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Effect of hydrogen coverage on the Young’s modulus of graphene
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Cittadella Universitaria I-09042 Monserrato (Ca), Italy

2Department of Physics, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato (Ca), Italy
(Received 30 January 2012; published 20 June 2012)

We blend together continuum elasticity and first-principles calculations to measure by a computer experiment
the Young modulus of hydrogenated graphene. We provide evidence that hydrogenation generally leads to a
much smaller longitudinal extension upon loading than in pristine graphene. Furthermore, the Young modulus is
found to depend upon the loading direction for some specific conformers, characterized by an anisotropic linear
elastic behavior.
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The hydrogenated form of graphene1–4 (also referred to as
graphane) has been systematically investigated by Wen et al.,5

proving that in fact there exist eight graphane isomers. They
all correspond to covalently bonded hydrocarbons with a C:H
ratio of 1. Interesting enough, four isomers have been found
to be more stable than benzene, indeed an intriguing issue. By
hydrogenation, a set of two-dimensional materials is generated
with new physico-chemical properties: For instance, graphane
is an insulator,2,3 with an energy gap as large as ∼6 eV,6

while graphene is a highly conductive semimetal. Furthermore,
disordered hydrogenated samples show electronic and phonon
properties quite different than the pristine material.4

As far as the elastic behavior is concerned, it has been
proved that hydrogenation largely affects the elastic moduli
as well. By blending together continuum elasticity theory and
first-principles calculations, Cadelano et al.7 have determined
the linear and nonlinear elastic moduli of three stable graphane
isomers, namely, chair (C), boat (B), and washboard (W)
graphane. The resulting picture is very interesting: B graphane
is found to have a small and negative Poisson ratio, while,
due to the lack of isotropy, C graphane admits both softening
and hardening nonlinear hyperelasticity, depending on the
direction of the applied load.

Although full hydrogen coverage is possible both in
ordered and disordered configurations,5 it is more likely that a
typical experimental processing procedure generates samples
with a C:H ratio larger than 1. In other words, we must
admit that graphane could exist not only in a large variety of
conformers, including the amorphous one (hereafter referred
to as A graphane), but also in several forms characterized by
different stoichiometry.

In this work we investigate the variation of the Young
modulus of graphane versus the hydrogen coverage, in three
stable conformers7 and in the amorphous one. The work is
addressed to establish whether an incomplete sp3 hybridiza-
tion affects the elastic behavior and which is the trend (if any)
of variation of the Young modulus versus hybridization, an
issue of large technological impact. Our approach combines
continuum elasticity (used to define the deformation protocol
aimed at determining the elastic energy density of the in-
vestigated systems) and first-principles atomistic calculations
(used to actually calculate such an energy density and the
corresponding elastic moduli).

Atomistic calculations have been performed by density
functional theory (DFT) as implemented in the QUAN-
TUM ESPRESSO package.8 The exchange correlation poten-
tial was evaluated through the generalized gradient approx-
imation (GGA) with the Perdew-Burke-Ernzerhof (PBE)
parametrization,9 using Rabe-Rappe-Kaxiras-Joannopoulos
(RRKJ) ultrasoft pseudopotentials.10,11 A plane-wave basis set
with kinetic energy cutoff as high as 24 Ry was used and the
Brillouin zone (BZ) has been sampled by means of a (4 × 4 ×
1) Monkhorst-Pack grid. The atomic positions of the investi-
gated samples have been optimized by using damped dynamics
and periodically repeated simulation cells. Accordingly, the
interactions between adjacent atomic sheets in the supercell
geometry were hindered by a large spacing greater than
10 Å.

The Young modulus of the structures under consideration
has been obtained from energy-vs-strain curves, corresponding
to suitable deformations applied to samples with different
hydrogen coverage, namely, 25%, 50%, 75%, and 100%. The
corresponding simulation cell contained eight carbon atoms
and two, four, six, and eight hydrogen atoms, respectively.
For any possible coverage (other than the 100% one), several
different geometries (up to 10) have been considered, by
randomly distributing hydrogen atoms according to different
decoration motifs. This implies that all data below are obtained
through configurational averages, a technical issue standing for
the robustness of the present results.

For any deformation the magnitude of the strain is rep-
resented by a single parameter ζ .7 Thus, the energy-vs-strain
curves have been carefully generated by varying the magnitude
of ζ in steps of 0.001 up to a maximum strain ζmax =
±0.02. This choice warrants that the linear elastic regime
was carefully explored. All results have been confirmed by
checking the stability of the estimated elastic moduli over
several fitting ranges for each sample. The reliability of
the present computational setup is proved by the estimated
values for the Young modulus (E) and the Poisson ratio
(ν) of pristine graphene (corresponding to 0% of hydrogen
coverage), respectively, 349 Nm−1 and 0.15, which are in
excellent agreement with recent literature.7,12–15 Similarly, our
results E = 219 Nm−1 and ν = 0.21 for stoichiometric C
graphane (corresponding to 100% hydrogen coverage) agree
with data reported in Refs. 7,16,17.
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FIG. 1. (Color online) Pictorial representations of some hydrogen
motifs corresponding to 25% (a), 50% (b), and 75% (c) coverage.
Hydrogen atoms are indicated by red (dark) circles, while hydrogen
vacancies are indicated by gray (light) circles which are randomly
placed on the top or bottom of the graphene sheet (black sticks).
Shaded areas represent the simulation cell. Up to 10 different
decorations for each conformer have been used in the calculations.

Among the systems here investigated, stoichiometric C
graphane is elastically isotropic due to its crystallographic
symmetry, while its nonstoichiometric conformers with 25%,
50%, and 75% hydrogen coverage (see Fig. 1) are so by
assumption (which is indeed reasonable by only assuming that
the hydrogen decoration in real samples is totally random).
Similar properties hold for A graphane. On the other hand,
stoichiometric B and W graphane show an orthorhombic
symmetry, which causes an anisotropic linear elastic behavior.
Their nonstoichiometric conformers could became isotropic
due to the achieved disorder degree, as discussed below.

The two-dimensional elastic energy density (per unit of
area) for systems with orthorhombic symmetry (namely, B
and W graphane) is expressed as18,19

U = 1
2C11ε

2
xx + 1

2C22ε
2
yy + C12εxxεyy + 2C44ε

2
xy, (1)

where x (y) indicates the zigzag (armchair) direction in
the honeycomb carbon lattice and εij (i,j = x or y) is the
infinitesimal strain tensor. By applying a loading at an angle θ

with respect to the zigzag direction, the corresponding Young
modulus E(θ ) is written as7

E(θ ) = C11C22 − C 2
12

C11s4 + C22c4 + (C11C22−C 2
12

C44
− 2C12

)
c2s2

, (2)

where c = cos θ , and s = sin θ . Equations (1) and (2) are
also valid for isotropy systems (namely, C and A graphane)
provided that it is set: C11 = C22 and 2C44 = C11 − C12

(Cauchy relation).
The Young modulus E(θ ) can be directly obtained from the

linear elastic constants Cij , in turn computed through energy-
vs-strain curves corresponding to suitable homogeneous in-
plane deformations. Only two in-plane deformations must
be applied to obtain all the independent elastic constants,
namely, (i) an uniaxial deformation along the zigzag (or
armchair) direction; and (ii) an hydrostatic planar deformation.
Nevertheless, for the validation of the isotropicity condition,
two more in-plane deformations must be further applied:
(iii) an axial deformation along the armchair (or zigzag)
direction; and (iv) a shear deformation. The strain tensors
corresponding to applied deformations depend on the unique
scalar strain parameter ζ ,7,15 so that the elastic energy of

TABLE I. Independent elastic constants (units of Nm−1) are
shown for different values of the hydrogen coverage. The 0% coverage
corresponds to the pristine graphene, where C11 = 357 ± 7 and C12

52 ± 11.

25% 50% 75% 100%

(C graphane)
C11 267 ± 8 227 ± 12 258 ± 7 230 ± 10
C12 51 ± 16 17 ± 27 10 ± 11 50 ± 20

(A graphane)
C11 267 ± 4 225 ± 5 194 ± 7 190 ± 9
C12 32 ± 7 19 ± 8 12 ± 10 16 ± 8

(B graphane)
C11 274 ± 3 243 ± 11 214.0 ± 6 259 ± 12
C22 254 ± 5 209 ± 8 164 ± 5 228 ± 11
C12 24 ± 6 29 ± 14 5 ± 7 −2 ± 4
C44 121 ± 2 98 ± 4 133 ± 2 94 ± 10

(W graphane)

C11 274 ± 6 243 ± 8 250 ± 6 303 ± 5
C22 258 ± 8 186 ± 11 71 ± 10 75 ± 4
C12 32 ± 10 7 ± 10 22 ± 8 14 ± 6
C44 119 ± 4 101 ± 5 65 ± 9 69 ± 2

strained structures defined in Eq. (1) can be written as
U (ζ ) = U0 + 1

2U (2)ζ 2 + O(ζ 3), where U0 is the energy of the
unstrained configuration. Since the expansion coefficient U (2)

is related to the elastic constants Cij , a straightforward fit pro-
vides the full set of linear moduli for all structures. Repeating
this procedure for several randomly distributed hydrogens in
different configurational symmetries (corresponding to C, B,
W, and A graphane), the complete set of elastic constants Cij

has been evaluated (as an average value) at various coverages.
The synopsis of the calculated elastic constants Cij for

all graphane samples here investigated is reported in Table I,
from which quite a bit of information can be extracted.
As a preliminary remark, we stress that each hydrogenated
conformer is characterized by a specific hydrogen arrangement
and by a different buckling of the carbon sublattice. Moreover,
in nonstoichiometric samples hydrogen atoms can migrate
(as indeed observed during relaxation) due to the presence
of nearby unsaturated bonds, thus affecting the resulting
symmetry of the conformer. These features add further
details to an already complex situation, introducing another
source of disorder. We, therefore, argue that the amorphous
configuration should be considered the most probable phase.
Alternatively, the above-mentiond migration of hydogen atoms
could indeed generate phase separation into C-H and pure C
domains, as discussed by Lin et al.20

By inserting the values reported in Table I into Eq. (2), we
obtain the Young modulus E(θ ) for any hydrogen coverage, as
shown in Fig. 2. As a general feature, we state that the change in
hybridization has largely reduced the property of longitudinal
resistance upon extension, as described by the greatly reduced
value of the Young modulus with respect to ideal graphene
(bold dashed line in Fig. 2). Simulations provide evidence
that this is mainly due to the fact that sp3 hybridization
creates tetrahedral angles (involving four carbons and one
hydrogen) which are easily distorted upon loading. In other
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FIG. 2. (Color online) Polar plot of the Young modulus E(θ )
[see Eq. (2)] shown as a function of the hydrogen coverage. In each
quadrant a given conformer of graphane is represented, as indicated
by labels. The Young modulus of pristine graphene is also shown by
the bold dashed line.

words, softer tetrahedral deformations are observed, rather
than bond stretching ones as in ideal graphene. Equivalently,
we can conclude that deformations upon loading are basically
accommodated by variations of the tetrahedral angles.

The full picture about the elastic response is provided in
Fig. 2, by considering the θ dependence of the calculated
Young modulus for each graphane conformer. The correspond-

ing value of ideal graphene is reported as well for comparison.
In such a polar plot, an isotropic behavior corresponds to a
circular line. This is always found for C and A graphane
(as well as for ideal graphene), as expected. On the other
hand, above 75% hydrogen coverage, the B and W conformers
show a strong θ dependence in their elastic behavior (or,
equivalently, of their Young modulus). Interesting enough,
well below this coverage they almost behave isotropically.

Deviations from the isotropic elastic behavior are quantita-
tively predicted by the calculation of the A = 4C44/(C11 +
C22 − 2C12) ratio, which should be 1 for ideally isotropic
systems. Data reported in Table I provide A = 1.0 ± 0.05
for any C and A conformers, thus confirming their elastic
isotropicity. On the other hand, nonstoichiometric B and W
samples with hydrogen coverage smaller than 75% display
a comparatively small anisotropy, corresponding to A =
1.0 ± 0.2. Finally, these same systems with higher hydrogen
coverage recover a full anisotropic behavior (A is largely
different than 1).

In conclusion, we have presented and discussed first-
principles calculations showing that the elastic behavior of
graphene is largely affected by hydrogen absorption by the
actual coverage. In particular, the Young modulus is greatly
reduced upon hydrogenation, as also previously discussed in
Ref. 17. An incomplete coverage generates a large configura-
tional disorder in the hydrogen sublattice, leading to a larger
corrugation with respect to highly symmetric C graphane.
Indeed, such a corrugation of the carbon sublattice is a key
feature affecting the overall elastic behavior.
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