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Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless Mie resonances
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Mie resonances in dielectric particles can increase the local optical density of states (LDOS) associated with
either electric or magnetic transition rates in nearby quantum emitters without ohmic losses. Their rather large
quality factors compensate their low field confinement as compared to the plasmon resonances of metallic
nanostructures for which nonradiative decay channels dominate. We show theoretically that near-infrared
quadrupolar magnetic resonances in silicon particles can preferentially promote magnetic versus electric radiative
deexcitation in trivalent erbium ions at 1.54 μm. The distance dependent interaction between magnetic (electric)
dipole emitters and induced magnetic or electric dipoles and quadrupoles is derived analytically and compared
to quasiexact full-field calculations based on Mie theory. We discuss how near-field coupling between nearby
particles can further enhance the magnetic LDOS and compensate for the weak refractive index contrasts between
dielectric particles and a typical host matrix for the lanthanide ions.
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I. INTRODUCTION

Since the pioneering work of Purcell, it has been established
that decay rates are not intrinsic properties of quantum
emitters, and that they strongly depend on the local electro-
magnetic environment.1–3 The magnetic dipole transition of
quantum emitters is in most cases five orders of magnitude
smaller than electric dipole transitions, thereby explaining
why magnetic effects are typically ignored in light-matter
interactions. Studies on the enhancement of transition rates
in solid-state systems consequently focused on coupling
emitters to photonic cavities with high quality factors or
to metallic nanoscale resonators. In the latter case, nanogap
metallic antennas supporting lossy plasmon polaritons feature
broad resonances whose low quality factors are compensated
by high field confinement,4–6 making them one of the
most widely studied plasmonic devices for enhancing the
electric dipolar decay rates of quantum emitters at room
temperature.7

Concurrently, the development of metamaterials has shown
that, by engineering metallic nanostructures, it is possible
to artificially increase the magnetic response of matter and
design left-handed metamaterials8 or map the magnetic fields
in near-field optical microscopy.9,10 Furthermore, quantum
emitters with forbidden dipole transitions like trivalent lan-
thanide ions11,12 undergo magnetic spontaneous emission. In
such systems, magnetic and electric dipole transitions are
competitive decay channels from a common excited state.
Karaveli and Zia recently demonstrated that, in the vicinity
of a gold mirror, the LDOS corresponding to electric and
magnetic transitions is maximum at different positions and
can promote magnetic emission from europium ions.13,14

Feng et al. proposed to increase magnetic emission while
quenching electric emission by using a plasmon resonance
in a metallic slab having a large induced magnetic dipole.15

Unfortunately, metallic nanostructures exhibit nonradiative
decay channels for both magnetic and electric transition
dipoles. Consequently, even when radiative electric transition
rates are low, magnetic emission can still be quenched by
nonradiative electric decay channels.

Magnetic resonances in dielectric particles are thus an
attractive alternative to promote magnetic emission in quantum
emitters without introducing nonradiative decay channels.
Compared to plasmon polaritons, they feature higher quality
factors thanks to their low radiative and ohmic dampings16

which compensate their weaker field confinement. Further-
more, their frequency widths remain larger than the ho-
mogeneous linewidths of trivalent lanthanide ions at room
temperature. In particular, the quadrupolar magnetic resonance
of a single silicon particle can be used to promote the
magnetic component of the 4I13/2 → 4I15/2 transition around
λ = 1540 nm in Er3+ ions. In typical host matrices, the relative
strength of magnetic versus electric emission for this transition
is 10–40% depending on the local crystal-field symmetry.11,12

More generally, we derive analytical expressions of the
radiative and total decay rates for electric and magnetic
transition dipoles in the vicinity of spheres exhibiting dipolar
and quadrupolar, electric and magnetic resonances.

II. ENHANCING THE MAGNETIC DIPOLAR TRANSITION
WITH QUADRUPOLAR MIE RESONANCE

We compute the decay rates for electric and magnetic
dipole emitters placed close to a dielectric sphere made
of silicon (refractive index function taken from Palik17) by
calculating the imaginary part of the dyadic Green’s function
in a generalized multiple particle Mie formalism (GMM).18

We at first consider a surrounding medium made of air
(n = 1 refractive index host medium). Since the imaginary
part of the dielectric constant of silicon for the considered
range of near-infrared frequencies is negligible, the radiative
and total decay rates are equal. The diameter of the sphere
2a = 615 nm is chosen in order to optimize the decay rates
of the magnetic dipole transition near λ = 1540 nm using a
quadrupolar magnetic Mie resonance. The results displayed
in Fig. 1 show that a single dielectric sphere significantly
enhances the normalized decay rates �̃ = �/�0 of a magnetic
dipole emitter. The maximum decay rate enhancements occur
with longitudinal couplings and can reach two orders of
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FIG. 1. (Color online) Normalized decay rates, �/�0, as a function of the wavelength, for an emitter placed at 15 nm from the surface
of a Si sphere of diameter 2a = 615 nm. The surrounding medium is air. Full black line: magnetic dipole emitter; dashed red line: electric
dipole emitter. (a) Transverse coupling, (b) longitudinal coupling and (c) isotropic average over dipole orientations. Insets: sketch of the emitter
coupled to the dielectric particle. The dipole moment is represented by a red arrow.

magnitude (e.g., at λ = 1546 nm) for a magnetic dipole emitter
whereas it is limited to 25 for an electric transition dipole. For
a longitudinal coupling, the magnetic and electric transitions
have decay rate enhancement factors that are spectrally well
separated, whereas for a transverse coupling, both electric
and magnetic emitters exhibit common maxima. The isotropic
orientation average over the dipolar moment (�̃iso = 2/3�̃|| +
1/3�̃⊥, where || and ⊥ stand for transverse and longitudinal
couplings respectively) is plotted in Fig. 1(c) with respect to
the wavelength and confirms that the magnetic deexcitation is
promoted by coupling the emitter to the magnetic quadrupole
resonance of the dielectric resonator. The magnetic decay rate
enhancement reaches 40 near λ = 1540 nm and is four times
higher than the electric decay rates.

In order to analyze the relative influence of the different Mie
resonances in the decay rate maxima, we display in Fig. 2 the
decay rates reported in Fig. 1(a) for transverse illumination
by a magnetic dipole, together with the amplitudes of the
electric and magnetic dipole and quadrupole Mie coefficients.
The four maxima of the decay rates are thus due to the
excitation of both electric and magnetic resonances (dipolar
and quadrupolar) with the highest decay rate enhancements
offered by the magnetic quadrupole resonance. Cross-coupling
between magnetic dipolar emitters and electric Mie resonances

(and vice versa) only occurs in transverse coupling, thus
explaining why in Fig. 1(a) the electric and magnetic decay
rates both present a maximum at the same wavelength (λ =
1544 nm). For a longitudinal coupling [Fig. 1(b)], the decay
rates corresponding to electric or magnetic transitions are only

FIG. 2. (Color online) (Left scale, thick blue line) Decay rates for
a magnetic dipole transversely coupled to a 2a = 615 nm diameter
sphere as a function of the wavelength. (Right scale) Modulus of the
Mie coefficients of the sphere: (full circles) magnetic dipole, b1; (full
triangles) electric dipole, a1; (open circles) magnetic quadrupole, b2;
(open triangles) electric quadrupole, a2.
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enhanced when coupled to multipolar Mie resonances of the
same electromagnetic nature.

Multipolar resonances have not been considered for the
enhancement of radiative decay rates using metallic nanoan-
tennas on account of their high losses and inability to efficiently
radiate in the far-field. The situation is different for dielectrics:
negligible ohmic losses mean that the electromagnetic energy
emitted by the dipolar source can be stored in multipolar
Mie resonances with higher quality factors before being
fully radiated in the far-field. The drawback is a selective
spectral window [e.g., approx. 30 nm full width half maximum
(FWHM) for the magnetic quadrupole resonance in the
longitudinal case here] which would be inadequate for the
homogeneously broadened fluorescence spectra of organic
dyes at room temperature, but matches the narrow emission
bands of lanthanide ions such as trivalent erbium at 1540 nm.

III. ANALYTICAL EXPRESSIONS OF THE DIPOLAR AND
QUADRUPOLAR DECAY RATES

To fully describe the cross-coupling between electric and
magnetic responses in the calculated decay rates, we now
derive analytical expressions for the total and radiative decay
rates in transverse and longitudinal coupling for the first two
electric and magnetic Mie resonances. For this purpose, we
use matricial expressions of the radiative and total decay rates
of an emitter placed in the vicinity of an ensemble of spheres.
When considering only one particle, they take the form:

�̃tot = 1 + 6πRe[f †H (em,s)tH (s,em)f ], (1)

�̃rad = 1 + 6π [f †H (s,em)†t†tH (s,em)f ]

+ 12πRe(f †J (em,s)tH (s,em)f ), (2)

where f is a column matrix containing the excitation co-
efficients, H is an irregular translation matrix between the
emitter (em) and the sphere (s), J is a regular translation
matrix, and t is a diagonal matrix composed of the Mie
coefficients of the sphere.18 We consider a single particle
sphere placed in the +z direction with respect to a dipole
emitter oriented either transversally (“orbital” number m = 1,
dipole moment oriented on the x axis) or longitudinally (m =
0, dipole moment oriented on the z axis). With a quadrupolar
assumption, they can be cast:

f =

⎡
⎢⎣

e1

0
h1

0

⎤
⎥⎦, H (em,s) =

[
A(kd) B(kd)
B(kd) A(kd)

]
,

J (em,s) =
[

C(kd) D(kd)
D(kd) C(kd)

]
, t = Diag

(
ce

1,c
e
2,c

m
1 ,cm

2

)
.

The superscripts (s,em) and (em,s) respectively refer to a trans-
lation from the emitter to the sphere, and from the sphere to the
emitter. The coefficients h1 (null for an electric emitter) and
e1 (null for a magnetic emitter) are the incident magnetic and
electric dipole coefficients, normalized to 1/

√
6π . The Mie

coefficients correspond to the polarizabilities via the relation
α

e,m
j = 6π

ik3 c
e,m
j .18 The two coupling geometries will involve

An,m,ν,μ and Bn,m,ν,μ matrix blocks, where [A|B]n,m,ν,μ is the
coupling from the multipole order n with orbital number m, to

the multipole order ν with orbital number μ:

AL(kd) =
[

A1,0,1,0 A1,0,2,0

A1,0,2,0 A2,0,2,0

]
,

AT(kd) =
[

A1,1,1,1 A1,1,2,1

A1,1,2,1 A2,1,2,1

]
,

BL(kd) = 0,

BT(kd) =
[

B1,1,1,1 B1,1,2,1

B1,1,2,1 B2,1,2,1

]
.

The C and D blocks feature the same symmetries as the A

and B blocks respectively. The L and T superscripts refer
respectively to longitudinal or transverse couplings. When
computing H (s,em), we obtain the simple relation:

H (s,em) =
[

A −B

−B A

]
. (3)

The right-hand side of Eqs. (1) and (2) can thus be cast:

�̃
L,u
tot = 1 + Re

[
cu

1 (A1,0,1,0)2 + cu
2 (A1,0,2,0)2

]
, (4)

�̃
T,u
tot = 1 + Re

[
cu

1 (A1,1,1,1)2 + cu
2 (A1,1,2,1)2

− cv
1(B1,1,1,1)2 − cv

2(B1,1,2,1)2
]
, (5)

�̃
L,u
rad = 1 + ∣∣cu

1A1,0,1,0

∣∣2 + ∣∣cu
2A1,0,2,0

∣∣2

+ 2Re
(
cu

1A1,0,1,0C1,0,1,0 + cu
2A1,0,2,0C1,0,2,0

)
, (6)

�̃
T,u
rad = 1 + ∣∣cu

1A1,1,1,1

∣∣2 + ∣∣cu
2A1,1,2,1

∣∣2

+ ∣∣cv
1B1,1,1,1

∣∣2 + ∣∣cv
2B1,1,2,1

∣∣2

+ 2Re
(
cu

1A1,1,1,1C1,1,1,1 + cu
2A1,1,2,1C1,1,2,1

− cv
1B1,1,1,1D1,1,1,1 − cv

2B1,1,2,1D1,1,2,1
)
, (7)

where u and v refer to electric (u = e, v = m) or magnetic
(u = m, v = e) emitters. The A and B coefficients can be
calculated from Ref. 19 with the angles θ = φ = 0:

A1,1,1,1 = 1

2

(
ᾱs

1,1,1,1 + ᾱs
1,0,1,0

)

= 1

2

(
ᾱs

0,0,0,0 + b−
2,0

b+
0,0

ᾱs
2,0,0,0 + ᾱs

0,0,0,0 + a−
2,0

a+
0,0

ᾱs
2,0,0,0

)

= 1

2

(−1√
5
ᾱs

2,0,0,0 + 2ᾱs
0,0,0,0

)

= − 1

2
√

5

√
4πY2,0(0,0)h2(kd) +

√
4πY0,0(0,0)h0(kd)

= −P 0
2 (1)

2
h2(kd) + P 0

0 (1)h0(kd)

= 1

2
[2h0(kd) − h2(kd)]

A1,1,1,1 = 3i

2

eikd

(kd)3
[1 − ikd − (kd)2].

Similarly, the other coefficients can be cast:

B1,1,1,1 = 3i

2

eikd

(kd)2
(kd + i), A1,0,1,0 = −3i

eikd

(kd)3
(1 − ikd),

A1,0,2,0 = 3√
5

eikd

(kd)4
[5i(kd)2 − 15kd − 15i],
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A1,1,2,1 =
√

15

2

eikd

(kd)4
[−(kd)3 − 3i(kd)2 + 6kd + 6i],

B1,1,2,1 =
√

15

2

eikd

(kd)3
[−(kd)2 − 3ikd + 3].

The C and D coefficients are calculated with the same
expressions except that the spherical Hankel functions are
replaced by the spherical Bessel functions jn:

C1,1,1,1 = Re(A1,1,1,1), C1,0,1,0 = Re(A1,0,1,0),

C1,0,2,0 = Re(A1,0,2,0), D1,1,1,1 = iIm(B1,1,1,1),

D1,1,2,1 = iIm(B1,1,2,1).

In the case of lossless materials, expressions of �̃rad and �̃tot

give the same results due to energy conservation, and we will
only refer in the following to the formulations of �̃tot.

The Re(cu
i A

2
1,x,i,x) term corresponds to the decay rate

enhancement produced by the magnetic (respectively electric)
dipolar (i = 1) or quadrupolar (i = 2) Mie resonances of the
sphere for a magnetic (respectively electric) dipolar emitter.
This term appears in both longitudinal and transverse coupling
cases. On the other hand, the Re(cv

i B
2
1,1,i,1) term describes the

level of cross-coupling between an electric dipole emitter and
a magnetic ith order multipole resonance (and vice versa), and
only arises for transverse coupling. Let us emphasize that this
coupling only occurs for an emitter component perpendicular
to the emitter-sphere axis, since the magnetic field from an
electric dipole (respectively the electric field from a magnetic
dipole) is null along the dipole axis. The analytical expressions
of the four contributions to the normalized total decay rate in
transverse coupling can then be derived. The coupling between
an emitting dipole and a dipolar resonance of the same type
can be cast as

1 + Re
(
cu

1A
2
1,1,1,1

) = 1 + 3k3

8π
Im

[
αu

1e2ikd

(kd)6
(1 − 2ikd

− 3k2d2 + 2ik3d3 + k4d4)

]
, (8)

with u = m for a magnetic dipole or u = e for an electric
dipole. In the latter case, we recognize the expression derived
by Carminati et al. for an electric dipolar approximation.6 The
coupling between the emitter and the quadrupolar resonance
of the same type, on the other hand, modifies the total decay
rate via the term

1 + Re
(
cu

1A
2
1,1,2,1

) = 1 − 5k3

8π
Im

[
αu

2e2ikd

(kd)8
(−k3d3

− 3ik2d2 + 6kd + 6i)2

]
. (9)

The cross-coupling terms for both the induced dipole and
quadrupole can be cast:

1−Re
(
cv

1B
2
1,1,1,1

) = 1 − 3k3

8π
Im

[
αv

1e
2ikd

(kd)4
(kd+i)2

]
, (10)

1−Re
(
cv

2B
2
1,1,2,1

) = 1+5k3

8π
Im

[
αv

2e
2ikd

(kd)6
(3−3ikd−k2d2)2

]
,

(11)

FIG. 3. (Color online) (Black line) Normalized radiative decay
rate of an electric dipole transversely coupled to a Si sphere, (crosses)
sum of the right-hand sides of Eqs. (8)–(11). Contributions from the
different induced multipoles: (full black circles) magnetic dipole,
(full green triangles) electric dipole, (open red circles) magnetic
quadrupole, (open blue triangles) electric quadrupole. A value below
1 means that the corresponding multipole lowers the decay rate.

respectively. For a longitudinal coupling, the cross-coupling
terms are null and the total decay rates are linked to the
coupling between an emitter and a dipolar and quadrupolar
resonance of the same type which can be expressed respec-
tively as:

1 + Re
(
cu

1A
2
1,0,1,0

) = 1 + 3k3

2π
Im

[
αu

1 e2ikd

(kd)6
(1 − ikd)2

]
(12)

1 + Re
(
cu

1A
2
1,0,2,0

) = 1 − 3k3

10π
Im

[
αu

2e2ikd

(kd)8
(−25[kd]2

−15kd − 15i)2

]
. (13)

We plot in Fig. 3 the right-hand sides of Eqs. (8)–(11) obtained
when an electric dipole is transversely coupled with a dielectric
sphere (u = e and v = m). Let us remark that the sum of the
right-hand sides of the four expressions is then equal to �̃

T,e
rad +

3. We see in Fig. 3 that this sum minus 3 (crosses) corresponds

FIG. 4. (Color online) Normalized decay rates with respect to
the distance between the emitter and the surface of the particle,
wavelength λ = 1546 nm. Same parameters as in Fig. 1. (Black cir-
cles) magnetic dipoles, (red triangles) electric dipoles, full symbols:
transverse coupling, open symbols: longitudinal coupling. Isotropic
averages : (black squares) magnetic dipole, (red diamonds) electric
dipole.
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(a)

(b)

FIG. 5. (Color online) Normalized decay rates for a dimer of Si
spheres, diameter 760 nm, nanogap length 30 nm, embedded in a
dielectric background of refractive index n = 1.45. (a) Longitudinal
coupling: (full black line) magnetic dipole, (dashed red line) electric
dipole. Transverse coupling: (full black squares) magnetic dipole,
(open red circles) electric dipole. Inset: sketch of the dimer con-
figuration. The red and green arrows indicate the dipole orientation
in longitudinal and transverse coupling, respectively. (b) Isotropic
averages: (full black line) magnetic dipole, (dashed red line) electric
dipole.

precisely to the decay rates calculated with the full GMM
method (full black line). We remark that these expressions are
valid either for a magnetic or an electric dipole emitter and are
symmetric with respect to an interchange between αu and αv ,
which is equivalent to interchanging ε and μ in accordance
with the conclusion of Ref. 20.

For the sake of completeness, we plot in Fig. 4 the calculated
decay rate enhancements at λ0 = 1546 nm when varying the
distance between the dipolar emitter and the surface of the
sphere for transverse and longitudinal couplings as well as
for isotropically averaged dipole orientations. It is easy to
observe that the maximum enhancement is always achieved
for the smallest distance, as was expected from the above
equations. At a very short distance (2 nm), the normalized
decay rate of a magnetic emitter is enhanced by a factor 116 in
longitudinal coupling and by a factor 52 when considering
an isotropic average over all possible orientations, while
the latter is limited to 12 for an electric dipolar emitter.
When increasing the distance up to 50 nm, the decay rate
enhancements decrease quasiexponentially (as illustrated by
the straight lines in logarithmic scale), down to isotropic

averages of 19 and 6.4 for the magnetic and electric dipole
respectively.

IV. DIMER OF DIELECTRIC PARTICLES

Magnetic Mie resonances require a high index contrast that
is not always compatible with experimental requirements. For
lanthanide ions embedded in a solid environment like silica, the
decrease of the refractive index contrast will spoil the magnetic
response of the dielectric antenna. For such low refractive
index contrasts, magnetic emissions can still be promoted for
most dipole orientations by using a dielectric nanogap antenna,
i.e., a dimer of spheres made of silicon, and by considering
higher order multipolar resonances with higher quality factors.
Figure 5(a) shows the radiative decay rate enhancements
calculated using the GMM when a magnetic dipolar emitter is
located in the center of a 30 nm nanogap separating two 760 nm
diameter silicon spheres placed in a silica host (n = 1.45). In
this configuration, the longitudinal magnetic dipole is resonant
with the hexapoles of the particles (N = 3 in the GMM
formalism) at λ = 1.538 μm. The normalized decay rate
reaches a peak of 64.5 with a 24 nm linewidth (FWHM) for the
magnetic emitter, while the electric emitter decay rate is en-
hanced by 14.6 (both values are taken in longitudinal coupling
at λ = 1.538 μm). For a transverse coupling configuration,
both electric and magnetic decay rates are weakly enhanced
(4.19 for an electric dipole emitter and 1.91 for a magnetic
dipole emitter at λ = 1.538 μm). The isotropic average over
all possible dipole orientations displayed in Fig. 5(b) are
22.7 and 7.18 at λ = 1.538 for the magnetic and electric
dipolar emitters respectively, which means that the magnetic
deexcitation is promoted by a factor higher than 3 at this
wavelength.

V. CONCLUSION

In conclusion, dielectric materials that support magnetic
Mie resonances can efficiently tailor the magnetic local density
of states and promote magnetic radiative decay in trivalent
lanthanide ions. The conjunction of high quality factors and
negligible ohmic losses allows the enhancement of magnetic
emission while minimizing the competitive electric decay
channels (both radiative and nonradiative). Using only four
Mie coefficients, it is possible to analytically estimate the total
and radiative decay rates of both electric and magnetic transi-
tion dipoles. The spectral widths of high-order Mie resonances
in silicon spheres are well adapted to the narrow emission line
of trivalent erbium ions at 1.54 μm, and a low refractive index
contrast between the dielectric particle and the surrounding
medium can be offset by using dimers of spheres with
nanometer gaps. The lossless increase of the magnetic LDOS
is thus highly efficient to tailor the symmetry of light emission
and design microcavities for quantum electrodynamics and
lasing.
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L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and
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