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Field dependence of spin-transfer-induced vortex dynamics in the nonlinear regime
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We derive an analytical model to describe the nonlinear vortex dynamics driven by spin-transfer torque in
nanopillar systems. We consider the nonlinearity arising from the magnetostatic and Oersted Zeeman energies. In
addition, we determine the linear and nonlinear damping forces through the calculation of the energy dissipation
function. Finally, we also consider how the nonlinear dynamics changes with a perpendicular magnetic field
that deforms the vortex magnetization profile. The comparison between the analytical model and numerical
results obtained from micromagnetic simulations shows an excellent agreement for the change of frequency and
amplitude of oscillation of the vortex as a function of the applied current and external perpendicular magnetic field.
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I. INTRODUCTION

The injection of large, spin-polarized currents through
magnetic multilayers leads to a number of interesting physical
phenomena.1,2 Termed “spin-transfer torques,” the interac-
tion between the spins of charge carriers (e.g., conduction
electrons in magnetic metals and holes in dilute magnetic
semiconductors) and magnetization leads to additional torques
exerted on the magnetization.3 As a consequence, a number
of novel effects, such as magnetization reversal,4,5 domain-
wall propagation in the absence of magnetic fields,6 and
the possibility of self-sustained, large-amplitude magnetiza-
tion oscillations7,8 are made possible. The phenomenon of
current-driven magnetization oscillations leads to tantalizing
possibilities for new nanoscale microwave oscillators9 for
which the frequency can be tunable over a wide range using
applied currents and fields or for new microwave detectors.10,11

The magnetization oscillations in the active layer of a
magnetoresistive stack are translated into an electrical signal
through the giant- or tunneling-magnetoresistance effect.
Since 2003, many experimental and theoretical studies have
been initiated to improve the sample characteristics in order
to optimize the microwave properties of these nanodevices.
Indeed, very promising applications are at stake in the field
of telecommunications. While many crucial advances have
been made in the fabrication and understanding of such
spin-transfer nano-oscillators (STNOs), there remain several
critical problems yet to be resolved, in particular, the low
microwave power and quality factor of single STNOs. In
order to improve these parameters, various solutions have
been proposed, such as using magnetic tunnel junctions
(MTJs) that should deliver large power12,13 because of the
larger magnetoresistive ratios or synchronizing assemblies of
STNOs.14,15

An alternative approach to tackle these issues has been
recently proposed in which current-driven vortex oscillations
are used as the source of microwave power.16,17 Recently,
we demonstrated that large microwave powers and narrow
linewidths can be obtained simultaneously by spin-transfer-
induced vortex motion in MgO MTJs.18 Spin-transfer-induced
vortex oscillations in nanopillars are model systems to study
the effect of a spin-polarized current on the magnetization

dynamics. In this objective, a complete description of the
influence of a magnetic field or a spin-polarized current
on such a gyrotropic mode is therefore necessary to design
and predict the actual behavior of any spin-transfer vortex
oscillator (STVO). Here we consider the general case of
current applied perpendicularly to a disk plane (CPP) with
a uniform spin polarizer.

The analytical description of the vortex gyrotropic mode is,
in most analytical studies,19–23 dedicated to the determination
of the vortex resonance frequency or the critical current
associated with spin-transfer-induced large-amplitude oscil-
lations of the vortex core. These parameters can be calculated
by following the Thiele approach, based on the Landau-
Lifshitz-Gilbert equation of motion under the assumption of a
translational motion for the magnetization distribution of the
magnetic vortex state.24,25

After introducing the Thiele approach, we give an analytical
description of the interaction between the vortex magnetic
state and a spin-polarized current (Sec. II). We determine
the influence of the Oersted magnetic field on the vortex
oscillation frequency and the expression of the different forces
induced by the spin-polarized current. In Sec. III we derive
the dynamics of the vortex core in the nonlinear regime.
We will see that the introduction of two nonlinear restoring
forces (linked to both the Oersted-Ampère magnetic field
and the magnetostatic energy landscape) and a nonlinear
damping force is required. These analytical calculations are
then compared to micromagnetic simulations. In Sec. IV
we study the vortex oscillation frequency that provides a
numerical estimation of the restoring forces and how they
change with an external magnetic field. In Sec. V we focus
on the oscillation amplitude as a function of field and current
that depends on the dissipative forces (spin-transfer forces
and damping force). Thanks to these simulations, we will see
that our model of the vortex gyrotropic mode in the nonlinear
regime gives an excellent agreement with the vortex dynamics
observed numerically (Sec. VI). In addition, the last section
is dedicated to the variation of the oscillation amplitude as a
function of field and current (Sec. VII), which demonstrates
that a full and accurate prediction of the microwave power
emitted by an STVO is possible.
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II. VORTEX GYROTROPIC MODE
IN THE LINEAR REGIME

In this section, we recall some of the main points of the
classical analytical model for describing the dynamics of a
magnetic vortex. Moreover, as our case of interest includes the
presence of a spin-polarized current acting on the vortex core,
we introduce the influence of the current-induced Oersted-
Ampère field on the confinement energy. Then we demonstrate
that the energy dissipation function, which is calculated with
respect to the rotational motion of the vortex, can be used for
a correct analytical expression of the damping force as well as
of all possible components of the forces associated with spin-
transfer torques, i.e., Slonczewski torque (ST) and field-like-
torque (FLT). The derivation of these latter different forces will
be important in the next sections of this article to accurately
describe the large-amplitude vortex core oscillations due to
spin transfer.

In the classical approach,24,25 the magnetic vortex dynamics
is described through the influence of the conservative forces
acting on the vortex core position X. The resulting equation,
called Thiele’s equation, writes in a nanodot of thickness L,
radius R, and saturation magnetization Ms as

G × dX
dt

− ∂W (X)

∂X
= 0, (1)

where the gyrovector G = −Guz with G = 2πpLMs/γ . Here
p is the vortex core polarity, γ the gyromagnetic ratio, and
W (X) is the potential energy of the shifted vortex. Using
Eq. (1), it is straightforward to determine the resonance
frequency of the vortex gyrotropic mode. Guslienko et al.26

showed that the magnetization distribution of a moving vortex
is well described by the two vortices ansatz (TVA),

ϕ(χ,r; ρ,θ ) = θ + C
π

2
+ Arg[rei(χ−θ) − ρ]

+Arg

[
rei(χ−θ) − R2

ρ

]
, (2)

with ϕ the azimuthal angle of the magnetization at any position
in the disk plane given by the polar coordinates (r ,χ ) [see
Fig. 1(a)]. The vortex core position is defined by the polar
coordinates (ρ,θ ), where ρ = |X| is the vortex core shift with
respect to the disk center [see Fig. 1(b)], R is the disk radius,
and C = ±1 is the vortex chirality. The TVA satisfies the
boundary condition that no magnetostatic charge appear at the
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FIG. 1. (Color online) (a) Coordinates of the normalized mag-
netization m with a position given by r. (b) Magnetization of an
off-centered magnetic vortex in a nanopillar of radius R. (arrows)
In-plane magnetization given by the TVA [Eq. (2)]. (Color scale)
Out-of-plane magnetization given by a Usov ansatz (Ref. 27).

disk border but only in the volume. The variation of the total
potential energy associated with a small displacement of the
vortex core from the center can be expressed as

W (X) = W (0) + 1

2
κ|X|2 + O

( |X|
R

)4

. (3)

Guslienko et al.21 have shown that the variation of the energy
W is mainly due to the variation of the magnetostatic energy
Wms , and the vortex stiffness can be expressed as κ = κms =
10
9 μ0M

2
s

L2

R
.

One of the main goals of this work is to investigate the
case of large-amplitude gyrotropic motion of a vortex core
induced by spin-transfer torque, which obviously means that
a large dc current is injected. Consequently, one needs to
consider the influence of the current-induced Oersted-Ampère
field.28 Recently, we calculated22 this contribution to the
total energy by integrating the Zeeman energy Woe(X) =∫ −μ0HOe(r)M(r,X)dV on the whole disk. We found that
in the presence of a CPP current, the vortex stiffness must be
expressed as κ(J ) = κms + κoeJ , with J the current density
and κoe = 0.85Cμ0MsRL. Here we consider C = +1 (−1)
for a vortex chirality parallel (antiparallel) to the chirality of
the Oersted field induced by a positive current.

The projection of the Thiele equation on the radial and
orthoradial axis (uρ ,uθ ) gives the time variation of the phase θ

and the normalized displacement of the vortex core s = ρ/R:

uρ : Gsθ̇ − κ(J )s = 0, (4)

uθ : −Gṡ = 0. (5)

From Eq. (4), the resonance frequency of the vortex gyrotropic
mode can be expressed as ω0 = κ/G = (κms + κoeJ )/G, valid
only for a small oscillation amplitude.

After having considered the conservative forces, hereafter
we describe how the dissipative forces that are associated
with the damping and the spin-transfer torques act on the
vortex core dynamics. It is noteworthy that these forces
have been previously calculated in the framework of Thiele’s
approach.29 However, we have recently demonstrated that the
Thiele approach is not appropriate to give a proper analytical
description of the spin-transfer-induced vortex dynamics in
a nanopillar because of the assumption of a translational
motion of the vortex core.22 Indeed, a better description is
obtained by using the calculation of the energy dissipation
and by considering a rotational motion of the vortex core.
With this approach, we can give an expression of the different
spin-transfer forces acting on a vortex core (see Fig. 2). We first
define both the in-plane and out-of-plane components of the
forces associated with the ST that, in the case of a uniformly
polarized current, writes

FST = πMsLpzσJρ uθ + ln2 πMsLbCσJpx,y, (6)

where J is the current density, and pz and px,y are the
perpendicular and in-plane components of the polarization unit
vector p. The spin-transfer torque efficiency is σ = h̄P

2|e|LMs
,

with P the spin polarization. An important consequence of
Eq. (6) is that, in the case of p and J constant in time and space,
a large-amplitude spin-transfer vortex gyration is predicted
only if the out-of-plane component of the spin polarization pz
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FIG. 2. (Color online) Scheme of the spin-transfer forces acting
on a vortex core. The forces are originating from the Slonczewski
torque (ST), field-like-torque (FLT), in-plane spin polarization (px,y),
and out-of-plane spin polarization (pz).

is different from zero16 [the first term in Eq. (6)]. In fact, the
force induced by the in-plane spin polarization [the second
term of Eq. (6)] contributes positively to the energy gain for
one semicycle of the vortex motion and negatively for the other
semicycle.30 Now we consider the contributions associated
with the field-like-torque (see Fig. 2). This torque is equivalent
to the one induced by a magnetic field HFLT = −J ξFLT σp,
with ξFLT its relative efficiency with respect to the Slonczewski
torque. First, it has to be noticed that the perpendicular spin
polarization pz corresponds to a very small HFLT (of the
order of a few Oersteds at the maximum), which results in
a negligible deformation of the vortex shape. The second
contribution, which is due to the in-plane spin polarization
FFLT, can be expressed as

FFLT = −dWHFLT

dX
= −CλπMsLRσJξFLT(z × p), (7)

where WHFLT is defined by analogy with the Zeeman energy
induced by a uniform magnetic field applied in the disk plane.31

Here, the averaged in-plane magnetization increases with the
vortex shift as M̄

Ms
= λ(s)s, at first order λ(s) = 2/3 + O(s2)

(see Sec. VII for more details). Similarly to the in-plane
contribution for FST, the force FFLT can be neglected in the
case of a uniform fixed spin polarization because it averages
out for a complete gyration of the vortex core.

We now discuss the force induced by the natural damping,
which is opposed to the vortex core velocity FD = −D dX

dt
.

For a circular dot,32 the damping term is written D =
2αηπLMs/γ , where α is the Gilbert damping and η is the
damping constant. Again, we have used the calculation of
the energy dissipation to define η = ln(R/4le) − 1

4 , where
the exchange length le = √

2A/μ0M2
s . We notice that this

expression of the damping constant is similar to the one derived
with Thiele approach23 [ηT h = 1

2 ln(R/2le) + 5
8 ], because the

estimation of the damping torque is less affected by the
hypothesis of a translational motion than the spin-transfer
torque.

The contributions of the spin-transfer torque and the
damping torque on the vortex core dynamics can be added
to Eqs. (4) and (5) that become

uρ : Gsθ̇ − Dṡ − κ(J )s = 0, (8)

uθ : −Dsθ̇ − Gṡ + aJ J s = 0, (9)

with aJ = πMsLpzσ [first term of Eq. (6)]. From Eq. (8), as
expected, we obtain that in the linear regime, the stationary
(ṡ = 0) oscillation frequency does not depend on the excita-
tion, ω0 = κ/G. The critical current Jc necessary to obtain
sustained vortex oscillations is given by Eq. (9) with (ṡ = 0),

Jc = D κms

G

aJ − D κOe

G

. (10)

An interesting conclusion coming from Eq. (10) is that
the critical current Jc depends on the vortex chirality because
of the contribution due to the Oersted-Ampère field κoe =
0.85Cμ0MsRL. Hence, we predict that for opposite chiralities
of the vortex and Oersted field (C = −1), the Oersted field
confinement κOe is negative, leading to a smaller Jc compared
to the case of similar chiralities C = +1.

A major issue is that Eqs. (8) and (9) diverge (s becomes
infinite) for J > Jc, hence implying that in order to describe
analytically the regime of large-amplitude spin-transfer vortex
gyration, we must take into account the nonlinear forces acting
on the vortex.

III. ANALYTICAL MODEL IN THE NONLINEAR REGIME

The main objective of the present work is to determine
the origin and the influence of all nonlinearities on the
vortex core dynamics and therefore be able to describe the
variation of oscillation frequency and amplitude as the function
of the spin-transfer excitation. We first emphasize that the
gyrotropic force Eq. (1) and the effective contribution of the
spin-transfer force FST [first term of Eq. (6)] calculated from
the TVA distribution are perfectly linear with the oscillation
amplitude |X|. On the contrary, we must consider the nonlinear
contributions for the restoring force and the damping force.
Indeed, the potential energy of the shifted vortex and the
damping force can be written as a Taylor expansion with
respect to |X|. By considering higher-order terms, the potential
energy can be expressed as

W (X) = W (0) + 1

2
κ|X|2 + 1

4
κ ′ |X|4

R2
+ O

( |X|
R

)6

(11)

and the damping as

D + D′s2 = 2πLMs

γ
αη + 2πLMs

γ
αη′s2, (12)

where η and η′ are respectively the linear and nonlinear
damping constants, and their analytical expressions will be
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discussed in Sec. VI. Then we can replace Eqs. (8) and (9) by

Gsθ̇ − D(1 + ξs2)ṡ − κ(1 + ζ s2)s = 0, (13)

−D(1 + ξs2)sθ̇ − Gṡ + aJ J s = 0, (14)

with ξ = η′
η

the damping nonlinearity factor and ζ = κ ′
κ

the
confinement nonlinearity factor. It has to be noticed that the
confinement nonlinearity depends on the current again through
the Oersted-Ampère field: ζ (J ) = κ ′

ms+κ ′
oeJ

κms+κoeJ
.

Taking into account that D2 � G2 or (αη)2 � 1 [typically
(αη)2 ≈ 10−4 for NiFe], we obtain that the oscillation fre-
quency is determined solely by the internal energy and does
not depend either on the dissipation nor on the spin-transfer
excitation [the second term of Eq. (13) is always negligible]:

θ̇ = κ

G
(1 + ζ s2), (15)

ṡ = D

G

κ

G
s[Joc − (ξ + ζ )s2]. (16)

We introduce the overcritical current Joc = aJ JG

Dκ(J ) − 1. For
J � Jc, the term Joc is lower or equal to zero; hence Eqs. (15)
and (16) have only one steady solution, s0 = 0 and θ̇0 =
κ/G. As expected, the vortex core oscillates at its resonance
frequency ω0 = κ(J )/G. For J > Jc, the parameter Joc has
a nonlinear dependence on J because of the dependence of
κ on J . As a consequence, the previous solutions for s and
θ̇0 become unstable. Thus in the regime of large-amplitude
spin-transfer vortex gyration, we obtain the expressions of the
oscillation frequency and the amplitude:

ωNL = ω0

(
1 + Joc

ζ

ζ + ξ

)
, (17)

sNL =
√

Joc

ζ + ξ
. (18)

In fact, we notice that the nonlinearity of the confining force
due to the magnetostatic energy landscape has been recently
calculated using other approaches and leads to a linear increase
of the oscillation frequency ωNL with the current J.23,29,33

However, this prediction does not agree with either experimen-
tal results34 nor numerical simulations.22 One of the key results
of this work is to demonstrate that it is of major importance
to also take into account the nonlinearities associated with
the Oersted field confining force and to the damping force.
Indeed, we can consider two limiting cases for the variation of
the oscillation frequency ωNL with J [see Eq. (17)]. On one
hand, for a small nonlinearity of the confinement (ζ � ξ ), the
frequency follows the resonance frequency [ωNL = ω0(J )],
even with a finite amplitude (see red curves in Fig. 3).
As mentioned before, this frequency depends on the vortex
chirality with respect to the Oersted-Ampère field chirality, i.e.,
ω0+ (ω0−) corresponds to parallel (antiparallel) chiralities. On
the other hand, for a weak nonlinearity of the damping force
(ζ � ξ ), the frequency is given by the equilibrium between the
spin-transfer force and the linear damping force [see Eq. (9)].
Then we derive ω = ω0(1 + Joc) = aJ J

D
(see dotted blue curve

in Fig. 3).
We emphasize that the nonlinear parameters ζ and ξ have

the same order of magnitude. Moreover, for most experiments

JC+

Current density J

Fr
eq

ue
nc

y

aJ J / D

NL+

NL

0+

0
JC

FIG. 3. (Color online) Evolution of the frequency with the current
density for the two chiralities. Symbols + and – refer, respectively, to
the parallel and antiparallel configurations of the vortex and Oersted
field chiralities. Resonance frequency (full red lines). Frequency
given by the equilibrium between the spin-transfer force and the
linear damping force (dotted blue line). Frequency in the nonlinear
regime (dashed lines).

the vortex chirality is forced by the Oersted field chirality.
In this case, we find that the frequency ωNL+ can go below
the resonance frequency ω0+ for large current densities in the
overcritical regime (see black dashed curve in Fig. 3). Such
unexpected behavior occurs because the Oersted nonlinear
confinement, which is negative, becomes more important than
the magnetostatic nonlinear confinement (κ ′

ms + κ ′
OeJ < 0).

We also predict some interesting features for the opposite
case with antiparallel chiralities. Indeed, we find that because
the oscillation frequency at a given J is smaller than in
the parallel case, it results in a smaller damping and thus
in a smaller critical current Jc−. Moreover, the fact that
the Oersted nonlinear confinement and the magnetostatic
nonlinear confinement are both positive, and therefore act in
the same sense, implies that a large frequency tunability can
be achieved (see gray dashed curve in Fig. 3), which can be
advantageous for obtaining a more efficient synchronization
of several vortex-based oscillators.

IV. OSCILLATION FREQUENCY / CONFINING FORCES

In this section our purpose is to study numerically the
oscillation frequency of the vortex gyrotropic mode and to
compare these results with the analytical model presented
in Sec. III. The nanopillar system we consider is a stack
composed of ferromagnet/spacer/NiFe (free layer) with a
diameter of 550 nm. The micromagnetic simulations are
performed by numerical integration of the LLG equation using
the micromagnetic code SPIN PM based on the fourth-order
Runge-Kutta method with an adaptive time-step control for
the time integration. We have used a two-dimensional mesh
with in-plane cell size of 5 × 5 nm2. All the material parameters
have been extracted from experimental measurements that will
be discussed elsewhere. The NiFe free layer is 4.8 nm thick and
has the following magnetic parameters: Ms = 6.4 × 105 A/m,
A = 1.3 × 10−11 J/m, α = 0.01, and P = 0.3.

As mentioned in Sec. II, in the case of a uniform spin
polarizer, large-amplitude vortex gyrations are predicted only
for an out-of-plane component of the spin polarization pz

different from zero. In our previous experimental work, we
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obtained a large pz by applying a large out-of-plane field.18

As a consequence, hereafter we also consider the influence of a
perpendicular magnetic field on the vortex core dynamics. We
first recall the analytical expression of the resonance frequency
in the absence of current and field:

f th(s) = f th
0 + f th

1 s2 = 1

2π

κ

G
(1 + ζ s2). (19)

The influence of a perpendicular magnetic field Hperp

on the resonance gyrotropic frequency has been studied by
deLoubens et al.35 When Hperp increases, the vortex tail
magnetization is no longer constrained in the disk plane.
The perpendicular component of the vortex tail magnetization
can be written as mz = cos(�0) = Hperp/Hs , with �0 the
colatitude angle of the magnetization and Hs = 4πMs the
saturation field. From now on, we will refer to the normalized
perpendicular field h = Hperp/Hs . The confinement constant
κms(h) is calculated by considering that the main contribution
to the potential energy variation comes from the dipolar
energy of the volume magnetostatic charges created by the
in-plane magnetization of the shifted vortex. The vortex core
magnetization is neglected and the amplitude of the in-plane
component of the vortex tail magnetization is mpar = sin(�0).
The magnetostatic energy goes like the square of the in-
plane magnetization gradient and one can deduce κms(h) =
κms(0) sin2(�0). Moreover, the fact that the magnetization in
the vortex tail goes out of plane due to an external perpendicu-
lar magnetic field leads to a decrease of the magnetization gra-
dients inside the vortex core. Hence the gyrovector decreases as
G(h) = G(0)[1 − p cos(�0)], with p the vortex core polarity,
and finally the field dependence of the frequency is35

f th
ms(h) = f th

ms(0)(1 + p h). (20)

The Oersted-Ampère field confinement constant κOe is
given by the scalar product M Hoe that is proportional to the
in-plane magnetization mpar = sin(�0) as the Oersted field Hoe

is nonzero only in the disk plane. We obtain that the frequency
change associated with the Oersted field evolves as

f th
Oe(h) = f th

Oe(0)(1 + p h)(1 − h2)−1/2. (21)

Note that the Oersted-Ampère field also confines the magneti-
zation of the vortex tail in the layer plane. This feature will be
neglected here but can be non-negligible for disks that have a
large aspect ratio.

In Fig. 4, we present the simulation results obtained for
h = 0.4 showing the variation of the frequency with the
oscillation amplitude s. The frequency has been extracted for
two different cases: (i) a small Gilbert damping α = 0.001 and
no spin transfer (black squares in Fig. 4), and (ii) a spin-transfer
torque with J = 2.5 × 1010 A/m2, no damping (α = 0), and
no Oersted field (see red dots in Fig. 4). We notice that these
two curves are perfectly superimposed, a result in agreement
with the prediction of our model that the oscillation frequency
does not depend on the damping rate.

In Table I, we report the linear and nonlinear contribution
to the oscillation frequency obtained with the micromagnetic
simulations and analytical calculations in the absence of
current for h = 0 and h = 0.4. For h = 0, the theoretical value
of the frequency in the linear regime s � 1 is given by f th

0 =
1

2π

κms

G
= 70 MHz with21 κms = 10

9 μ0M
2
s

L2

R
. The theoretical

h = 0.4
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FIG. 4. (Color online) Evolution of the frequency as a function
of the oscillation amplitude for h = 0.4. Slowly damped oscillations
(α = 10−3) with no current (black squares). Spin-transfer amplified
oscillations with no Oersted field (red dots). Polynomial fit (blue line).

value of the magnetostatic nonlinearity factor is still under
discussion.36 Gaididei et al.33 show that for a non-negligible
shift of the vortex core, the resonance frequency evolves as
f th = 1

2π

κms

G
1

1−(s/2)2 . The first-order Taylor expansion gives

f th
1 = 0.25 f th

0 (or κ ′
ms = 0.25 κms), which is in good agreement

with our numerical value (f sim
1 = 0.26 f sim

0 for h = 0).
For nanopillars with higher aspect ratios L/R, the nonlinear
magnetostatic confinement gets smaller. It can even become
negative with a disk radius equal to a few exchange lengths.37

For h = 0.4, the frequency obtained with the micromag-
netic simulations remains in good agreement with the theory.
According to Eq. (20), f th (h = 0.4) = 1.40 f th(0). In
the simulation we obtain f sim

0 (h = 0.4) = 1.40 f sim
0 (0) =

102.5 MHz for the linear frequency.
According to the calculation of the Zeeman energy due

the Oersted-Ampère field, we find that the Oersted nonlinear
confining constant is κ ′

Oe = −0.42Cμ0MsRL. In order to
define the influence of the Oersted field on the oscillation
frequency with the simulations, we vary the current density up
to J = 2.5 × 1010 A/m2 and we subtract the frequency f (s)
measured without current. With no surprise, the frequency shift
induced by the Oersted field is proportional to the current.

The numerical values (see Table II) are in excellent
agreement with the values predicted from the analytical model
(f th

0 = κOeJ/G, f th
1 = κ ′

OeJ/G for h = 0) and from the field
influence given by Eq. (21) for h = 0.4.

V. OSCILLATION AMPLITUDE / DISSIPATIVE FORCES

In this section, we focus on the determination of the
amplitude of the vortex core gyration that can be induced by

TABLE I. Oscillation frequency obtained with micromagnetic
simulations and analytical calculations for J = 0 and h = 0,0.4. The
linear frequency f0 and the nonlinear frequency shift f1 are defined
in Eq. (19).

h = 0 h = 0.4

f0 (MHz) f1 (MHz) f0 (MHz) f1 (MHz)

Theory 70 17.5 98 24.5
Simulations 73 19 102.5 30
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TABLE II. Frequency shift induced by the Oersted field with, as
an example, J = 1010 A/m2. These values increase linearly with J .
Parameters f0 and f1 are as defined in Eq. (19).

h = 0 h = 0.4

f0 (MHz) f1 (MHz) f0 (MHz) f1 (MHz)

Theory 13.1 −6.5 20.0 −9.8
Simulations 12.3 −6.4 19.3 −9.5

spin-transfer torque. As we already mentioned, the oscillation
amplitude s is directly related to the balance between the
dissipative forces, i.e., the spin-transfer force and the damping
force that are tangent to the vortex core trajectory:

ṡ = aJ J

G
s − D

G
(1 + ξs2)sθ̇ . (22)

Here, our approach is similar to what we have done for the
conservative forces in Sec. IV, to perform micromagnetic
simulations in order to estimate the amplitude of the dissipative
forces and their variation with a perpendicular magnetic field
and to compare these numerical results to the prediction of our
analytical model.

The energy dissipated by the spin-transfer force and the
damping force depends on the oscillation amplitude of the
in-plane component of the magnetization. It can be shown
that these two forces are proportional to sin2(�0). By adding
the field dependence of the gyrovector G(h) = G(0)[1 −
p cos(�0)], we determine the influence of the perpendicular
field on the vortex oscillation amplitude s:

D

G
(h) = D

G
(0)(1 + ph), (23)

aJ

G
(h) = aJ

G
(0)(1 + ph). (24)

Our strategy is again to consider two limiting cases. The first
one corresponds to the case for which the dissipative force is
only due to the spin-transfer force, i.e., damping parameter
D = 0. Then the expression of the oscillation amplitude given
in Eq. (22) reduces to

ṡ = aJ J

G
s. (25)

A time-dependent solution of this equation can be taken as

s(t) = s(0)e
aJ J

G
t . In Fig. 5(a) we show the time variation of

the oscillation amplitude obtained for an applied field h = 0.4
and three current densities: J = 1.8, 2.1, and 2.5 × 1010 A/m2.
We see that the simulated curve of s(t) can be perfectly fitted
by an exponential function (see red curve for J = 1.8 × 1010

A/m2 in Fig. 5), demonstrating that the spin-transfer force
nonlinearity is negligible. As presented in Fig. 5(b), the
dissipation rate aJ J

G
deduced from the exponential fit increases

linearly with J , as expected for the spin-transfer force. Finally,
we obtain an excellent agreement between the numerical and
analytical values of aJ

G
, as shown in Table III. Note that

this result provides the evidence that the spin-transfer force
calculated through the energy dissipation function and within
the TVA approximation is perfectly accurate.

The second limiting case for the estimation of the oscillation
amplitude corresponds to the one in which the spin-transfer
torque is neglected, i.e., aJ = 0. Hence, the oscillation

(a)

0 50 100 150 200
0.00

0.25

0.50

0.75

1.00

(b)

 J = 1.8  1010 2

2
 A/m

  J = 2.1  1010 A/m
  J = 2.5  1010 2A/m
 s = s0 exp(0.0176 t)

N
or

m
al

iz
ed

 a
m

pl
itu

de
 s

time t (ns)

18

20

22

24

1.8 2.0 2.2 2.4 2.6

 Simulations
aJ G = 9.74

J (1010A/m²)

a J J
 /G

 (
M

H
z)

×
×
×

FIG. 5. (Color online) (a) Time variation of the oscillation
amplitude amplified by spin transfer at different currents and for
h = 0.4 (symbols). Exponential adjustment for J = 1.8 × 1010 A/m2

(red curve). (b) Numerical results (black squares), linear adjustment
(red line) of the spin-transfer force efficiency as a function of the
current density J .

amplitude changes are governed by the damping force and
Eq. (22) is written

ṡ = −D

G
(1 + ξs2)θ̇ s, (26)

with the frequency θ̇ that is a function of s2. The solution
of s(t) is not trivial. The linear contribution of the damping
can be simply extracted, like for the STT term, by using an
exponential decrease in the case of small amplitude of the
vortex trajectory and we find ηsim = 1.89 for h = 0. Note
that the linear damping constant calculated with the energy
dissipation function, i.e; ηth = ln( R

4le
) − 1

4 gives ηth = 2.02
with the vortex core radius b equal to twice the exchange length
le. As for the nonlinear contribution η′sim, our approach is to
numerically calculate the ratio ṡ

θ̇s
= D

αG
+ D′

αG
s2 that increases

with s2. In doing so, we can get a rough estimation that yields
η′sim = 0.73. Moreover, by introducing higher-order terms is
s, we can also determine the theoretical value of the nonlinear
damping constant η′th = 1/6. The difference between η′sim

and η′th comes from the difficulty to evaluate accurately
the contribution of the vortex core to the nonlinear damping
constant and its dependence on the actual vortex profile.

In order to determine accurately the evolution of the linear
damping constant η with field, we need to take into account the
field dependence of the vortex core radius b(h). This can be
obtained from the magnetization distribution [see Fig. 6(a)].
For h = 0, we obtain a vortex core size of b = 17.2 nm,
which has to be compared with the theoretical value b =
2 le = 14.2 nm. Then, when the applied perpendicular magnetic
field h increases (in the same direction as the core polarity), the
vortex core radius increases [Fig. 6(b)]. The vortex core profile
is fitted with a Usov ansatz27 that we have modified in order
to satisfy the condition mz = cos�0 = h in the vortex tail.

TABLE III. Dissipation rate induced by the spin-transfer force
obtained with micromagnetic simulations and analytical calculations
for h = 0,0.4.

aJ

G
[10−4 Hz/(A/m2)]

h = 0 h = 0.4

Theory 6.96 9.72
Simulations 6.90 9.74
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FIG. 6. (Color online) (a) Normalized mz component of the
centered vortex magnetization for different perpendicular magnetic
fields h (symbols). Adapted Usov ansatz with h = 0.4 (dark blue
line). (b) Evolution of the vortex core radius with h (black squares),
exponential adjustment (red line).

For p = +1, the vortex core perpendicular magnetization is
now defined by � = 2tan−1[ |r|

b
tan(�0/2)] with tan(�0/2) =√

1−h2

1+h
, which can be generalized for any sign of h and p by

mz = p
b2(1+p h)2−r2(1−h2)
b2(1+p h)2+r2(1−h2) [see Fig. 6(a) for h = 0.62]. Note

that in the region outside the vortex core, we find mz = h,
which is in good agreement with the numerical results, as
already shown by deLoubens et al.35

We adjust b(h) with an exponential function in order to
simplify the expression of η(h). The increase of the vortex core
size b(h) = b(0) e1.19h results in a decrease of the damping
constant ηth(h) = ηth(0) (1 − 0.63h). In Fig. 7 we show
the variation of the ratio D/(αG) calculated from Eq. (23),
for which we also take into account the field dependence

0.0 0.2 0.4 0.6
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2.2

2.4

  Simulations
Energy dissipation
Thiele approach

D
/(

G
)

Normalized magnetic field h

FIG. 7. (Color online) Linear damping η as a function of the
perpendicular magnetic field h: micromagnetic simulations (black
squares), calculation of the energy dissipation function (red dots),
and Thiele approach (blue triangles).
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FIG. 8. (Color online) Nonlinear damping as a function of the
perpendicular magnetic field h: micromagnetic simulations (black
squares) and analytical calculations (red dots).

of the vortex core size (red dots). At h = 0, the difference
between the values for η obtained with our approach using the
energy dissipation and the Thiele approach (blue triangles) is
reasonable. (Note that this conclusion remains valid on a large
range of aspect ratios.) On the contrary, as shown in Fig. 7, the
field dependence in the simulations indicates that our approach
gives a much better agreement for the variation of the damping
force than the one predicted by the Thiele approach applied
to the case of a nanopillar23 [η = 0.5 ln(R

b
) + 5

8 ]. Finally, we
show the field dependence of the numerical values of the ratio
D′/αG on Fig. 8. It increases as (1 + 0.95h), which is close
to the expected behavior of the damping [see Eq. (23)].

VI. SPIN-TRANSFER-INDUCED GYROTROPIC MODE

This section includes the most important objective of this
work—to achieve a complete description of the spin-transfer-
induced vortex dynamics under an external perpendicular field.
To reach this goal, we present here the results of micromagnetic
simulations of the gyrotropic motion of the vortex core in the
overcritical regime that includes both natural damping and
spin-transfer torque for h = 0.4 parallel to the vortex core.
Given our previous results,18 we know that the perpendicular
component of the spin-polarization unit vector is about pz =
0.25. The current density goes up to J = 2.5 × 1010 A/m2,
and the vortex chirality is parallel to the Oersted field chirality
(C = +1).

In Fig. 9 we present an important result of this work, that
is, the change of both the oscillation frequency f [Fig. 9(a)]
and the oscillation amplitude s [Fig. 9(b)] as a function of
the current density J . We see that the sustained oscillations
of the vortex core are observed for currents larger than
Jc = 1.8 × 1010 A/m2, which is very close to the ones deduced
from Eq. (10). Above the threshold value, we find that the
oscillation frequency obtained by the simulations increases
with J [see black dots in Fig. 9(a)]. Note that the frequency
tunability slightly departs from a linear change toward neg-
ative values, in agreement with the fact that we consider
the case of parallel chirality (see Fig. 3). In order to compare
these numerical results with the models, we also plot the
oscillation frequency and the oscillation amplitude calculated
with Eq. (17) [red curves Fig. 9(a)], taking Joc, ξ , and ζ

extracted from simulations. We find a very good agreement
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FIG. 9. (Color online) (a) Frequency and (b) oscillation amplitude
as a function of the current. Micromagnetic simulations (black
squares). (red, green curves) Analytical calculations realized by
considering the forces proportional to s2, s4.

between simulations and the analytical model for J slightly
above Jc. To complete an excellent agreement on the whole
current range [see green curve in Fig. 9(a)], we must add
a higher order for the nonlinearity of the confinement by
using a magnetostatic constant κ ′′

ms proportional to s6. This
additional term can be calculated by following the method of
Gaididei et al. for the calculation of the magnetostatic energy.33

From Fig. 4, we observe that the fourth-order increase of the
frequency without Oersted field is given by f sim

2 = 23 s4 MHz
for h = 0.4. The confinement constant of higher order induced
by the Oersted field is thus much smaller and can be neglected.

As far as the oscillation amplitude s is concerned, we
see in Fig. 9(b) that the agreement between simulations
and the analytical model is already excellent, even when
a confinement force proportional to s4 is considered. Even
for a large J = 2.5 × 1010 A/m2 we predict a maximum
difference of 9%. These results are of major importance
because they demonstrate that the spin transfer induced large
amplitude gyrotropic motion is very well described by an
analytical model taking into account all nonlinearities. In
fact, it is a necessary step before going to the description
of synchronization between several vortex based spin transfer
oscillators.

Finally, in order to probe the potential influence of the
spin-transfer torques associated with the in-plane component
of magnetization, we perform another set of simulations for
which we have added a large in-plane spin polarization px =
0.97 in addition to the out-of-plane polarization pz = 0.25.
We find that even with such a large in-plane polarization,
the main features of the vortex dynamics, i.e., frequency and
amplitude, are not modified. However, we find that this in-
plane component does influence the oscillating behavior as
the position of the geometrical center of the oscillations is
shifted along px due to the Slonczewski torque and along py

due to the field-like-torque, even if the vortex core trajectory

remains perfectly circular. For J = 2.5 × 1010 A/m2, these
two shifts are equivalent (≈5 nm), with ξFLT = 0.4. Note that
FFLT(px,y) is a conservative force and thus induces a static shift
of the vortex core even without vortex dynamics. This is not
the case for the physical mechanism at the origin of the shift
due to FST(px,y). Indeed, this force accelerates or decelerates
the vortex core velocity depending on its position in the disk;
therefore this phenomena appears only in case of a steady
vortex motion. (A recent study also shows that an immobile
vortex can be shifted by the Slonczewski torque through the
creation of a dip structure.38)

VII. OSCILLATOR-EMITTED POWER VERSUS FIELD

In this last section, we want to describe the link between the
spin-transfer-induced oscillation amplitude of the vortex core
with the oscillating microwave voltage that can be effectively
detected using a spectrum analyzer or a high-frequency
oscilloscope. In the previous sections, we have determined the
influence of the perpendicular field h on the different forces
involved in the vortex core dynamics. The resulting microwave
power can be expressed as39

P =
(

Idc�Rosc

Rs + Z0

)2

Z0, (27)

where Rs is the sample resistance and �Rosc is the amplitude
of the resistance oscillation that is proportional to the total
magnetoresistance �R and Z0 is the load resistance. In the case
of the vortex gyrotropic mode with a uniform in-plane polarizer
(that is the most common system), the parameter �Rosc is
proportional to the normalized in-plane magnetization of the
polarizer m

pol
x,y and of the averaged magnetization oscillation

mosc = λ s and writes for any external field h,

�Rosc = λs
�R

2
(1 − |h|)mpol

x,y . (28)

Note that the parameter λ is a function of the vortex core
shift s. In Fig. 10 we show the change of λ with s obtained from
micromagnetic simulation and analytical calculations. Indeed,
we find that the change of sNL(h) is mainly influenced by the
field dependence of the perpendicular spin polarization pz =

Hperp

4πM
pol
s

, with M
pol
s the saturation magnetization of the polarizer.

For such a nanopillar system, we know that large-amplitude
gyrations of the vortex core can be observed only above a
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FIG. 10. (Color online) Micromagnetic simulations and analyti-
cal calculation of the averaged in-plane magnetization as a function
of the vortex core shifts.
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polarization proportional to h (red dots).

threshold field.18 As a consequence, the maximum of the
oscillation amplitude is reached for h close to 1 (see red curve
in Fig. 11 with J = 0.84 × 1010 A/m2 and P pz = 0.2 h).
However, in this field range the magnetoresistive signal �Rosc

goes to 0 and the resulting emitted power can be negligible.
An interesting and nonintuitive result is that, if we now

consider a nanopillar system with a perpendicular polarizer
(see black curve in Fig. 11 with P pz = 0.15), the resulting
field dependence of the oscillation amplitude is very weak. (In
the blue dotted region the strong deformation of the vortex
core makes its analytical description difficult.41)

Remarkably, a main interest for this structure with per-
pendicular polarizer is that the best condition42 to obtain
large-amplitude gyration of the vortex core sNL and large
oscillation of the resistance �Rosc is achieved in the absence of
external field, i.e., h = 0. It has to be noticed that even in this
simple situation, a stray field induced by the perpendicular
polarizer has to be considered, as can be done with our
complete analytical description of the vortex gyrotropic mode,
taking into account the influence of an external field acting on
all forces.

VIII. CONCLUSION

In summary, we have proposed a thorough analytical
description of the spin-transfer-induced vortex dynamics in
the nonlinear regime. Moreover, we have carefully treated the
influence of an external magnetic field on all forces acting
on the vortex core. These derivations are of main importance
in order to make our theoretical predictions comparable with
the actual configuration for experimental results. In addition
to the nonlinear contribution of the confinement due to the
magnetostatic energy existing in our nanopillar geometry, we
also have introduced an accurate determination of the current-
induced Oersted-Ampère forces as well as the nonlinear
contributions of the damping forces. We then compared and
found excellent agreement between our model and numerical
micromagnetic simulations, in the description of the variation
of the vortex oscillation frequency and oscillation amplitude
under spin-transfer excitation. Moreover, it validates our
approach based on the calculation of the energy dissipation
that we have developed to give an expression of all the
in-plane and out-of-plane components of the spin-transfer
forces associated with the Slonczewski term and fieldlike
term. The analytical derivation of all these forces represent an
important progress to define precisely under which conditions
of current and field, large radius vortex core oscillation
are predicted. Moreover, our development would allow an
analytical description of the phase-locking behavior of a
vortex-based oscillator to an external rf signal. This latter
analytical modeling is an important step toward optimizing
the synchronization efficiency between several vortex-based
spin-transfer oscillators.
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