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Finding activation pathway of coupled displacive-diffusional defect processes in atomistics:
Dislocation climb in fcc copper
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The majority of solid-state deformation and transformation processes involve coupled displacive-diffusional
mechanisms, of which a detailed atomic picture does not exist. We present here a complete atomistic description
of one such process by which an extended edge dislocation in face-centered-cubic (fcc) metals may climb
at finite temperature under supersaturation of vacancies. We employ an approach called “diffusive molecular
dynamics,” which can capture the diffusional time scale while maintaining atomic resolution by coarse graining
over atomic vibrations and evolving atomic density clouds. We find that, unlike the Thomson-Balluffi mechanism,
if simultaneous displacive and diffusive events are allowed, a coupled displacive-diffusional pathway exists for
extended double jog formation. Along this pathway, the activation energy is lower than the previous theoretical
predictions and on par with the experimental observations.
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I. INTRODUCTION

In most solid-state processes, the coupled displacive-
diffusional mechanism is the rule rather than an exception.
For example, structural phase transformations often involve
coupled lattice shear, shuffle, and diffusion.1 Curvature-driven
grain growth may involve coupled tangential (displacive) and
normal (diffusional) migration of grain boundaries.2 Creep
deformation, the focus of the present study, involves both
displacive (conservative) and diffusional (nonconservative)
motion of dislocations.3 It is generally accepted that power-law
creep, where steady-state creep strain rate ε̇ is proportional
to a power of the applied stress σ (ε̇ ∝ σn), is a result of
these coupled diffusive-displacive motions.4,5 In pure metals
and some alloys, where n � 4.5, the creep rate is believed to
be governed primarily by the climb of edge dislocations.6

Because of time scale limitations, conventional molecular
dynamics (MD) has been applied to study mostly dislocation
glide in the past thirty years; atomistic modeling of climb
has always been a challenging task.7 Here, we employ a
method called “diffusive molecular dynamics” (DMD)8 that
evolves 5N degrees of freedom: {Xi ,αi,ci}, which are the mean
position, the Gaussian width, and the occupation probability
or concentration, respectively, of N atomic density clouds.
Developed in the grand canonical ensemble, DMD is a
chemical and kinetic extension of the variational Gaussian
(VG) method,9,10 which coarse grains over atomic vibrations
but, unlike VG, allows for simultaneous displacive and mass-
action dynamics such as lattice diffusion.

Climb of an edge dislocation should occur via climb of
individual jogs. This scenario becomes complicated when
dislocations are dissociated (extended)—a natural occur-
rence in face-centered-cubic (fcc) metals. Stroh proposed a
mechanism11 that requires the glissile constriction of the
two partial dislocations, hereafter referred to as partials, as
a precursor for the climb of an extended dislocation. In an
illustration of the reaction coordinates, Fig. 1, Stroh’s path
involves glissile action first, followed by nonconservative mass

action. But mechanisms in the reverse order have also been
suggested.12–14 Thomson and Balluffi13 proposed that the first
step of climb involves diffusive aggregation of a prismatic
loop on one of the partials. In contrast to the Stroh path,
the Thomson-Balluffi (TB) path requires nonconservative
aggregation first, followed by conservative glissile dissociation
of the prismatic loop. Grilhé et al.15,16 have computed, based
on continuum elasticity theory, that there exists a critical size
nC of the TB prismatic loop (blue circle in Fig. 1) above which
the pure glissile dissociation of the prismatic loop becomes
monotonically downhill in energy; otherwise, the activation
energy for purely glissile formation of dissociated double jogs,
seen experimentally,13,17,18 is quite large (∼101 eV). Here,
using the DMD method,8 we demonstrate that a smaller nC is
possible along the TB path by relieving the constraint of purely
glissile relaxation: DMD shows that nC ∼ 3 is sufficient to
trigger a monotonically downhill path in the grand potential,
along a coupled diffusive-displacive reaction coordinate as
illustrated in Fig. 1. The coarse-grained activation barrier for
this process is only ∼0.83 eV, on top of a lattice diffusion
barrier of ∼0.7 eV. Thus, our calculation is on par with
experimental observations that double-jog nucleation is an
easy process even on widely extended dislocations under
moderate to high driving forces.3,19,20

II. METHODOLOGY

A. Diffusive molecular dynamics

The DMD method is described in Ref. 8. Here, it may
suffice to say that compared to 6N variables in MD, the
atomic positions and the momenta {xi ,pi}, for i = 1 . . . N ,
N being the number of atoms, DMD has 5N degrees of
freedom: {Xi ,αi,ci}, which are the mean position, the Gaussian
width, and the site-occupation probability or concentration,
respectively, of atomic density clouds. The Helmholtz free
energy of the system, FDMD, is expressed in terms of {Xi ,αi,ci}
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FIG. 1. (Color online) Schematic representation of the proposed
climb processes in the reaction coordinate space.
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2π/mkBT is the de Broglie thermal wavelength,
kB is the Boltzmann constant, T is the absolute temperature, m
is the atomic mass, and d is the dimensionality of the system.
In the above expression, E is the embedding function, w is
the Gaussian-averaged pair potential u, and ψ is the Gaussian-
averaged density function ρ of an embedded atom method
(EAM) potential
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N∑

i=1

E(ρi) + 1

2

N∑
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∑
j �=i

u(xij ), (2)

where ρi = ∑
j �=i ρ(xij ). An exchange chemical potential

between an atom and a vacancy for site i is defined as

μi ≡ ∂FDMD({Xi ,αi,ci})
∂ci

∣∣∣∣
{Xi ,αi }

. (3)

Once the sitewise exchange chemical potential is defined, a
general master equation21 for diffusion can be invoked on a
network of moving atomic sites.

The VG method was extended in the grand canonical
ensemble earlier by Phillpot10 in the context of simulated
quenching technique,22,23 but the resulting free energy does
not include the configurational entropy term (kBT [c ln c +
(1 − c) ln(1 − c)]) and is coupled with an ansatz Lagrangian
to describe the dynamics of a system. On the other hand,

the purely relaxational part of the DMD can be conceptually
and formalistically regarded as solving the Cahn-Hilliard
equation1 on a “moving-atoms grid,” taking the regular-
solution chemical free energy model with long-range elastic
interactions, short-range coordination interaction, and gradient
thermodynamics all automatically included.

During a DMD simulation, each time step is realized in
two parts. First, the variables {Xi ,αi} are statically minimized
holding {ci} constant. This process of establishing mechanical
and vibrational equilibrium is instantaneous because {Xi} and
{αi} change on the inertial (ps) and thermalization (100 ps)
time scales, respectively, both of which are much smaller than
the diffusional time scale determined by τ = r2

0 /4πDV, where
r0 is the nearest neighbor distance and DV is the vacancy
diffusivity. Then in the second part, the {ci} are integrated
numerically according to the chemical potential differences,
holding {Xi ,αi} constant, in order to approach chemical equi-
librium gradually. Because displacive relaxation of {Xi ,αi} is
“instantaneous” in DMD, the fundamental “clock” of DMD is
controlled by the value of chemical diffusivity, not by atomic
vibration. The DMD algorithm has been embedded in the
LAMMPS molecular dynamics code24 by creating a new atom
type, enabling us to use its vast resources and parallelization. A
Gaussian-averaged Cu embedded-atom method potential8 was
used to represent the pairwise interactions and electron density
in copper for this study. We report time in terms of (dimen-
sionless) reduced time t̃ ≡ t/τ , t being the simulated time.

For the calculation of stress tensor, with {αi} instanta-
neously minimized for an arbitrary {Xi ,ci} configuration, it
can be shown that the virial stress formula can be applied to
just the first two terms of FDMD to calculate the stress tensor
in DMD, as if it were the normal interatomic potential in
MD with Xi replaced by xi , and pretending {αi,ci} are frozen
parameters. So, the atomic level stress for site i in DMD is
expressed as

σ i = 1

2ω

∑
j �=i

Xij ⊗ ∂FDMD({Xi ,αi,ci})
∂Xij

, (4)

where ω represents the average atomic volume, and Xij =
Xi − Xj .

B. The nudged elastic band method on DMD free energy

The variables {Xi ,αi,ci}, i = 1 . . . N , N being the total
number of sites in the system, define a 5N dimensional
configuration space in DMD. In order to explore the free
energy surface in the grand canonical ensemble, one must
consider the DMD system in contact with an infinitely large
reservoir with which the system is in equilibrium and can
exchange mass. Then the appropriate potential to feed into the
nudged elastic band (NEB) “machinery” is the grand potential
�DMD,25 defined as

�DMD(μ,V,T ) = FDMD(N,V,T ) − μ0

N∑
i=1

ci, (5)

where μ0 is the constant chemical potential of the reservoir.
�DMD represents the Legendre-transformed free energy that
accounts for the penalty in any change in the total mass (

∑
i ci)

of the system.
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FIG. 2. (Color online) Initial configuration at t̃ = 0. (a) A schematic representation of the simulation cell showing the locations of the {220}
extra half planes corresponding to the partials. In the inset, two different ways of introducing the “3-vacancy roughness” on {220} are shown.
(b) 〈111〉 view of the dislocation lines by coordination plot. Only the non-perfectly-coordinated ( �=12) sites are shown. The partial δB on the
left shows the 3-vacancy roughness indicated by the oblique green arrow. The Burgers vectors are mentioned as per Thompson’s notation, and
the line directions are shown by black arrows. (c) 〈11̄0〉 view of the centrosymmetry plot of the initial configuration showing that the dipoles
are 2d111 apart. For coordination calculation, sites having c � 0.01 were excluded from the nearest-neighbor calculation.

In the NEB method,26–28 an elastic band with K + 1 replicas
or nodes, denoted as [R0,R1,R2, . . . ,RK ], where R0 and RK

correspond to the initial and the final replicas, is considered. In
this case, each replica represents a point in the 5N dimensional
configuration space spanned by {Xi ,αi,ci}, i = 1 . . . N . The
total force acting on any replica is calculated as the vector sum
of the spring force along the local tangent and the true force
perpendicular to the local tangent, expressed as

Fj = Fs
j

∣∣
|| + Fp

j

∣∣
⊥,j = 0 . . . K. (6)

The subscripts || and ⊥ stand for the parallel and the
perpendicular component of the forces resolved on the local
tangent to the node. The true force Fp

j , in the context of DMD,
is calculated as

Fp

j =
{

∂�DMD

∂X
,
∂�DMD

∂α
,μ − μ0

}
. (7)

The spring force is an artificial force that depends on the
interreplica distances |Rj − Rj+1|, as26

Fs
j ||| = kdof(|Rj+1 − Rj | − |Rj − Rj−1|)τ̂ j , (8)

where kdof is the spring constant vector with each component
corresponding to a particular type of degrees of freedom. In
calculating τ̂ j , the normalized local tangent on image j , an
improved tangent calculation as per Henkelman and Jónsson26

is adopted to avoid the formation of kinks on the minimum
energy pathway (MEP). The initial chain of states is created
by linearly interpolating the two end images. After that, the
replicas are relaxed according to the damped dynamics FIRE
(fast inertial relaxation engine)29 subject to the force field Fj

until the chain converges to the MEP. During the relaxation,
the forces on each replica are simultaneously updated as well.
Convergence is ascertained when there is no change in the
MEP and the maximum force on any replica is less than a
prescribed tolerance.

III. MODEL SETUP

To study the climb process, a copper crystal of dimen-
sion Lx = 15.09 nm, Ly = 10.62 nm, and Lz = 12.52 nm,
spanned by fcc lattice vectors ux = [11̄0], uy = [112̄], uz =
[111], was created [Fig. 2(a)].30 The cell contained ap-
proximately N = 170 000 atoms with an edge dislocation
dipole inside, whose Burgers vectors were ± a

2 [11̄0], parallel
(or antiparallel) to ux, a being the lattice parameter. The
dislocation lines were oriented along uy with the sense
vector ξ taken as ξ = uy/|uy|. The two edge dislocations
that were two glide planes (2d111) apart were introduced
in the same manner as Rodney and Martin’s,31 where the
atoms were displaced in the x and z directions according
to the isotropic elasticity solution for the displacement field
of the dislocations.3 Such narrow dipole configuration was
chosen because in that limit any elasticity description fails,
eliminating applicability of many other methods, such as
kinetic Monte Carlo. The system was then MD static relaxed
at 0 K in an NPT ensemble using the LAMMPS molecular
dynamics code24 under periodic boundary conditions (PBC)
in all three directions and zero applied stress. After the
relaxation, the top (≡positive edge ⊥) and the bottom edge
dislocation dissociated into Shockley partials according to
AB = Aδ + δB and BA = Bδ + δA, respectively (Thompson
tetrahedron notation adopted), as shown in Figs. 2(a) and 2(b),
and the dissociation width was found to be 1.82 nm, the
cores being located by means of coordination number plot.
This configuration was subsequently taken to 1200 K using
equilibrium lattice parameter and equilibrium {αi} for copper
at this temperature8 and was subjected to a constant 0.5%
uniaxial compressive strain [∼950 MPa, volume averaged
virial in Eq. (4)] in the ux direction.

At 1200 K, our model predicts an equilibrium vacancy
concentration of 6.2 × 10−6 corresponding to the vacancy
formation (free) energy of E

f

V = 1.24 eV. However, by set-
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(a) (b) (c) (d)

FIG. 3. (Color online) (a) Climb of the small stacking fault region by nucleation of prismatic loop AB followed by its growth and reaction
with the partial δB at t̃ = 9.81 × 103. (b) Dislocation structure showing the double jog on the extended dislocations at t̃ = 1.44 × 104. (c) One
jog swept across almost half of the line at t̃ = 2.22 × 104. (d) [11̄0] view of the centrosymmetry plot of the same configuration showing climb
by one atomic layer.

ting ci = 0.999 for all sites, a higher background vacancy
concentration of 10−3 was assumed. This supersaturation of
point defects is observed in many climb environments such
as irradiation damage and severe plastic deformation, and
can exceed the equilibrium value by at least four orders
of magnitude.32,33 In our system, Lx and Lz determine the
total dislocation density ρd by controlling the inter-dislocation
spacing under PBC. Taking L ≈ 15.0 nm, ρd can be anywhere
between 1015 m−2 to 1016 m−2, a dislocation density that
is typically observed in heavily deformed metals.34 Thus,
a supersaturation of two to three orders of magnitude for
this temperature was realistic for such deformed metals.
Additionally, a thick layer of sites (∼1.6 nm) at the supercell
boundary in the ±uz direction were held at fixed concentration
ci = 0.999 to serve as far-field vacancy sources or sinks that
correspond to, in reality, grain boundaries in bulk, etc. This
maintained a steady supersaturation realized under applied
stress and temperature.35 We report our simulation results in
terms of dimensionless time t̃ , as described above.

IV. RESULTS AND DISCUSSION

Due to omission of the noise term in the master equation,8

kinetics in DMD is only downhill and therefore it cannot
capture uphill phenomena in the mass-action space. Hence, to
overcome the critical activation energy corresponding to the
nucleation of a loop on a partial, a “3-vacancy roughness” was
created on a randomly chosen partial (here δB) by reassigning
ci = 0.001 to three sites in a row at the end of the extra half
plane {220} as shown in the inset of Fig. 2(a.i) and Fig. 2(b).
This was motivated from the realization that at atomic level,
the process of climb is initiated by binding a vacancy to
the core (Ref. 3, p. 583, and Ref. 36). We note that there
are two ways of introducing a three-vacancy jog on a {220}
half plane, as shown in the inset of Fig. 2(a). On collapsing
by energy minimization, this 3-vacancy roughness formed a

vacancy-type prismatic loop AB on the partial δB (Ref. 3,
p. 583) as shown in Fig. 4(b). We refrained from introducing
multiple nucleation events so that the current study remains
focused on “probing” the energy landscape in the coupled
displacive-diffusional reaction coordinate space.7

Since a DMD system is typically an open system, we track
the grand potential �DMD of the system as defined in Eq. (5).
The chemical potential of the reservoir, μ0, was estimated to
be −4.52 eV for the present case, calculated by subjecting
the reservoir to the same thermodynamic boundary conditions
(here the same background vacancy concentration, strain, and
temperature) as the system. To show that the configuration with
the 3-vacancy roughness was past the activation barrier, �DMD

was calculated for all four configurations—the 0-vacancy
(≡all sites assigned ci = 0.999 uniformly), the 1-vacancy
(≡only one site at the end of the extra half plane reassigned
to ci = 0.001), the 2-vacancy (≡two sites in a row reassigned
to ci = 0.001), and the 3-vacancy configurations—by relaxing
{Xi ,αi} statically under the applied strain. Referenced to the
grand potential for the 0-vacancy case, �0vac

DMD, those for the 1-
vacancy, 2-vacancy, and 3-vacancy configurations were found
to be 0.52 eV (or 5.0kBT ), 0.83 eV (or 8.1kBT ), and 0.80 eV
(or 7.7kBT ), respectively. This activation energy barrier of
<1 eV is significantly lower than any previous theoretical
estimate.15

Under the uniaxial compression of 0.5%, as the system
started evolving, the 3-vacancy roughness underwent a trans-
formation where one of the end vacant sites was filled up at
the cost of one site on the adjacent [11̄0] plane, resulting in
the formation of a zigzag trivacancy configuration. A similar
observation was noted for the configuration in Fig. 2(a.ii) at
0.7% strain, where the topmost vacant site was filled instead.
After that, one leg of the zigzag structure started attracting
more vacancies forming a row of close-packed vacancies,
which resulted in enlargement of the prismatic loop AB, the BA
part of which interacted with δB to form δA by the reaction
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FIG. 4. (Color online) Climb mechanism for dissociated dislocations. (a) The initial edge dislocation AB dissociates into partials δB and
Aδ. The shaded area shows the stacking fault ribbon. Three vacancies are bound to the core of δB. (b) Prismatic loop AB nucleates on δB.
(c) AB again dissociates to form a partial δB and a dipole Aδ − δA. (d) Glide extension of the prismatic loop that happens after the prismatic
loop attains some critical size. (e) Formation of the extended double jog.

δB + BA = δA. The top part again dissociated by glide as
AB = Aδ + δB, creating a dipole Aδ − δA and a partial δB
[Fig. 3(a) and Fig. 4(c)]. Until this point of the evolution,
the process resulted in climb of a part of the stacking fault
area bounded by curved partial δB and straight partial Aδ.
The twisting of the dislocation line is reported and explained
elsewhere17 in terms of the osmotic force couple that acts on
the loop jogs AB. This process continued until t̃ = 1.01 × 104,
when the loop, containing five vacancies, was large enough so
that it created a double jog on the extended dislocation by
glide extension [Figs. 4(c)–4(e)]. The corresponding atomic
structure at t̃ = 1.44 × 104 is shown in Fig. 3(b). This glide
extension happened instantaneously in the DMD time scale. A
schematic of this step drawn from the reaction of the Burgers
vectors is shown in Fig. 4(d). During the evolution, the dislo-
cation structure as a whole was found to glide in the ±ux direc-
tion, and to relax accordingly in the surrounding stress field.

It can readily be observed in Fig. 3(b) that the partials
Aδ and δB showed different degrees of constriction for the
two jogs, a phenomenon which has been reported by both
simulation (MD static minimization)31 and experiments.37 The
degree of constriction depends on the line tension of the stair-
rod dislocations. Since γ δ-δγ Lomer-Cottrell segments have
smaller Burgers vector than that of AB/γ δ-γ δ/AB stair rods,
and consequently lower line tension, the jog corresponding to
the former remained more extended. However, since the height
of the jogs was only one interplanar spacing in this case, using
elastic arguments to comment further on the details, e.g., the
asymmetry of the dissociation width on either side of a jog,
may be questionable. It was found that the jog corresponding to
AB/γ δ stair rods had higher chemical potential and therefore
attracted more vacancies which resulted in its movement in the
uy direction. Figure 3(c) shows an intermediate configuration
at t̃ = 2.22 × 104 where almost half of the dislocation line
had climbed. This is more evident from the centrosymmetry
plot in Fig. 3(d) when compared with Fig. 2(c). This process
continued until the complete climb of the faulted region by
1d111 at t̃ = 3.96 × 104 (≡0.14 μs). The schematic diagram

in Fig. 4, following Cherns et al.,17 describes the whole process
(movie in the Supplementary Material7).

Some comments can be made here by comparing our results
with the experimental observations of Cherns, Hirsh, and
Saka.17 The evolution of dislocation lines in our case closely
matches with the interpretations of their high-temperature
results for near-edge dislocations for which they speculated
the Thomson-Balluffi mechanism to take place. For pure
edge dislocations, however, they considered simultaneous
nucleation of loops on both partials, the repulsion between
which forces them to climb separately. Since we have allowed
for only one “nucleation event,” our edge dislocation result,
consequently, resembles their near-edge dislocation one.

An NEB simulation was performed in the extended
{Xi ,αi,ci} space to calculate the detailed activation pathway,
and the result is shown in Fig. 5(a). The initial configuration
as shown in Fig. 2 but without the 3-vacancy roughness was
chosen as the node 1. Prior to the NEB calculation, this
configuration was allowed to relax by a DMD run during which
the system equilibrated with the reservoir, the primary event
being concentration equilibration. The other end node was
chosen as the configuration right after the extended double
jog formation at t̃ = 1.01 × 104. Although a lower activation
(free) energy of 0.39 eV was found due to the allowance of
fractional vacancies, we note that the NEB-generated node
16 is similar to the configuration in Fig. 3(a), indicating
that the initial choice of 3-vacancy roughness did not bias
the downhill portion of the diffusive-displacive path that
the main DMD algorithm captured. Nodes 2, 3, and 4 are
translational invariants in energy and were generated due to the
end replicas being some distance apart by glide on the {111}
plane. In Fig. 5(b), we plot �DMD along both mass-action
and displacive reaction coordinates, defined respectively as
M = ∑N

i=1 ci − M0, M0 being the total mass of the system

at t̃ = 0, and X =
√∑N

i=1 ci |Xi − X0
i |2, where X0

i is the
mean position of site i at t̃ = 0. The evolution of �DMD shows
a downhill process with three distinct regimes. From t̃ = 0
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(a) (b)

FIG. 5. (Color online) (a) DMD-NEB calculation for the proposed climb pathway showing an activation barrier of 0.39 eV and the
corresponding critical nucleus configuration. (b) Grand potential �DMD along mass-action and displacive reaction coordinates. Data markers
signify four instants: the start p0 and the end p3 of the process, and the instants right before (p1) and after (p2) the extended double jog formation.

(p0 in the figure) to the instant right before the extended double
jog formation (p1), diffusive accumulation and displacive
movements play equally important roles. However, from p1
to p2, the moment when the extended double jog was formed
by glide extension, the decrease in �DMD is almost entirely
due to displacive processes. After p2 till the end of the
process marked by p3, the evolution is largely dominated by
diffusive processes. During this regime, the rate of diffusive
accumulation of vacancies, as well as the rate of stress
relaxation, was found to be enhanced.7

V. CONCLUSION

Though climb of extended edge dislocation has been
addressed either by continuum energy calculation or by
experiments over the past five decades, an atomistic simulation
of the whole process, with detailed atomic configurations and
atomic-level energetics, is shown here. Two features of the sim-
ulation are noteworthy: (a) A coupled displacive-diffusional
pathway emerges out of the DMD simulation automatically,
as shown in Fig. 1, and (b) along this pathway, the activation
energy of 0.83 eV with nC ∼ 3 is lower than the previous
theoretical predictions (∼101 eV).15,16 The minimum energy
pathway that the system chose on its own under the prescribed
boundary conditions reflects a naturally occurring course that
would evolve by a continuous accretion of point defects. It

should be mentioned here that even though this pathway is
distinctly different from the one proposed by Thomson and
Balluffi, the evolution of the dislocation lines agrees overall
with the TB mechanism. The usefulness of performing an
NEB simulation on the DMD free energy surface should be
discussed here. The concept of fractional vacancy brings in an
additional degrees of freedom that may allow the NEB method
to find an artificially lower activation barrier. Nonetheless, it
shows how one can get some quick estimate, albeit a rough one,
about the activation path for a system as complex as dislocation
dipole. Also, for the present study the NEB method established
that the initial choice of 3-vacancy roughness did not bias
the downhill portion of the diffusive-displacive path that the
main DMD simulation captured. Finally, the real significance
of this study is not limited to this particular process, but to
stress the importance of “probing” the energy landscape along
coupled diffusive-displacive reaction coordinates for the whole
class of diffusion-induced defect processes in materials. It
demonstrates an ability which has been absent.
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