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Elastic properties of vanadium-based alloys from first-principles theory
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The effect of Cr and Ti on the fundamental mechanical properties of V-Cr-Ti alloys has been investigated using
the all-electron exact muffin-tin orbitals method in combination with the coherent-potential approximation. The
static lattice constant and elastic parameters have been calculated for the body-centered-cubic V1-x-yCrxTiy (0 �
x,y � 0.1) random solid solution as a function of composition. Our theoretical predictions are in good agreement
with the available experimental data. Alloys along the equicomposition region are found to exhibit the largest
shear and Young’s modulus as a result of the opposite alloying effects obtained for the two cubic shear elastic
constants. The classical solid-solution hardening (SSH) model predicts larger strengthening effect in V1-yTiy than
in V1-xCrx . By considering a phenomenological expression for the ductile-brittle transition temperature (DBTT)
in terms of Peierls stress and SSH, it is shown that the present theoretical results can account for the variations
of DBTT with composition.
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I. INTRODUCTION

Vanadium alloys are identified as leading candidate ma-
terials for fusion first-wall/blanket structure applications.
This is because some vanadium alloys exhibit superior
mechanical properties, decent thermal creep behavior, high
thermal conductivity, good resistance to irradiation-induced
swelling and damage, and long operating lifetime in the
fusion environment.1–6 Considerable efforts have been made
to find optimal V-based alloy compositions that can endure the
extreme environments of fusion reactors.

The available experimental data indicate that reasonable
properties can be achieved by introducing a few percent Ti
and Cr into the V matrix.1,7 Consequently, the vanadium-
chromium-titanium (V-Cr-Ti) system has attracted a broad
interest, and in particular the compositions with 0–15 at.%
Cr and 0–20 at.% Ti have been intensively investigated.4,8–19

Previous studies on V-Cr-Ti alloys were mainly focused on
the ductile-brittle transition temperature (DBTT) before and
after irradiation, swelling properties, and impact toughness
as a function of Cr and Ti contents. For example, Chuang
et al.1 found that V-Cr-Ti alloys have low DBTT if the total
concentration of Cr and Ti is lower than 10 at.%, while
DBTT firmly increases when further Cr and Ti are added to
the alloy. Matsui et al.2 investigated the behavior of V-4Cr-
4Ti, V-10Cr-5Ti, and V-15Cr-5Ti alloys after irradiation and
reported that the V-4Cr-4Ti alloy exhibits excellent resistance
to irradiation-induced swelling, that is, even at irradiation up
to 30 dpa at 600 ◦C the swelling still remained below 0.4%.

It is well known that the elastic properties of materials
can be used to characterize their mechanical deformation and
structural stability under external loading.20,21 For example,
the shear modulus (G) is generally considered as an indicator
of the mechanical characteristics for a large set of materials,22

and the bulk modulus (B) is used to unveil the average

bond strength. In addition to elastic behavior, the ratio of
bulk modulus and shear modulus (B/G) is often employed to
assess the ductile/brittle characteristics of materials.23,24 To our
knowledge, most experimental efforts on V-Cr-Ti alloys have
been devoted to the effect of Cr and Ti contents on irradiation
behaviors and DBTT. Little attention has been paid to the
effect of Cr and Ti on the fundamental mechanical properties
of V-Cr-Ti alloys, such as the elastic and misfit parameters,
and the ductile/brittle behavior, which could guide further
optimization of the composition of V-based alloys. In this
work, we employ ab initio alloy theory to investigate the above
bulk properties of the body-centered-cubic (bcc) V1-x-yCrxTiy
random alloys as a function of Cr (0 � x � 0.1) and Ti (0 �
y � 0.1) concentrations.

The structure of the paper is as follows. In Sec. II,
we describe the computation tool and the most important
numerical details. The results are presented and discussed in
Sec. III. First we assess the accuracy of our calculations, then
study the trends obtained for the bulk properties and finally use
the calculated parameters to explain the experimental DBTT
maps.

II. COMPUTATIONAL METHOD

A. Total energy calculation

All calculations were performed using the exact muffin-tin
orbitals (EMTO) method25–27 based on density functional the-
ory (DFT)28 and the Green’s function and full charge density
techniques. The self-consistent calculations were carried out
using the local density approximation (LDA)29 to describe
the exchange-correlation potential and for the total energy we
adopted the generalized gradient approximation formulated
via the Perdew-Burke-Ernzerhof (PBE)30 functional. This
LDA-PBE scheme suits very well the full charge density

014105-11098-0121/2012/86(1)/014105(12) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.86.014105


LI, ZHANG, LU, LI, ZHAO, JOHANSSON, AND VITOS PHYSICAL REVIEW B 86, 014105 (2012)

formalism31 and has been shown to produce errors in the
equation of state which are within the numerical accuracy
of common DFT calculations.32,33 The problem of disor-
der was treated within the coherent-potential approximation
(CPA).34–37 We mention that since CPA is a single-site
approximation, the present study cannot account for the short
range order and local relaxation effects. Therefore, all our
results are strictly valid for completely disordered alloys with
rigid underlying bcc crystal structure.

The EMTO method is an improved screened Korringa-
Kohn-Rostoker (KKR) method,25 where the full potential
is represented by overlapping muffin-tin potential spheres.
Inside these spheres, the potential is spherically symmetric
and constant in between. By using overlapping spheres, one
describes more accurately the exact crystal potential compared
to the conventional muffin-tin or nonoverlapping methods.26,38

Further details about the EMTO method and its self-consistent
implementation can be found in previous works.25–27,36,37 The
accuracy of the EMTO method for the equation of state and
elastic properties of metals and alloys has been demonstrated
in a number of works.26,35,39–43

B. Details of numerical calculations

The elastic properties of single-crystals can be described by
the elements Cij of the elasticity tensor. For cubic crystal, there
are three independent parameters: C11, C12, and C44. They are
connected to the tetragonal shear modulus C ′ = (C11 – C12)/2
and the bulk modulus B = (C11 + 2C12)/3.

In the present study, the cubic elastic constants of
V1-x-yCrxTiy were calculated as a function of chemical
composition. For each concentration, the equilibrium lattice
parameter and the bulk modulus of V1-x-yCrxTiy were de-
termined from an exponential Morse-type function,44 which
was fitted to the ab initio total energies calculated for seven
different atomic volumes. To obtain the two cubic shear
modulus C ′ and C44, volume-conserving orthorhombic and
monoclinic deformations were applied on the conventional
cubic cell.45 For tetragonal shear modulus C ′, the following
orthorhombic deformation was used:⎡

⎢⎣
1 + δ0 0 0

0 1 − δ0 0

0 0 1
/

(1 − δ2
0

)
⎤
⎥⎦ ,

which leads to the energy change

�E(δ0) = 2V C ′δ2
0 + O

(
δ4

0

)
. (1)

The C44 shear modulus was determined from the mono-
clinic distortion ⎡

⎢⎣
1 δm 0

δm 1 0

0 0 1/
(
1 − δ2

m

)
⎤
⎥⎦ ,

yielding

�E(δm) = 2V C44δ
2
m + O

(
δ4
m

)
, (2)

where δ is the strain parameter. We considered six distortions
δ = 0.00, 0.01, . . ., 0.05. To obtain the accuracy needed
for the calculation of the elastic constants, we used 20 000–

TABLE I. Theoretical and experimental equilibrium lattice pa-
rameter (a in Å) and single-crystal elastic constants (Cij in GPa) for
bcc V. The present results (EMTO) are compared to former theoretical
(PAW, Ref. 49; LAPW, Ref. 51; FP-LMTO, Ref. 50) and experimental
(Ref. 48) data.

Method a C11 C12 C ′ C44

Theory EMTO 2.998 281.72 124.63 78.54 36.09
PAW 2.990 268.30 130.30 69.00 51.00
LAPW 205.00 111.00 62.50 30.00
FP-LMTO 205.00 130.00 37.50 5.00

Experiment 4.2 K 3.030 237.00 121.00 58.00 47.00
270 K 231.65 120.03 55.68 44.03
300 K 230.98 120.17 55.40 43.77

27 000 k points, depending on the particular distortion, in the
irreducible wedge of the Brillouin zones.

From the single-crystal elastic constants, the polycrystalline
shear modulus (G) can be obtained by the arithmetic Hill
average46 GH = 1/2(GR + GV ), where the Reuss and Voigt
bounds37 are

G−1
R = 2/5C ′−1 + 3/5C−1

44 (3)

and
GV = 2/5C ′ + 3/5C44. (4)

For cubic solids, the polycrystalline bulk modulus is equiva-
lent with the single-crystal one. The Young’s modulus (E) and
the Poisson ratio (ν) can be expressed as E = 9BG/(3B + G)
and ν = (3B – 2G)/(6B + 2G). The longitudinal (υL) and
the transversal (υT ) sound velocities are obtained from the
polycrystalline elastic moduli,47 viz.

ρυ2
L = B + 4

3G and ρυ2
T = G, (5)

where ρ is the density. The average sound velocity

υ−3
m = 1

3

(
1

υ3
L

+ 2

υ3
T

)
(6)

determines the elastic Debye temperature according to

�D= h

kB

(
3

4πV

)1/3

υm, (7)

where V is the average atomic volume, h is Planck’s constant,
and kB is Boltzmann’s constant.

III. RESULTS AND DISCUSSION

A. Bulk parameters of pure vanadium

In Tables I and II, we compare the theoretical equilib-
rium lattice constant, single-crystal elastic constants, poly-
crystalline elastic moduli, and Debye temperature of pure
vanadium with the corresponding experimental data48 and a
few previous theoretical predictions.49–51 All present elastic
parameters were calculated for the theoretical equilibrium
lattice parameter. The lattice parameter calculated by us
agrees well with the one by projector augmented wave (PAW)
method using the GGA-PW91 functional.49 Comparing to
the experimental data,48 the above theoretical values deviate
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TABLE II. Theoretical and experimental polycrystalline elastic
constants (in GPa), B/G ratio, Poisson’ ratio (ν), and Debye
temperature (�, in K) for bcc V. The present results (EMTO) are
compared to former theoretical (PAW, Ref. 49; LAPW, Ref. 51;
FP-LMTO, Ref. 50) and experimental (Ref. 48) data.

Method B G B/G E ν �

Theory EMTO 176.99 49.56 3.57 135.98 0.372 396.4
PAW 176.30 58.20 3.03 157.30 0.350
LAPW 142.33 36.80 3.86 101.64 0.381
FP-LMTO 155.00 18.00 8.60 51.98 0.440

Experiment 4.2 K 157.02 51.40 3.06 139.03 0.352 404.0
270 K 157.41 48.69 3.23 132.53 0.361
300 K 157.12 48.22 3.26 131.23 0.361

only by 1%. The elastic constants C12 and C44 of bcc V are
accurately reproduced by our method, while C11 and C ′ are
somewhat overestimated. Repeating the EMTO calculation for
C ′ at the experimental volume, we obtained C ′ = 71 GPa,
which indicates that the volume effect (partly due to thermal
expansion neglected in the present study and partly to the
basic density functional error) can account for about 35%
of the EMTO error for C ′. The shear modulus (G), Young’s
modulus (E), Poisson’s ratio (ν), and Debye temperature (�)
(Table II) agree within 9%, 2%, 6%, and 2%, respectively, with
the corresponding experimental values.

B. Assessing the accuracy of the theoretical
predictions for alloys

To assess the reliability of our computational approach
for alloys, we first compare the present elastic parameters
calculated for binary V-based alloys with the available
experimental data (Fig. 1). For binary V-Cr and V-Ti alloys,
the theoretical lattice constants increase (decrease) with
increasing Ti (Cr) concentration. Furthermore, the bulk
modulus and the tetragonal shear elastic constant increase
(decrease) with Cr (Ti) addition. These theoretical predictions
agree well with the trends observed in experiments (Fig. 1,
six upper panels).52–56 At the same time, the theoretical
C44 shows small negative (positive) change with Cr (Ti)
addition to V, whereas for V-Cr (V-Ti) the experimental
variation of C44 is slightly positive (negative).53,56 We return
to the theoretical trends obeyed by C44 in Sec. III C 2.
The discrepancies become even more pronounced when
comparing the theoretical and the experimental trends for
the shear modulus versus composition (Fig. 1, lower panels).
While theory predicts decreasing G for both V-Cr and V-Ti
with increasing doping level, experiments reported increasing
shear modulus upon alloying V with either Cr or Ti.53,56

The above deviations between theory and experiment call
for a detailed investigation. Numerous previous applications
confirm the accuracy of the EMTO approach for the elastic
properties of random solid solutions, and there is no a priori
reason why it should perform less accurately for the present
V-based binary alloys either. The theoretical results correspond
to static conditions (0 K), and temperature might change the
compositional trends to some extent. This is a question to be
investigated in the future. On the other hand, as we demonstrate

below, the quoted experimental values for G may not corre-
spond to random solid solutions (as assumed in the present
calculations) and are inconsistent with the single-crystal data.
The first problem is related the miscibility gap in the V-Ti
system below ∼900 K. According to that, the experiments on
V-27%Ti and V-47%Ti were performed either on quenched
(metastable) or on decomposed samples. We note that since
the present calculations correspond to completely disordered
phase (modeled by the CPA), future theoretical investigations
taking into account the local ordering and relaxation effects
are needed be able to answer the above question.

The second concern is the inconsistency between the
measured single-crystal and the polycrystalline data. For V-Ti,
it was reported that both C44 and C ′ decrease and G increases
with the amount of Ti. However, according to the Voigt and
Reuss models [see Eqs. (3) and (4)], when both C44 and C ′
decrease the shear modulus should also decrease and vice
versa. One might argue that the Voigt and Reuss bounds
give upper and lower values, respectively, and the true shear
modulus might still change within these limits. However,
V and V-27%Ti (assuming a random solid solution model)
are especially isotropic materials (their experimental Zener
anisotropy ratio C44/C ′ being close to 1) and thus the Voigt and
Reuss bounds are close to each other (in fact they differ by less
than 1 GPa). This averaging “uncertainty” is definitely below
the measured ∼5 GPa increase of G when adding 27% Ti to V,
meaning that the experimental G, C44, and C ′ are not consistent
with each other. In order to solve this puzzle, further accurate
measurements on the single-crystal and polycrystalline elastic
parameters of V-based random alloys are needed.

The above theoretical values were obtained with the
LDA-PBE scheme. We also investigated the effect of the
fully self-consistent PBE method (PBE-PBE scheme) on the
equation of state and elastic parameters of pure V and V-5Cr%
and V-5Ti% alloys to find out whether this could change
the theoretical results. We found that taking into account
the gradient term in the one-electron potential during the
self-consistent calculation changes, on the average, the three
single-crystal elastic constants by ∼15%. More importantly,
both LDA-PBE and PBE-PBE schemes yield similar elastic
parameter versus composition trends (with a mean deviation of
∼30%) for the present systems, and thus the LDA-PBE scheme
cannot account for the above-discussed deviation between
theory and experiment.

Next we consider a few ternary alloys for which experi-
mental elastic parameters are available. For V-Cr-Ti alloys, the
general trends of bulk modulus, shear modulus, and Young’s
modulus are shown in Fig. 2. Our theoretical results are
similar to the experimental values.48,57–59 For instance, pure
V exhibits larger bulk/shear modulus than that of V-4Cr-4Ti
and V-4Cr-4Ti alloy has higher Young’s modulus than that of
V-5Cr-5Ti. On the other hand, the trends of the elastic moduli
are slightly different in EMTO and former PAW49 calculations.
The deviation may be ascribed to the differences between
the two theoretical studies. Namely, the present approach
treats the problem of disorder within the CPA but does not
allow atoms to relax. In the PAW calculations,49 all atomic
positions were allowed to relax but the solid solutions were
modeled by a 250-atoms supercell with specific configuration
(i.e., no configuration averaging was taken into account).
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FIG. 1. (Color online) Theoreti-
cal (present results) and experimen-
tal lattice constants, bulk modulus,
tetragonal shear elastic constant, C44

and shear modulus for binary bcc
V-Cr and V-Ti alloys as a function of
composition. Expt(a) from Ref. 54,
Expt(b) from Ref. 53, Expt(c)
Ref. 55, Expt(d) from Ref. 52, and
Expt(e) from Ref. 56.
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FIG. 2. (Color online) Theoretical (EMTO and PAW) and exper-
imental polycrystalline bulk modulus, shear modulus, and Young’s
modulus for V-Cr-Ti alloys as a function of alloying elements. Expt(a)
from Ref. 48 and Expt(b) from Ref. 57–59. The PAW results are from
Ref. 49.

Based on the general agreement between the present theoreti-
cal predictions and the available experimental data from Figs. 1
and 2 and taking into account that the small discrepancies seen
for binary alloys may very well be due to the experimental error
bars, we conclude that our theoretical tool is able to describe
the elastic properties of V-based alloys with sufficiently high
accuracy.

C. Lattice constant and elastic parameters of V-Cr-Ti alloys

1. Lattice constants

Figure 3 shows the composition dependence of the lattice
parameter of bcc V-Cr-Ti alloys. It is found that Cr addition
shrinks the lattice parameter of pure V, whereas Ti enlarges

FIG. 3. (Color online) Theoretical lattice parameter (in Å) of
bcc V1-x-yCrxTiy (0 � x,y � 0.1) alloys as a function of Cr and
Ti concentration.

it. This trend can be explained by the smaller atomic radius
of bcc antiferromagnetic Cr (1.28 Å) and the larger one of
hexagonal close-packed Ti (1.46 Å) as compared to that of bcc
V (1.35 Å).60 As a result of the two opposite alloying effects on
the equilibrium volume, the lattice constants of V-Cr-Ti alloys
are almost unchanged when equal amounts of Cr and Ti are
introduced into V (alloys along the main diagonal in Fig. 3).

2. Single crystal elastic parameters

For each Cr and Ti concentration, the elastic constants of
V-Cr-Ti alloys were calculated at the corresponding equilib-
rium lattice parameter from Fig. 3. In Fig. 4 we show the
present theoretical single elastic constants Cij (x,y) for bcc
V1-x-yCrxTiy as a function of Cr and Ti contents and in Table
III we list the corresponding numerical values. At this point,
we should mention that the actual accuracy of the present
results is much lower than 0.01 GPa, which is the level of
accuracy suggested by the figures in Table III (also Table IV).
We estimated that 0.01 GPa is the numerical accuracy of our
calculations for the cubic shear elastic constants. The lower
absolute accuracy of our data is due to the fact that all our
calculations were performed for completely random alloys,
neglecting the local ordering and relaxation effects, using
non-self-consistent PBE and full-charge density approach and
neglecting the effect of temperature. Nevertheless, our elastic
parameters from Table III (Table IV) may serve as a good
reference for future ab initio studies performed within the
above approximations.

We find that, in general, the effect of alloying on C11(x,y) is
greater than that on C12(x,y) and C44(x,y). With the addition
of Cr and Ti, C11(x,y) varies from ∼258 GPa (corresponding
to V-10%Ti, denoted by V-10Ti in the table) to ∼297 GPa (V-
10Cr), while the maximum changes in C12(x,y) and C44(x,y)
are about 6 GPa. C11(x,y) increases with increasing x and
decreases with increasing y, resulting in almost constant values
along the diagonal (equiconcentration) region from Fig. 4.
C12(x,y) varies between ∼121 GPa (V-10Ti) and ∼126 GPa
(V-10Cr) and shows a weak dependence on the Cr content.
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FIG. 4. (Color online) Theoretical single-crystal elastic constants (in GPa) for bcc V1-x-yCrxTiy (0 � x,y � 0.1) alloys as a function of Cr
and Ti concentrations.

The tetragonal shear elastic constant C ′(x,y) is often
used to describe the structural stability of a cubic solid
under tetragonal deformation.61 As seen from Fig. 4, C ′(x,y)
increases (decreases) with increasing Cr concentration (Ti
concentration), and as a result of these opposite effects, C ′(x,y)
for the alloys along the equicomposition diagonal region
remains almost constant with increasing x ≈ y. According
to these trends, the V-Cr-Ti alloys become dynamically less
stable with Ti addition and more stable with Cr addition.

The trends of C ′(x,y) can be explained using the following
argument based on the volume effect. Since Ti expands the
average volume per atom in V-Cr-Ti (Fig. 1), it also decreases
the average bond strength and thus the ability of the alloy
to resist the tetragonal shear. The introduction of Cr has
the opposite effect. However, this simple picture obviously
fails to explain the trends in the other single-crystal shear
elastic constant C44(x,y). A more elaborated explanation
for the calculated trends of C ′(x,y) is possible if we recall
the correlation between the tetragonal elastic constant and
the structural energy difference between the bcc and the
face-centered-cubic (fcc) lattices.50,62–64 According to that,
large C ′ for the bcc phase corresponds to more stable bcc
lattice compared to the fcc one. Referring to the crystal
structure theory of transition metals,65 it is known that in
nonmagnetic solids with approximately three d electrons (i.e.,
close to bcc V) increasing (decreasing) d-occupation number
stabilizes the bcc (fcc) phase. In the present case, Cr (Ti)
addition increases (decreases) the d-occupation number and
thus stabilizes (destabilizes) the bcc phase. As a consequence,
Cr is expected to increase and Ti to decrease the tetragonal

elastic constant. This trend is in perfect line with the ab initio
results from Fig. 4.

In contrast to the tetragonal elastic constant, C44(x,y)
exhibits similar trend as that of the lattice parameter plotted
against Ti and Cr contents (Fig. 3). C44(x,y) decreases with Cr
and increases with Ti addition to bcc V. Additional calculations
yield larger C44 for elemental bcc Cr and bcc Ti than the one
obtained for bcc V. Hence, neither the rule of mixing (i.e.,
linear interpolation between the results obtained for V and Cr
and between those of V and Ti) nor the volume expansion can
account for the predicted trend of C44(x,y) from Fig. 4.

Next we monitor the electronic structure of binary V-based
alloys with the aim of finding an explanation for the unexpected
(anomalous) composition dependence of C44(x,y). The elastic
parameters are computed from the second-order derivation of
total energy E(δ) = E(0) + aδ2 + O(δ4) with respect to the
strain parameter δ. Since δ � 0.05, the high-order terms O(δ4)
can be neglected and then we can write C44 ∼ �E(δ)/δ2,

where the �E(δ) = E(δ) − E(0) represents the change in
total energy upon lattice distortion. According to the force
theorem,65 the total energy change can be approximated by
the change of the one-electron energy �Eone, which in turn
is determined by the density of state (DOS) calculated as
a function of lattice distortion. In Fig. 5, we display the
DOS for pure V, V-7.5Cr and V-7.5Ti alloys calculated in
bcc phase (without lattice distortion) and with 5% distortion
used to compute C44. For pure V, there is a peak located
approximately at − 15 mRy below the Fermi level [marked
by black dashed-dotted line in Fig. 5(a)]. Upon monoclinic
distortion [Fig. 5(b)], this peak splits and shifts toward the
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TABLE III. Theoretical lattice parameter (a in Å) and single-
crystal elastic constants (in GPa) for bcc V1-x-yCrxTiy (0 � x,y � 0.1)
alloys as a function of Cr and Ti contents.

V-x%Cr-y%Ti a C ′ C11 C12 C44

V 2.998 78.54 281.72 124.63 36.09
V-2.5Cr 2.993 80.33 285.81 125.15 35.38
V-5Cr 2.989 82.06 289.59 125.48 34.37
V-7.5Cr 2.985 83.51 292.85 125.84 33.20
V-10Cr 2.981 85.44 296.66 125.79 32.15
V-2.5Ti 3.004 75.90 275.28 123.49 36.60
V-5Ti 3.010 73.40 269.21 122.40 37.03
V-7.5Ti 3.016 70.95 263.45 121.55 37.72
V-10Ti 3.021 68.58 257.71 120.55 38.32
V-2.5Cr-2.5Ti 2.999 77.97 279.76 123.82 36.11
V-2.5Cr-5Ti 3.005 75.38 273.49 122.72 36.76
V-2.5Cr-7.5Ti 3.011 72.93 267.53 121.67 37.27
V-2.5Cr-10Ti 3.017 70.53 261.76 120.70 37.94
V-4Cr-4Ti 3.000 77.61 278.56 123.34 36.16
V-5Cr-2.5Ti 2.995 79.75 283.72 124.23 35.47
V-5Cr-5Ti 3.001 77.38 277.78 123.02 36.24
V-5Cr-7.5Ti 3.007 74.83 271.64 121.97 36.85
V-5Cr-10Ti 3.012 72.45 265.81 120.92 37.53
V-7.5Cr-2.5Ti 2.991 81.46 287.22 124.30 34.62
V-7.5Cr-5Ti 2.996 79.92 282.71 122.87 35.68
V-7.5Cr-7.5Ti 3.002 76.81 275.88 122.25 36.51
V-7.5Cr-10Ti 3.008 74.42 269.97 121.12 37.17
V-10Cr-2.5Ti 2.986 83.34 291.44 124.77 33.76
V-10Cr-5Ti 2.992 81.02 285.66 123.62 35.03
V-10Cr-7.5Ti 2.998 79.34 280.81 122.13 36.05
V-10Cr-10Ti 3.004 76.36 274.07 121.35 36.90

Fermi level, indicating a positive change in the one-electron
energy, �Eone > 0. Positive �Eone (in combination with
the other energy terms) leads to positive C44 in bcc V. In
V-Cr and V-Ti alloys the above scenario is slightly altered
by alloying. Namely, the aforementioned DOS peak moves
toward lower (higher) energy levels upon Cr (Ti) doping as
compared to that in bcc V. This results in �Eone(V-7.5Cr)
< �Eone(V) < �Eone(V-7.5Ti), suggesting C44(V-7.5Cr) <

C44(V) < C44(V-7.5Ti). Therefore, the electronic structure of
bcc V provides an explanation for the anomalous C44 versus
composition map (Fig. 4).

3. Polycrystalline elastic properties

The polycrystalline elastic parameters for bcc V1-x-yCrxTiy
alloys are listed in Table IV and shown in Fig. 6 as a function
of composition. The bulk modulus varies between a minimum
value of 166 GPa belonging to V-10Ti, and a maximum
value of 183 GPa corresponding to V-10Cr. B(x,y) follows
the opposite trend obeyed by the lattice parameter (Fig. 1).
Bulk modulus measures the resistance of material to uniform
compression. Alloys with larger lattice constant correspond to
lower average bond strength and thus they can be more easily
compressed than those with smaller lattice constants. That
explains why the bulk modulus of V-Cr-Ti alloys decreases
with Ti and increases with Cr addition. The latter effect confers
the excellent ductility properties of V-Cr-Ti alloys.

TABLE IV. Theoretical polycrystalline elastic constants (in GPa),
Poisson’s ratio (ν), B/G ratio and Debye temperature (�, in K)
for V1-x-yCrxTiy (0 � x,y � 0.1) alloys as a function of Cr and
Ti concentration.

V-x%Cr-y%Ti B G B/G E ν �

V 176.99 49.56 3.57 135.98 0.372 396.37
V-2.5Cr 178.70 49.47 3.61 135.87 0.373 395.71
V-5Cr 180.18 49.11 3.67 135.06 0.375 394.00
V-7.5Cr 181.51 48.53 3.74 133.67 0.377 391.39
V-10Cr 182.75 48.14 3.80 132.77 0.379 389.55
V-2.5Ti 174.09 49.24 3.54 134.99 0.371 395.74
V-5Ti 171.34 48.88 3.51 133.90 0.370 394.91
V-7.5Ti 168.85 48.72 3.47 133.32 0.368 394.87
V-10Ti 166.27 48.47 3.43 132.54 0.367 394.49
V-2.5Cr-2.5Ti 175.80 49.42 3.56 135.55 0.371 395.96
V-2.5Cr-5Ti 172.98 49.22 3.51 134.88 0.370 395.92
V-2.5Cr-7.5Ti 170.29 48.93 3.48 133.97 0.369 395.29
V-2.5Cr-10Ti 167.72 48.76 3.44 133.35 0.367 395.26
V-4Cr-4Ti 175.08 49.36 3.55 135.36 0.371 396.02
V-5Cr-2.5Ti 177.39 49.38 3.59 135.57 0.373 395.63
V-5Cr-5Ti 174.61 49.36 3.54 135.34 0.371 396.14
V-5Cr-7.5Ti 171.86 49.14 3.50 134.59 0.369 395.85
V-5Cr-10Ti 169.22 48.99 3.45 134.04 0.368 395.86
V-7.5Cr-2.5Ti 178.60 49.16 3.63 135.08 0.374 394.43
V-7.5Cr-5Ti 176.15 49.60 3.55 136.03 0.371 396.72
V-7.5Cr-7.5Ti 173.43 49.43 3.51 135.42 0.370 396.64
V-7.5Cr-10Ti 170.74 49.27 3.47 134.85 0.368 396.62
V-10Cr-2.5Ti 180.33 48.94 3.68 134.65 0.376 393.26
V-10Cr-5Ti 177.63 49.38 3.60 135.56 0.373 395.52
V-10Cr-7.5Ti 174.94 49.75 3.52 136.34 0.370 397.57
V-10Cr-10Ti 172.26 49.60 3.47 135.76 0.369 397.55

From Fig. 6, we can see that the variation of the shear
modulus is very small within the present compositional map
(about 2GPa). Along the diagonal region, G(x,y) is relatively
large, compared to the rest of the map, and slightly increases
with increasing total solute concentration when (x + y) >

0.1–0.15. This particular saddle type of trend of G(x,y) is due
to the fact that C44(x,y) and C ′(x,y) show opposite variations
with alloying (Fig. 4) and more specifically to the peculiar
trend of C44(x,y) (see discussion in Sec. III C 2). The Young’s
modulus has similar composition dependence as that of the
shear modulus, with V-10Cr-7.5Ti having the largest E value
(136.7 GPa).

In the following we discuss the ductile/brittle behavior of
V-Cr-Ti alloys, which is a crucial issue for the performance of
structural materials. Previously, Pugh23 proposed an approxi-
mate criterion for the ductile-brittle transition by means of the
B/G value: A material is ductile when its B/G ratio is greater
than 1.75; otherwise it is in brittle regime. The calculated
values of B/G for all V-based alloys considered here are well
above 1.75 (Table IV), suggesting that all of these alloys exhibit
excellent ductile properties. In Fig. 6, we plotted the B/G ratio
for the V-based alloys as a function of Cr and Ti concentration.
We can see that alloys with large B/G ratios correspond to
low Ti (<3 at.%) and high Cr (>6 at.%) concentration. The
high-Ti-content (>7 at.%) alloys possess the lowest B/G ratio
(<3.5) with a minimum around V-10Ti. Furthermore, we also
find that the V-4Cr-4Ti alloy has marginally better ductility (in
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FIG. 5. (Color online) Density of states (DOS) for V, V-7.5Cr, and
V-7.5Ti alloys in bcc lattice (a) and in C44-type monoclinic distorted
lattice (b) plotted for energies close to the Fermi level (marked by
dashed line). The dash-dotted lines indicate the position of the DOS
peak close to the Fermi.

term of B/G) than the V-5Cr-5Ti alloy. This is consistent with
the experimental observation that at temperatures up to 400 ◦C
V-4Cr-4Ti exhibits a larger uniform elongation (18%–23%)
than V-5Cr-5Ti (14%–18%).3

The Poisson’s ratio (ν) and elastic Debye temperature (�)
are shown in Fig. 7 as a function of Cr and Ti contents. The
Poisson’s ratio has a similar trend as that of B/G. It has small
values for high-Ti alloys and V-10Cr possesses the largest
ν (0.379). Most V alloys have similar Debye temperatures
(around 396 K) with a weak minimum (maximum) at V-10Cr
(V-10Cr-7.5Ti) alloy. Based on this observation one would
anticipate that lattice vibration effects have no significant
impact on the phase diagram of V-Cr-Ti system within the
considered compositional range.

We define the formation enthalpy of bcc V1-x-yCrxTiy alloy
as

�H (x,y) = E(V1-x-yCrxTiy) − (1 − x − y)Ebcc(V)

−xEbcc(Cr) − yEhcp(Ti), (8)

where all the energies were calculated at equilibrium volume
and expressed per atom. Ebcc(V), Ebcc(Cr), and Ehcp(Ti) are
the total energies of bcc V, bcc Cr, and hcp Ti, respectively.
According to Eq. (8), negative enthalpy of formation means
that Cr, V, and Ti form a ternary V-Cr-Ti solid solution at low
temperatures (static conditions). At finite temperature, we may
approximate the Gibbs energy of formation of V1-x-yCrxTiy
alloys by �G ≈ �H–�T Sconf , where Sconf is the configuration
entropy estimated as Sconf= − kB[x ln(x) + y ln(y) + (1 −
x − y) ln(1 − x − y)] (kB is Boltzmann constant).

FIG. 6. (Color online) Theoretical polycrystalline elastic constants (in GPa) and B/G ratio for V1-x-yCrxTiy (0 � x,y � 0.1) alloys as a
function of Cr and Ti concentration.
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FIG. 7. (Color online) Theoretical Poisson’s ratio (ν) and elastic
Debye temperature (�, in K) for V1-x-yCrxTiy (0 � x,y � 0.1) alloys
as a function of Cr and Ti concentration.

The theoretical Gibbs energies of formation for V-based
alloys at 0 K and 800 K are shown in Fig. 8. We find that
at 0 K (top panel), V-Cr-Ti solid solutions can form with Ti
concentration below 2–4 at.%, but solid solutions with larger
Ti content are thermodynamically unstable. Considering the
effect of temperature (bottom panel), we see that at 800 K
most of ternary alloys become stable, and only compositions
with low Cr (<2.5 at.%) and high Ti (>5 at.%) contents are
unstable with respect to the considered standard states. These
findings are consistent with the accepted ternary phase diagram
of V-Cr-Ti system.66 According to our predictions, the random
solid solutions V-4Cr-4Ti and V-5Cr-5Ti become stable only
above ∼500 K. However, they might remain stable also at
lower temperatures as a result of a significant short-range order
effect not considered in the present study.

D. Solid solution hardening

The solid solution hardening (SSH) of V-Cr-Ti alloys as a
function of Cr and Ti concentration may be estimated using the
Labusch-Nabarro (LN) semiempirical model.67–69 This model
is often used to describe the hardening mechanism in alloys
caused by solute atoms in an otherwise homogenous matrix.

FIG. 8. (Color online) Theoretical (EMTO) Gibbs energy of
formation for V-based alloys for temperature of 0 K and 800 K (in
mRy per atom).

According to that, the SSH varies as

�τ = const. × c2/3 × ε
4/3
L , (9)

where const. is a host-specific constant number (does not
depend on c and the size of the misfit) the Fleischer parameter
εL is expressed by

εL = [(ε′
G−LN )2 + (αεb)2]1/2 with

ε′
G−LN = εG/(1 + 0.5 |εG|), (10)

with α being a parameter (in the present application we adopted
α = 10), and εb and εG are the volume and modulus misfit
parameters, respectively. These parameters can be obtained
from the composition-dependent lattice constant and shear
modulus of binary V1-cCrc and V1-cTic alloys, viz.,

εb = [δ(b)/δc]/b(0) and εG = [δ(G)/δc]/G(0), (11)

where b is Burger’s vector, G is shear modulus, and c is the
atomic fraction of the solute atom.

The theoretical misfit parameters calculated for V-7.5Cr
and V-7.5Ti are listed in Table V. According to these numbers,

TABLE V. Theoretical volume and elastic misfit parameters and
Fleischer parameter for bcc V-7.5Cr and V-7.5Ti alloys.

εb εG εG−LN εL

V-7.5Cr –0.056 –0.277 –0.243 0.614
V-7.5Ti –0.079 –0.226 –0.203 0.818
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FIG. 9. (Color online) Solid solution hardening [units of const.
in (9)] in ternary V1-x-yCrxTiy (0 � x,y � 0.1) alloys as a function of
Cr and Ti concentrations.

both Cr and Ti induce SSH in V, but Ti has slightly larger
strengthening effect than Cr. These theoretical predictions are
in line with the observations.70,71

Here we estimate the SSH of ternary V-Cr-Ti alloys by
simply summing the effects obtained for the V-Cr and V-Ti
binary alloys. The total theoretical SSH map is shown in Fig. 9.
One can see that for total solute concentration below ∼10 at.%,
the SSH has relatively low value (as compared to the dilute
alloys). Obviously, the SSH increases more with Ti content
than with Cr content as a result of the larger misfit parameters
obtained for a Ti-doped system.

Experimental works usually focus on the effect of the solute
atoms on the DBTT. The DBTT has been shown to be related to
yield strength.72 The yield strength in turn includes three parts:
lattice friction strengthening (Peierls stress), solid solution
strengthening (SSH), and grain boundary strengthening that
can be estimated by Hall-Petch relationship. In the following,
using our calculated results obtained for the elastic and misfit
parameters, we try to explain the observed variation of the
DBTT with composition.2

As shown in Fig. 6, along the main diagonal, the V-
Cr-Ti alloys with high (x + y) (above ∼0.15) have the
highest shear modulus, indicating that these alloys possess
the highest Peierls stress. Alloys outside of this region have
slightly lower Peierls stress. Combining this result with the
SSH from Fig. 9, we arrive at the conclusion that the yield
stress should increase with both Cr and Ti addition, and

this increase should be more pronounced along the main
diagonal (x ≈ y). Hence, our results suggest that the DBTT
should show nearly symmetric composition dependence (as
a function of Cr and Ti contents) with a maximum for the
equiconcentration alloys with (x + y) larger than 0.1–0.15. A
very similar DBTT map was established from experimental
measurements.2 Namely, Chung et al.1 found that the V-Cr-Ti
alloys with total concentration of Cr and Ti below 10% show
the lowest DBTT, and DBTT increases with increasing the
total concentration of Cr and Ti (above 10 at.%), which is
consistent with our prediction.

IV. CONCLUSIONS

Using the EMTO method in combination with the CPA,
we have investigated the elastic properties of V-based alloys
as a function of Ti and Cr concentration. Chromium addition
decreases and titanium addition increases the lattice constant
of bcc vanadium. As a consequence, the lattice constant of V-
Cr-Ti alloys remains unchanged when equal amounts of Cr and
Ti are introduced into V. The two cubic shear elastic constants
follow opposite trends, which results in a local maximum
in the shear and Young’s moduli for the equi-concentration
alloys. The anomalous composition dependence of C44 has
been explained using the electronic structure of bcc V.

All V-based alloys exhibit excellent ductile behavior shown
by the large B/G values. The addition of Cr increases the bulk
modulus and the ductility of V-based alloys. At 0 K, the solid
solutions can form with low Ti concentration, but at 800 K
most compositions considered here become stable and only
alloys with high Ti concentration remain unstable. Both Cr
and Ti enhance the solid solution hardening of V-based alloys
but Ti has larger strengthening effect than Cr. The SSH of the
ternary alloys increases with increasing the total Cr and Ti
concentration. We have used our theoretical data to explain
the changes of DBTT of V-Cr-Ti alloys as a function of Cr
and Ti concentration. The present results offer a consistent
starting point for further theoretical modeling of the elastic
and micromechanical properties of V-based alloys.
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