical (square lattice) as mentioned above.

B. Topological sectors

Here, we briefly review the crucial concept of topological
sectors in the space of (hard-core) dimer coverings (focusing
on the kagome lattice) and show that four RVB wave functions
belonging to different topological sectors can be constructed
on Nv × Nh cylinders with periodic (open and generalized)
boundary conditions in the vertical (horizontal) direction when
Nv is even. The case of odd perimeter will also be discussed.
For illustration, small 4 × 2 and 3 × 2 cylinders are drawn for
simplicity in Figs. 2, 3, and 4, but our arguments are valid for
any system size.

Let us first consider the case of a cylinder with Nv even.
Topological sectors can be defined by considering (i) a closed
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FIG. 4. (Color online) Same as Fig. 3 for a 3 × 2 cylinder (Nv = 3
odd).

loop in the vertical direction winding around the cylinder (see
Fig. 2) and (ii) two open lines along the crystal directions
h1 and h2 at 30◦ angles w.r.t. the horizontal axis (see Fig. 3),
joining the two open ends BL and BR of the cylinder. As shown
in Figs. 2 and 3, for a given configuration, the parities of the
numbers of dimers cut by these loops are conserved quantities
under translation of the vertical loop (horizontal lines) along
the horizontal direction (vertical direction). Since the product
of the three parities is constrained to be either even or odd
(depending on the choice of Nh and Nv), NN dimer configura-
tions can be grouped into four disconnected sectors. They are
“topological” in nature since any local Hamiltonian acting on
the space of dimer configurations preserves the sectors.

It is interesting to note that one can go from one topological
sector to the other by nonlocal moves of dimers. For example,
let us consider the left configuration of Fig. 3. By translating
any staggered arrangement of dimers around a closed loop
winding around the cylinder by one lattice spacing, one
permutes (changes) the parities Gh measured along h1 and h2

for Nh = 4p + 2 (Nh = 4p). Because the space of NN dimer
coverings is divided into two disconnected sectors (fixing
OBC), two RVB states can first be constructed separately in
each sector. Such states should have the same energy density
in the middle of the cylinder [for a generic local SU(2)
Hamiltonian] since nothing can distinguish the two states
locally. However, on a finite cylinder, such RVB states do
not have the lowest variational energy since they break the
mirror symmetry w.r.t. the horizontal direction (a symmetry
assumed for the Hamiltonian) when Nh = 4p + 2. However,
by taking their superpositions both with relative plus or minus
signs (see Fig. 2), two appropriate variational GS �+

RVB and
�−

RVB can be defined (strictly orthogonal for Nh = 4p + 2).
Interestingly, starting from �+

RVB, one can pictorially obtain
�−

RVB by inserting a “vison” line going all the way from the
left to the right boundaries of the cylinder, e.g., along the h1

direction: the vison operator counts the number of dimers cut
by the line and adds a minus sign to the wave function for
an odd number of cuts. In other words, the �+

RVB (no vison)
and �−

RVB (vison) are states with a definite Z2 flux through the
cylinder.

The two states �+
RVB and �−

RVB have been constructed for
specific OBC for BL and BR . Shifting by one lattice spacing
a line of staggered dimers joining the two ends of the cylinder
will change the parity Gv of the numbers of dimers cut by
loops winding around the cylinder, hence providing a change
from, say, the “even” to the “odd” topological sector, as seen
in Fig. 3. By applying this second type of nonlocal move
to the two previous �+

RVB and �−
RVB wave functions, one can

then construct four orthogonal variational RVB wave functions
denominated as �

+,even
RVB , �

−,odd
RVB , �

+,even
RVB , and �

−,odd
RVB .

Let us now briefly discuss the case of odd cylinders,
i.e., cylinders with an odd number Nv of unit cells. As
shown in Fig. 4, the parity of the number of dimers cut
by closed loops encircling the cylinder along the vertical
direction alternates along the cylinder. This indicates that two
consecutive columns become nonequivalent and the system
spontaneously dimerizes in the cylinder direction. By shifting
a horizontal line of staggered dimers as before, one switches
the parity of the even and odd columns. This defines two
disconnected classes of configurations from which two related
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RVB states �
+,1
RVB and �

+,2
RVB can be constructed as equal-weight

superposition of all dimer configurations of each class. In the
center of long (enough) cylinders, these two RVB states are
simply related by a unit translation along the cylinder. Of
course, as before, a vison line can be inserted between the two
ends of the cylinder to derive two new �

−,1
RVB and �

−,2
RVB wave

functions.
We finish this section with the case of the square lattice.

Because of the much more constrained nature of dimer
configurations on the square lattice, one can construct an
extensive number ∝ Nv of topological sectors. This will be
discussed in more details in Sec. IV.

III. PEPS REPRESENTATION OF RVB STATES

A. Mathematical construction

We start with the square lattice RVB wave function (NN
| ↑↓〉 − | ↓↑〉 singlets are all oriented from one sublattice
to the other) on a cylinder of length Nh and circumference
Nv , depicted in Figs. 5(a) and 5(c), corresponding to an
equal-weight (and equal-sign) summation of all (singlet) dimer
coverings. The RVB wave function can be expanded in the
local Sz basis |�RVB〉 = ∑

S cS |s1,s2, . . . ,sM〉, where sn = 0,1
are qubits (representing the two Sz = ±1/2 spin components)
on the M = NhNv sites and S = {sn}. Such a state can in
fact be represented by a D = 3 PEPS (Refs. 19 and 25) (up
to local unitaries) where each lattice site is replaced by a
rank-5 tensor As

α,α′;β,β ′ labeled by one physical index s = 0

FIG. 5. (Color online) RVB wave functions on a cylindrical
geometry: equal-weight superposition of hard-core dimer coverings
[see, e.g., (a) and (c)] have simple representations in terms of PEPS
[(b) and (d)]. The BL and BR boundary conditions of Figs. 1(a)
and 1(b) can be realized by fixing the virtual variables going out of
the cylinder ends; OBC (a) are defined by setting all boundary indices
to “2” (b). Generalized boundary conditions (c) translate in the PEPS
language by setting the boundary indices to 0 (spin ↓) or 1 (spin ↑)
(d). A bipartition of the cylinder generates two L and R edges along
the cut.

FIG. 6. (Color online) On the kagome lattice, an effective rank-5
tensor is constructed on each three-site unit cell. Three site tensors
(red dots) carrying the physical indices and two 120◦ tensors (in
the center of the shaded triangles) are grouped together (a), (b) to
construct the basic tensor (c). The kagome lattice is then mapped
onto an effective square lattice. A partition of the cylinder in the
vertical direction generates L and R edges (thick dotted line).

or 1, and by four virtual bond indices (varying from 0 to
2) along the horizontal (α,α′) and vertical (β,β ′) directions.
Physically, the absence of singlet on a bond is encoded by
the virtual index being “2” on that bond. To enforce the
hard-core dimer constraint, one takes As

α,α′;β,β ′ = 1 whenever
three virtual indices equal 2 and the fourth one equals s, and
As

α,α′;β,β ′ = 0 otherwise. The amplitudes cS are then obtained
by contracting all virtual indices, except those at the ends
of the cylinder fixed by boundary conditions, as depicted in
Figs. 5(b) and 5(d). For the kagome lattice, as shown in Fig. 6,
the RVB state can be represented in terms of rank-3 tensors
(i) As

α;β on the sites–As
2;s = As

s;2 = 1 and zero otherwise and
(ii) on the center of each triangle R2,2,2 = 1, and Rα,β,γ = εαβγ

otherwise, with εαβγ the antisymmetric tensor.25 One can then
group the three sites on each unit cell to obtain a rank-5
tensor (the physical dimension is now 23 = 8) connected on
an effective square lattice [Figs. 6(b) and 6(c)]. Note that for
the kagome PEPS, one can find a local parent Hamiltonian for
which the degeneracy is equal to 4 on the torus.25

In the PEPS formulation, the boundary conditions BL

and BR can be simply set by fixing the virtual states on
the bonds “sticking out” at each cylinder end. For example,
open boundary conditions as in Fig. 5(a) are obtained by
setting the boundary virtual indices to “2” as shown in
Fig. 5(b). Generalized boundary conditions can be realized
as in Figs. 5(c) and 5(d) by setting some of the virtual indices
on the ends to 0 or 1.

B. Topological energy splittings of kagome RVB wave functions

More and more numerical data from DMRG simulations
support the claim that the NN quantum HAF on the kagome
lattice is a topological Z2 spin liquid.9,11,12 It is therefore
interesting (and relevant) to consider the previous topological
NN-RVB wave functions as variational ground-state ansätze
for the NN HAF Hamiltonian on the kagome lattice

H = J
∑
〈ij〉

Si · Sj , (1)
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FIG. 7. (Color online) Illustration of the energy splitting between
the four (variational) RVB wave functions for the kagome HAF. From
left to right, the cylinder length (at fixed perimeter Nv even) and then
its perimeter are increased to infinity.

where Si is the spin-1/2 operator at site i and 〈ij 〉 stands for
all NN bonds of the kagome lattice and the exchange constant
has been set to J = 1 from now on. Although (i) the (local)
parent Hamiltonian of the NN-RVB wave function contains
much more complicated interactions25 and, conversely, (ii) the
ground state of the NN HAF is far more involved that a simple
NN-RVB (e.g., containing singlets bonds beyond NN), we
believe generic features on the finite-size energy splitting
between the different topological sectors (topological gap)
can be obtained by using simple NN RVB wave functions. A
schematic picture in Fig. 7 illustrates the expected GS multiplet
structure for increasing system size. In the 2D thermodynamic
limit, when both cylinder length and perimeter are infinite, one
expects all energy splittings to vanish and the GS to become
fourfold degenerate.

The PEPS formalism allows us to compute exactly the
variational energy of the NN RVB wave functions on cylinders
of perimeter Nv up to Nv = 10 and length Nh → ∞. �

+,even
RVB

is obtained using the local rank-5 tensors described above
and OBC. To get �

−,even
RVB , one inserts a “vison” line joining

the two boundaries of the cylinder by putting a string of
Z = diag(1,1, − 1) operators on the bonds.26 Finally, �

±,odd
RVB

are obtained by using GBC for BL and BR . The energy is
computed at the center of the cylinder after full convergence
with increasing cylinder length Nh is reached (typically,
Nh ∼ 10Nv is enough). We have checked numerically that
all states possess mirror symmetry of the energy density
w.r.t. the horizontal axis (as expected from their symmetry)
and are uniform (staggered) for Nv even (odd) as illustrated
in Fig. 8. Interestingly, for Nv = 8 and 10, the lattice C6v

symmetry around a hexagon center is almost fully recovered
(i.e., the vertical and 30◦ bonds become equivalent). The
energy (per site) of the four orthogonal RVB wave functions
is plotted in Fig. 9(a) versus 1/Nv . After averaging the
energies of the even and odd states, one obtains very accurate
fits of the exponentially fast convergence of the energies of
the RVB wave functions in the “+” and “−” topological
sectors, with a very short characteristic length scale ξE ∼ 1.0.
The extrapolated energy agrees very well with a recent
estimate based on a Gutzwiller-projected superconducting
wave function.31 Although this variational energy is much

(b) Nv odd(a) Nv even

R-A

R-BL-A

L-B

FIG. 8. (Color online) Schematic patterns of the exchange inter-
action on the triangles in the center of (quasi)infinite cylinders. For
Nv even (Nv odd), the system is uniform (dimerized).

higher than most recent variational estimates9,11,12 (between
−0.437 and −0.439), we believe the observed finite-size
behaviors and energy splittings (topological gaps) should
be generic of Z2 spin liquids. For example, we find that
the average over the variational energies of the four RVB

FIG. 9. (Color online) (a) Finite-size scaling of the energy (per
site) of the four RVB wave functions on infinite kagome cylinders
versus inverse perimeter Nv . ‘Even” and “odd” refer to the parity of
the number of spins frozen on the cylinder boundaries. “+” and “−”
states differ by the absence or presence of a vison horizontal line,
respectively. The energies of the fixed parity (Gh = ±1) states are
obtained by averaging the + and − energies (since the cross terms
vanish) separately in the even and odd sectors. The energies of the
four nonequivalent triangles of odd-perimeter infinite cylinders (with
no vison) are also included. Averages over the even and odd energies
separately in the no-vison (+) and vison (−) sectors are also shown.
(b) Corresponding energy splittings (normalized per three-site unit
cell) vs Nv [see Fig. 7(b)]. We also include the dimerization energy
of the �

+,1,2
RVB states on odd-perimeter infinite cylinders, defined as the

energy difference between even and odd columns. DMRG data (S. R.
White, Ref. 9 and private communication) for the dimerization of the
YC6 cluster (Nv = 3) or the spittings of the YC4 (Nv = 2) and YC8
(Nv = 4) clusters are shown for comparison. Dashed straight lines
correspond to exponential fits of the form A0 exp (−Nv/ξ ).
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wave functions exhibits surprisingly small size dependence,
in striking correspondence with DMRG results.9,12

The splittings between the variational RVB GS defined in
Fig. 7(b) are plotted using a logarithmic scale in Fig. 9(b)
as a function of the perimeter Nv of the infinite cylinder.
Exponential decay of the topological splittings versus Nv

are seen revealing two typical length scales ξ 1
topo ∼ 0.65

and ξ 2
topo ∼ 1.01, associated to the even-odd and +/− gaps,

respectively. Note that the dimerization energy of the �
+,1
RVB

(or �
+,2
RVB) states follows the same exponential decay as the

even-odd topological gaps. For a very long cylinder with
fixed boundary conditions, we therefore predict the following
finite-size scaling of the largest topological splitting (cost of
inserting a horizontal vison line)

	E+− � 1.06 NvNh exp (−0.99 Nv) . (2)

The cost of freezing an odd number of spins at the boundary
is given by

	Eeo � 1.95 NvNh exp (−1.54 Nv) (3)

for the case where the state has a definite parity (Gh = ±1).
For a definite Z2 flux in the cylinder (e.g., a state with or
without a vison), moderate corrections occur for perimeter
Nv � 8 as seen in Fig. 9(b). In DMRG, the two different even
and odd sectors can be fixed9 by moving a site from one end of
the cylinder to the other, which would be the same as pinning
sites with strong fields on either end. However, it is not clear
whether the DMRG algorithm chooses a definite Gh parity or
a definite Z2 flux or neither of the two.

IV. BOUNDARY HAMILTONIAN ON INFINITE
CYLINDERS

A. Bipartition and reduced density matrix

To define the boundary Hamiltonian of the RVB wave
functions, we partition the Nv × Nh cylinder into two half-
cylinders of lengths Nh/2, as depicted in Fig. 5. Partitioning
the cylinder into two half-cylinders (playing the role of two A
and B subsystems as defined in the Introduction) reveals two
edges L and R along the cut. Ultimately, we aim to take the
limit of infinite cylinders, i.e. Nh → ∞ as before.

For a topological state, the boundary Hamiltonian depends
on the choice of the wave function within the (variational) GS
degenerate manifold. In other words, it depends upon (i) the
choice of the BL and BR cylinder boundaries that impose the
parity Gv (BL and BR have to “match”) and (ii) the possible
insertion of a horizontal vison line (or equivalently a Z2 flux
through the cylinder). For simplicity, we restrict ourselves to
the + combination of Fig. 2 (no vison), but still consider
arbitrary choices of the boundary conditions at the ends of the
cylinder.

The boundary Hamiltonian H̃b can be derived from the
reduced density operator σ 2

b = exp (−H̃b) acting on the
edge indices, following the procedure given in Ref. 17.
For the kagome lattice, there is no reflection symmetry w.r.t.
the cut, so the RDM for the left (right) side takes the form
σ 2

bL = √
σ t
R σL

√
σ t
R (σ 2

bR = √
σ t
L σR

√
σ t
L ) where σL and σR

are obtained by contracting the tensors of the left and right
half-cylinders, respectively, as shown in Fig. 10 (see Ref. 17

FIG. 10. (Color online) Boundary operator σL obtained by con-
tracting all physical indices (wavy lines connecting the tensors in
the front and in the back) of the left half-cylinder. Here, arbitrary
boundary conditions have been chosen for BL.

for details). Note that σ 2
bL and σ 2

bR give identical ES. For clarity,
we restrict ourselves to σ 2

bL. Ultimately, we are interested in
RVB cylinders with infinite lengths in both directions. First,
we fix the cylinder perimeter (Nv = 4,6,8) and take the limit
Nh → ∞ as shown in Appendix A (in practice, the RDM for
Nh ∼ 10Nv is fully converged). The behaviors of the boundary
Hamiltonian and the ES as a function of cylinder perimeter are
then analyzed (see Appendix B for explicit finite-size scalings).

B. Boundary Hamiltonian

1. Disconnected topological sectors in the PEPS representation

The concept of boundary Hamiltonians is described in
details in Ref. 17 and, for topological states, in Ref. 32. Here,
we provide the details of their numerical computation for the
RVB states. A crucial feature of the topological states is that
the RDM depends intrinsically on the choice of the boundary
conditions (BL = BR for simplicity), even when Nh → ∞.
Indeed, the configurations of virtual indices (on the horizontal
bonds) of any vertical column are split in two disjoined
sectors which, due to local constraints, are conserved from
column to column (and hence can be addressed independently
from proper choices of BL = BR). This is directly connected
to the partition of the space of NN dimer coverings into
disconnected (even and odd for the kagome lattice) topological
sectors discussed earlier. Indeed, the number of |2〉 states
on a column of virtual bonds corresponds to the number of
bonds with no dimers. Therefore, for the kagome lattice, in a
given topological sector, the parity of the number of virtual |2〉
states on the columns is conserved from column to column.
Consequently, the boundary Hamiltonian of the kagome RVB
wave function conserves the parity of the number of |2〉
states, as in Kitaev’s toric code. On the square lattice, extra
constraints impose the conservation of the difference between
the number of |2〉 states between two alternating sublattices
on the edge. Hence, although the RDM (and H̃b) acts on all
3Nv degrees of freedom of the L (or R) edge, in each sector
it contains a finite fraction of zero-weight eigenvalues, i.e., a
finite fraction of eigenstates of H̃b have infinite energy. Calling
P the projector on the finite-energy subspace, we split H̃b as
H̃b = H1 + β∞(Id − P), where Id is the 3Nv × 3Nv identity
operator, β∞ → ∞, and H1 is supported by the nonzero
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eigenvalues sector of the RDM. More precisely, H1 can be
factorized as H1 = HlocalP where Hlocal is a Hamiltonian
(shown later to be local) acting on the whole boundary space,33

commuting with P and independent on BC. The kagome
cylinder has only two sectors defined by P = Peven and
P = Podd = Id − Peven, which can be obtained by choosing
an even or odd number of “2” external (virtual) indices for
BL = BR , respectively. On the square lattice cylinder, there
are Nv + 1 disconnected sectors defined by projectors P	

enforcing a fixed difference N2,X − N2,Y = 	 of the numbers
of “2” on two X and Y alternating sublattices on the edge,
	 = −Nv/2, . . . ,Nv/2. The fact that H1 is known for all
sectors implies that Hlocal is uniquely determined as will be
shown in the next section.

2. Practical derivation of Hlocal

In practice, each numerical calculation is done for a specific
choice of the boundary conditions BL and BR (for simplicity,
we assume here BL = BR) on the cylinder ends, which deter-
mines a given conserved sector (mathematically characterized
by some projector P), support of the corresponding boundary
Hamiltonian. Conversely, all sectors (associated to different
projectors P) can be obtained from proper choices of the
boundary conditions BL = BR (like the sectors defined by the
projectors Peven and P0 which can be addressed by choosing
OBC).

On the kagome cylinder, the two sectors defined by
P = Peven and P = Podd = 1⊗Nv − Peven can be obtained by
choosing even (e.g., OBC) or odd number of “2” external
(virtual) indices on both the left and right boundaries of the
cylinder, respectively. We can then construct a “mixed” RDM
(for the right part)

σ 2
b =

√
σ t
L σR

√
σ t
L (4)

by considering the linear superpositions

σR = σR,even + σR,odd,
(5)

σL = σL,even + σL,odd,

where σT,p are obtained by contracting the left (T = L) and
right (T = R) half-cylinders (see Ref. 17) with appropriate
p = even or p = odd parity boundary conditions and the equal-
weight normalization condition

Tr{(σL,even)t σR,even} = Tr{(σL,odd)t σR,odd} = 1. (6)

Since σT,even and σT,odd are supported on disconnected sub-
spaces, the mixed RDM splits into orthogonal contributions
σ 2

b = ρeven + ρodd, where

ρeven =
√

σ t
L,even σR,even

√
σ t
L,even ,

(7)
ρodd =

√
σ t
L,odd σR,odd

√
σ t
L,odd .

Since σ 2
b is supported by the whole Hilbert space, Hlocal can

be uniquely defined by setting σ 2
b = exp (−Hlocal), enabling a

direct computation of Hlocal = − ln σ 2
b from Eqs. (4) and (5).

Conversely, the generic form of the boundary Hamiltonian
associated to the (normalized) RDM ρp is given by

H̃b = HlocalPp + β∞Pp̄ , (8)
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FIG. 11. (Color online) Weights of the projectorsP	, 	 = 0,1,2,

and 3 (square lattice, Nv = 6) and Peven (kagome lattice, Nv = 8)
expended in terms of N -body operators. Same for Hlocal for the RVB
wave function on the square (a) and kagome (b) lattices, on Nv = 6
(small symbols) and Nv = 8 (large symbols) infinite cylinders.

with β∞ → ∞ and where p (p̄) refers to the even (odd) or
odd (even) parity sector.

For the RVB wave function on the square lattice, there
are Nv/2 + 1 orthogonal sectors defined by the projectors P	

enforcing a fixed difference |N2,A − N2,B | = 	 on the two
A and B alternating sublattices on the one-dimensional edge,
	 = 0,1, . . . ,Nv/2. We show (for Nv = 6) the expansion of
these projectors in terms of N -body operators in Fig. 11(a),
highlighting clearly their highly nonlocal character. We con-
struct the “mixed” RDM σ 2

b from the linear superposition

σb =
Nv/2∑
	=0

σ	 , (9)

where σ	 is obtained by contracting the infinite (left or
right) half-cylinder (see Ref. 17) with appropriate boundary
conditions and normalized according to Tr(σ 2

	) = 1. The
operators σ	 are supported on orthogonal subspaces which
span the whole space of virtual indices on the edge, i.e.,∑

	 P	 = 1⊗Nv . Therefore, since σ 2
b lives on the whole

Hilbert space of the edge, one can uniquely define Hlocal

as Hlocal = − ln σ 2
b . Consequently, Hlocal can be computed

numerically using Eq. (9). It also follows that, for each sector,
the corresponding boundary Hamiltonian is

H̃b = HlocalP	 + β∞P̄	 , (10)

with β∞ → ∞ and P̄	 = 1⊗Nv − P	 is the projector on the
complementary subspace.

3. Expansion in terms of N-body operators: Numerical results

Next, we wish to explore the nonlocal/local characters
of the H1/Hlocal edge operators. Any operator Oedge acting
on the edge can be expanded in terms of 32Nv orthogonal
operators. For this purpose, we use a local basis of 9
(normalized) operators {x̂0, . . . ,x̂8} which act on the local
basis of configuration (at some site i) {|0〉,|1〉,|2〉}, e.g., x̂0 =
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1, x̂1 =
√

3
2 (|0〉〈0| − |1〉〈1|), and x̂2 = 1√

2
(|0〉〈0| + |1〉〈1| −

2|2〉〈2|), for the diagonal matrices, complemented by x̂3 =
x̂
†
4 = √

3|0〉〈1| acting as “spin” operators, and x̂5 = x̂
†
7 =√

3|2〉〈0| and x̂6 = x̂
†
8 = √

3|2〉〈1| acting as annihilation and
creation (hard-core) bosonic operators.35 The expansion in
terms of N -body operators reads as (see Appendix C for more
details)

Oedge = c0Nv +
∑
λ,i

cλx̂
i
λ +

∑
λ,μ,r,i

dλμ(r) x̂i
λx̂

i+r
μ

+
∑

λ,μ,ν,r,r ′,i

eλμν(r,r ′) x̂i
λx̂

i+r
μ x̂i+r ′

ν + . . . , (11)

where each group of terms involves products of N (1 � N �
Nv) onsite x̂λ (λ �= 0) operators. Here, the sums are restricted
to nonequivalent relative distances and only translations giving
distinct sets of sites are performed. The (real) coefficients
appearing in (11) have been computed for Oedge = Peven

(kagome lattice), Oedge = P	 (square lattice), and Oedge =
Hlocal (kagome and square lattices) on infinitely long cylinders
of perimeters Nv = 6 and 8 up to order N = 6.

As seen from the distribution of their weights in Figs. 11(a)
and 11(b), projectors are highly nonlocal, conferring a fun-
damentally nonlocal character to the boundary Hamiltonian
H1. This is also to be expected for realistic topological GS
of microscopic Hamiltonians on geometries involving open or
fixed BC in some directions.

The total weights corresponding to each order of the
expansion of Hlocal in terms of N -body operators are shown in
Figs. 11(a) and 11(b) as a function of the order N . Finite-size
effects are remarkably small, and we believe the results for
Nv = 8 are converged. The data reveal clearly an exponential
decay of the weight with the order N . In other words,
Hlocal contains primarily one- and two-body contributions (in
addition to the the normalization constant). This is the first
part of the proof that Hlocal is indeed local. However, one still
needs to go beyond the analysis and investigate further the
r dependence of the leading two-body contributions. In the
next section, we show that Hlocal of the Z2 topological RVB is
basically a short-range two-body Hamiltonian. In contrast, the
RVB wave function on the square lattice exhibits a long-range
two-body potential term.

4. Local boundary Hamiltonian: An effective
one-dimensional t-J model

Next, we investigate the exact connection between the
boundary Hamiltonian and the bulk properties of the system.
We look for its explicit form, trying to make the connection
with D = 3 models, with SU(2) symmetry corresponding to
the 1/2 ⊕ 0 representation.

The boundary Hamiltonian belongs to the 1/2 ⊕ 0 repre-
sentation of SU(2) and its Hilbert space is the same as the one
of a bosonic t-J model. Therefore, Hlocal is formally equivalent
to a one-dimensional (1D) “t-J model”36 describing motion
of (bosonic) “holes” (the “2”) in a spin-fluctuating background
(the “0” and “1” qubits) supplemented by additional density-
density and pair-field terms, conferring a superfluid character
to the edge. One can then rewrite the previous local operators
in the notations of the 1D t-J model.36 We define bosonic

creator operators b
†
i,s (s = 0,1) of the |0〉 and |1〉 states from the

“vacuum” |2〉 (at some site i) as b
†
i,s = |s〉〈2|, which naturally

enforce the local Gutzwiller constraint of no doubly occupied
site (in terms of hard-core bosons), so we can identify, e.g.,
bi,0 = 1√

3
x̂5, bi,1 = 1√

3
x̂6, b

†
i,0 = 1√

3
x̂7, and b

†
i,1 = 1√

3
x̂8.

The form of the Hamiltonian components is dictated by
the spin symmetry of the boundary Hamiltonian. We restrict
here to the (dominant) one- and two-body terms of Hlocal. The
unique one-body (diagonal) term can be written as a chemical
potential term H2:∑

i

x̂i
2 = 3√

2

∑
i

(ni − 2/3) = 3√
2
H2 , (12)

where ni = ni,0 + ni,1 counts the number of 0 or 1 on site
i. The diagonal two-body density-density operators take the
form of a density-density (repulsive) interaction HV :∑

i

x̂i
2x̂

i+r
2 = 9

2

∑
i

(ni − 2/3)(ni+r − 2/3) = 9

2
HV (r). (13)

Defining the pseudospin S = 1
2

∑
s,s ′∈{0,1} �σss ′ |s〉〈s ′| involving

a combination of x̂1, x̂3 = √
3|0〉〈1| and x̂4 = √

3|1〉〈0|, and
combining three two-body terms (that appear in H1 and Hlocal

with the same weights), we obtain an effective Heisenberg-type
couplings HJ (r):∑

i

(
x̂i

1x̂
i+r
1 + x̂i

3x̂
i+r
4 + x̂i

4x̂
i+r
3

)
= 6

∑
i

Si · Si+r = 6HJ (r) . (14)

By symmetry, one also gets (short-range) hopping terms Ht (r)
by combining∑

i

(
x̂i

7x̂
i+r
5 + x̂i

5x̂
i+r
7 + x̂i

8x̂
i+r
6 + x̂i

6x̂
i+r
8

)
= 3

∑
i,s

(b†i+r,sbi,s + b
†
i,sbi+r,s) = 3Ht (r) , (15)

and Josephson couplings H	(r) by combining∑
i

(
x̂i

6x̂
i+r
5 − x̂i

5x̂
i+r
6 + x̂i

8x̂
i+r
7 − x̂i

7x̂
i+r
8

)
= 3

∑
i

(bi,0bi+r,1 − bi,1bi+r,0) + H.c. = 3H	(r) , (16)

which describe fluctuations of (s-wave) short-range singlet
pairs. The local Hamiltonian takes then the final form

Hlocal = c0Nv + 3c2√
2
H2 +

∑
r

VrHV (r)

+
∑

r

trHt (r) +
∑

r

JrHJ (r)

+
∑

r

	rH	(r) + Hrest , (17)

where Hrest contains all negligible N > 3 contributions. The
new physical parameters are simply related to the amplitudes
appearing in the expansion (11) of Hlocal: tr = 3 d57(r) =
3 d68(r), Jr = 6 d11(r) = 6 d34(r), Vr = 9

2 d22(r), and 	r =
3 d65(r) = 3 d87(r).
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FIG. 12. (Color online) Weights |dλμ(r)|2 of the two-body oper-
ators appearing in Hlocal for the square (a) and kagome (b) lattices. In
(a), the diagonal interaction x̂i

2x̂
i+r
2 shows a long-range behavior.

For the Z2 RVB liquid on the kagome lattice, as seen
on Fig. 12(b), all weights d2

λμ(r) (and hence all the physical
parameters tr , Jr , Vr , and 	r ) decay exponentially fast with
r so that Hlocal is a truly local operator. The dominant
two-body contribution to Hlocal is the (negative) hopping term.
The density-density interaction is attractive between nearest-
neighbor sites (V1 < 0), while it becomes repulsive (and very
small) at longer distance (Vr > 0 for r � 2). Finally, we note
that the small Heisenberg spin interaction is ferromagnetic at
all distances (Jr < 0). For the critical RVB wave function on
the square lattice, as seen on Fig. 12(a), all weights d2

λμ(r)
also decay exponentially fast with r except the (diagonal)
density-density interaction HV (r), which remains long range.
These remarkable features are to be connected to the bulk cor-
relations of the RVB wave functions: short-range (critical) bulk
correlations translate into short-range (long-range) boundary
Hamiltonians. We have therefore established a one-to-one
correspondence between the long-range behavior of the bulk
correlations and the range of the boundary Hamiltonian of
RVB wave functions. This extends the previous findings17 to
the case of topological order.

C. Entanglement spectra and edge modes

We now move to the investigation of the full bipartite ES,
which is given by the spectrum of Hlocal. Our results are
summarized in Figs. 13(a) and 13(b) and 14(a) and 14(b) for
infinitely long cylinders with kagome and square lattices. For
convenience, the GS energy of Hlocal (corresponding to the
largest weight in the RDM) is subtracted from the spectra. The
(excitation) ES are shown as a function of momentum around
the cylinder and the eigenstates are labeled according to their
spin-multiplet structure inherited from the SU(2) symmetry
of the RVB state, although with the 1/2 ⊕ 0 representation.34

A careful finite-size scaling (see Appendix B) suggests that
the kagome (square) lattice cylinder ES is gapless (gapped) in
the limit Nv → ∞. Since these features are opposite to what is
expected for the energy excitation spectra of the corresponding
bulk systems (according to their long-wavelength properties),
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(a)
 Infinite Cylinder
 (kagome Nv=8) (b)

FIG. 13. (Color online) ES (w.r.t. the same Sz = 0 GS energy ξ0

at K = 0) of an infinitely long kagome cylinder of perimeter Nv = 8.
Eigenstates with half-integer (a) and integer (b) spins correspond to
odd and even sectors, respectively (see text).

we deduce that the ES characterizes specifically the nature
of the L and R edge modes (Fig. 1). Note that for given
choice of BC, the actual ES is the spectrum of a projected
H1 Hamiltonian and, hence, is a subset of the full ES. For
example, in a kagome lattice (square lattice) cylinder with
OBC, a common setup in numerical simulations, only (a subset
of) the integer spin eigenstates are obtained.

D. Topological entropy

It is of great interest to investigate the entanglement entropy
which can give access to the quantum dimension D and hence
provides clear fingerprints of topological order.1 We recall that
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FIG. 14. (Color online) Same as Fig. 13 for the critical RVB
state (square lattice). Eigenstates with half-integer (integer) spins
correspond to 	 odd (even) (see text). For OBC, one gets a subset of
(b) (	 = 0 sector).
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FIG. 15. (Color online) Entanglement entropy versus perimeter
Nv for specific sectors (open symbols) or when summing over all
sectors (shaded symbols). (a) Square lattice (	 = 0 is obtained with
OBC); (b) kagome lattice (no Z2 flux through the cylinder, Gh = 0).

we consider here the RVB wave function for which the same
sign enters in the linear superposition of the dimer coverings
(defined, on the kagome lattice, as �+

RVB with no vison line,
i.e., no Z2 flux through the cylinder). We investigate infinite
cylinders and study the behavior of the EE as a function of
the perimeter. From specific choices of the cylinder boundary
conditions, we can select specific conserved sectors on the edge
(e.g., OBC for the kagome cylinder selects the even sector,
etc.). The EE is given by the von Neumann entropy SVN =
−Tr{σ 2

b ln σ 2
b }.

As shown in Fig. 15(a), the EE of the square lattice
cylinder with OBC (	 = 0 sector) shows strong deviations
from the area law (i.e., linear behavior with Nv) which should
be connected to the critical nature of the RVB wave function.
In contrast, for both even and odd (edge) sectors of the kagome
RVB wave function, the EE can be well fitted according
to SVN = S0 + ANv , where S0 = − lnD is the topological
EE, as shown in Fig. 15(b). The existence of a finite S0, a
smoking gun of the topological nature of the RVB state, can
be seen as a direct consequence of the particular structure
of H1 according to the following argument: The EE is given
(crudely) by − lnN where N is the number of eigenstates
of H1 below a fixed energy scale of order 1. For fixed
cylinder boundaries, the support of H1 = HlocalP (P = Peven

or P = Podd) contains N � 1
2 3Nv states and S0 = − ln 2,

as expected for a topological Z2 spin liquid with quantum
dimension D = 2. Note that �

+,even
RVB and �

+,odd
RVB can be seen

as “minimally entangled states” naturally produced by the
DMRG algorithm from amongst the quasidegenerate ground
states of the Z2 topological phase.11 Linear combination of
them (or, e.g., of �

+,even
RVB and �

−,even
RVB ) should give a larger

topological entropy.
Summing over all sectors amounts to taking H1 = Hlocal

so that all eigenstates of the ES contribute and SVN ∝ Nv

(as can be shown rigorously) as seen in Fig. 15(b). For the
square lattice, severe constraints lead to an extensive number
(i.e., proportional to the perimeter Nv) of disconnected sectors

on the edge of dimension N � 1
Nv

3Nv , therefore introducing
negative logarithmic corrections ∼ − ln Nv to the EE for any
boundary conditions [see, e.g., data for OBC on Fig. 15(a)].
The long-range diagonal interaction in Hlocal [Fig. 12(a)] may
also be responsible for deviations from the area law, even when
considering all sectors.

V. DISCUSSION AND OUTLOOK

By introducing PEPS representations and using tensor
networks techniques, we have examined topological and
entanglement properties associated to gapped and gapless RVB
states using cylindrical geometries with arbitrary boundary
conditions. The formalism allows us to take the limit of
infinite cylinders. Using the simple topological structure of the
space of dimer coverings on the kagome lattice, we construct
four quasidegenerate (for a generic quantum HAF) orthogonal
RVB states and obtain the finite-size scalings of the energy
splittings amongst them (topological gaps), which could be
compared to numerical simulations. Incidentally, our results
identify two very different energy splittings decaying with
two clearly different length scales. The largest energy scale
corresponds to inserting a (horizontal) vison line (or a Z2

flux in the cylinder). The second energy scale corresponds to
pinning a site with a strong field on either end of the cylinder,
which would be the same as moving a site from one end to
the other. Although it has been suggested that the DMRG
algorithm (naturally) selects a minimally entangled state,11 it
is still not clear how to reconcile the fact that the finite-size
corrections of the ground-state energy are very small,9,12 while
our RVB computation predicts clear finite-size effects for the
states with a definite Z2 flux. On the other hand, we find that
the energy averaged over the four (minimally entangled) RVB
states shows very small finite-size effects.

In addition, we show that boundary Hamiltonians can be
written as HlocalP + βtopo(Id − P), βtopo → ∞. In particular,
we have established the existence of a projector P (which
intrinsically depends on the boundary conditions) onto a
restricted subspace at the edge (as for Kitaev toric code3,17),
a consequence of the disconnected topological sectors in the
space of dimer coverings of the lattice. We argue that the
nonlocal character of the resulting boundary Hamiltonian is
the fingerprint of topology. The ES is a subset (associated to
P) of the spectrum of the emerging local Hamiltonian Hlocal

acting on the unrestricted edge space. In contrast to the toric
code for which Hlocal is trivial, here Hlocal takes the form of
a short-range (bosonic) t-J model (including a long-range
diagonal interaction for the critical RVB state). We argue that
the topological features (e.g., finite-size scaling of topological
gaps) and entanglement properties (e.g., structure of boundary
Hamiltonians) of the NN RVB wave functions are characteris-
tic of topological phases. We propose to use these features to
detect topological order in microscopic models.6,9–12
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APPENDIX A: TAKING THE LIMIT OF THE
INFINITE CYLINDER

The (excitation) ES is shown in Fig. 16 as a function of
momentum around the cylinder and the eigenstates are labeled
according to their spin-multiplet structure inherited from the
SU(2) symmetry of the RVB state, although with the 1/2 ⊕ 0
representation. From the data shown in Fig. 16, we see that, for
a fixed perimeter, the ES converges rapidly when increasing the
length towards the infinite-cylinder limit (Nh = ∞). The latter
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FIG. 17. (Color online) Finite-size scaling of the lowest-energy
levels marked by arrows in the ES of Fig. 16. Excellent convergence
is found when Nh → ∞ (at constant Nv = 8). Note the alternating
behavior according to the parity of Nh/2 for the square lattice,
in contrast to the kagome lattice showing a straight exponential
convergence.

is reached as soon as Nh > Nv (Nh � Nv) for the kagome
(square) lattice: in practice, the RDM for Nh = 50 is fully
converged. This is clear from the finite-size scaling analysis of
some of the low-energy excitations of the ES shown in Fig. 17.

APPENDIX B: FINITE-SIZE SCALING OF THE
ENTANGLEMENT SPECTRUM VERSUS

CYLINDER PERIMETER

After taking the limit of the infinite cylinder (Nh → ∞),
we investigate the dependence of the ES as a function of the
cylinder perimeter Nv . Note that when taking the Nh → ∞
limit, one still has to specify the choice of the BL and BR

boundaries that uniquely determine the projector (even or
odd) involved at the edges along the cut. Here, we only
consider OBC, which select the integer spin sector of the
boundary Hamiltonian. Our results are summarized in Fig. 18
for infinitely long cylinders with kagome and square lattices.
A careful analysis of these spectra and of some of their
low-energy excitations [see Fig. 19(a)] as a function of cylinder
perimeter suggests that the square (kagome) lattice cylinder ES
is gapped (gapless) in the limit Nv → ∞. Since these features
are opposite to what is expected in the corresponding bulk
systems, we deduce that the ES characterizes specifically the
nature of the edges [L and R in Figs. 1(a)–1(d)].

APPENDIX C: EXPANSION IN TERMS OF
MANY-BODY OPERATORS

Any operator Oedge such as projectors P or boundary
Hamiltonians acting on the edge can be expanded in terms
of 32Nv orthogonal (real) operators X̂α:

Oedge = c0Nv +
∑

α

Aα X̂α . (C1)

The scalar product in the operator basis is defined as 〈ûv̂〉,
where 〈. . .〉 = 1

Z
Tr(. . .) and the trace is a priori performed over

the full basis of Z = 3Nv states. For convenience, the constant
term c0 = 1

Nv
〈Oedge〉 has been separated so that we can assume
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FIG. 18. (Color online) ES of infinite cylinders with increasing
perimeter Nv . OBC are used for BL and BR . Kagome (top) and square
(bottom) lattices.

all other operators satisfy Tr X̂α = 0. Simple algebra shows
that the coefficients can be obtained by taking the trace of the
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FIG. 19. (Color online) Finite-size scaling of low excitation
energies of infinite cylinders vs inverse perimeter, suggesting a
vanishing (finite) gap in the thermodynamic limit for the kagome
(square) lattice. For the square lattice, the average (divided by 3)
between the lowest K = π singlet and triplet excitations is shown.

corresponding operators with Oedge as

Aα = 〈X̂αOedge〉 /〈X̂αX̂†
α〉 , (C2)

where the trace in the numerator involves, in fact, the sum over
the projected subspace. We also obtain some “sum rule”

〈O 2
edge〉 = (c0Nv)2 +

∑
α

A2
α〈X̂αX̂†

α〉 , (C3)

which enables us to compute the weight associated to each
operator.

To go further and expand Oedge in the full operator basis,
it is convenient to use a local basis of 9 (normalized)
operators {x̂0, . . . ,x̂8} which act on the local site configuration

{|0〉,|1〉,|2〉}, e.g., x̂0 = 1, x̂1 =
√

3
2 (|0〉〈0| − |1〉〈1|), and x̂2 =

1√
2
(|0〉〈0| + |1〉〈1| − 2|2〉〈2|), for the diagonal matrices, com-

plemented by x̂3 = x̂
†
4 = √

3|0〉〈1| acting as “spin” operators,
and x̂5 = x̂

†
7 = √

3|2〉〈0| and x̂6 = x̂
†
8 = √

3|2〉〈1| acting as
annihilation and creation (hard-core) bosonic operators. These
operators satisfy tr(x̂λ) = 0 (for λ �= 0) and tr(x̂λx̂

†
λ) = 3,

where “tr” is the trace over the local degrees of freedom (of
some site i). From now on, we extend the action of these local
operators to the whole edge, assuming a trivial (implicit) action
on the Nv − 1 unspecified sites, i.e., x̂i

λ ≡ x̂i
λ ⊗ 1⊗(Nv−1), so

that Tr(x̂i
λ(x̂i

λ)†) = 3Nv and 〈x̂i
λ(x̂i

λ)†〉 = 1. Using the local basis
of operators, one can then uniquely expand any edge operator
like H1 in terms of N -body operators as

Oedge = c0Nv +
∑

λ

cλ

∑
i

x̂i
λ +

∑
λ,μ,r

dλμ(r)
′∑
i

x̂i
λx̂

i+r
μ

+
∑

λ,μ,ν,r,r ′
eλμν(r,r ′)

′∑
i

x̂i
λx̂

i+r
μ x̂i+r ′

ν + . . . , (C4)

where each group of terms involves products of N =
1,2, . . . ,Nv onsite operators x̂i

λ, i labeling the sites. Here, the
sums do not contain the identity, and the sums over distances
are restricted to nonequivalent relative distances.

∑′ means
that only translations giving distinct sets of sites are performed
(no multiple counting). Hence, the N -body translationally
invariant operators X̂α in (C4), where α combines all the labels
of the coefficients of the expansion [e.g., α = (λ,μ,r) for
X̂α = ∑′

i x̂
i
λx̂

i+r
μ ], are normalized as 〈X̂αX̂†

α〉 = Nv/gα , where
gα are “multiplicity” factors that count the number of times the
operator maps onto itself under all Nv translations. The (real)
coefficients in (C4) are obtained by taking the trace (in operator
space) of the corresponding operators with the operator Oedge:

cλ = 1

Nv

〈(
Nv∑
i=1

x̂i
λ

)
Oedge

〉
, (C5)

dλμ(r) = 1

Nv

〈(
Nv∑
i=1

x̂i
λx̂

i+r
μ

)
Oedge

〉
, (C6)

eλμν(r,r ′) = 1

Nv

〈(
Nv∑
i=1

x̂i
λx̂

i+r
μ x̂i+r ′

ν

)
Oedge

〉
, (C7)

where one can make advantage of translation symmetry to
compute the right-hand side of these equations. The sum rule

014404-12
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for the weights takes then the form
1

Nv

〈(Oedge)2〉 = c 2
0 Nv +

∑
λ

c 2
λ +

∑
λ,μ

∑
r

1

gr

d 2
λμ(r)

+
∑
λ,μ,ν

∑
r,r ′

1

gr,r ′
e 2
λμν(r,r ′) + . . . , (C8)

where the (second) sums are restricted to nonequivalent sets
of distances and the multiplicity factors only depend on the
latter.
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