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Inelastic electron transport through mesoscopic systems: Heating versus cooling and sequential
tunneling versus cotunneling processes

Feng Jiang,1 Jinshuang Jin,2 Shikuan Wang,1 and YiJing Yan1,3,*

1Department of Chemistry, Hong Kong University of Science and Technology, Kowloon, Hong Kong
2Department of Physics, Hangzhou Normal University, Hangzhou 310036, China

3Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China,
Hefei, Anhui 230026, China

(Received 18 March 2012; published 14 June 2012)

Inelastic electron transport in quantum dot systems is studied via the hierarchical equations of motion combining
a small polaron transformation approach, with differential conductance dI/dV ∼ V characteristics being
evaluated accurately at the cotunneling level. We observe (i) the peak feature of phonon emission Franck-Condon
sidebands to the zero-phonon peaks of both polaron and bipolaron in sequential electron transport; (ii) phonon
absorption peaks occurring if the phonon temperature is sufficiently higher than that of the carrier electron;
and (iii) the step feature of Raman sidebands in the cotunneling transport regime. We also evaluate the polaron
transport response to a continuous-wave irradiation that induces bias-voltage oscillation. We observe, consistent
with experimental results, that (iv) the photon-phonon-assisted tunneling enhances phonon absorptions while
suppressing emissions. As the phonon absorption (emission) is associated with the process of absorbing (emitting)
energy from (to) the phonon environment, an alternating or tailored field applied to contacts could be a practical
means of cooling the mesoscopic quantum-transport device.
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I. INTRODUCTION

The interplay between inelasticity and coherence in quan-
tum transport is closely related to the performance of molec-
ular electronics.1–9 Inelasticity arises intrinsically from the
electron-phonon (e-ph) coupling. It is closely related to local
heating of the junction, although current-induced cooling
could also occur under certain conditions.10,11 The problem
of heating accompanying the electron transport can become
quite serious along the miniaturization of devices. It may
affect the stability of the device, ultimately resulting in device
malfunctioning. At low temperatures, typically below 10 K,
the vibrational motion of molecules or lattice environments
is almost frozen. However, when electronic current passes
through molecules, the molecular lattice motion can be excited
by transport electrons, provided that they carry sufficient
energy. The probability for such inelastic scattering events
depends on the energy of transport electrons controlled by
the applied bias. Furthermore, if the tunneling electron resides
for sufficiently long time on the molecule, a vibronic state (a
localized polaron) may be formed, where the charge influences
the nuclear geometry of the molecule. The probability of
forming this quasiparticle state depends also on the detailed
balance between the transport electronic energy, its dissipation,
and vibrational relaxation.12 In other words, inelasticity or e-ph
coupling in quantum transport can lead to rich phenomena
such as conformational changes, induced chemical reactions,
and electromigration.13,14 It manifests nonlinearities in the
current-voltage curves, which reflect the underlying molecular
structure. The method of detecting vibronic signatures in bias
spectroscopy is commonly referred to as inelastic tunneling
spectroscopy.15,16

There are many efforts on understanding the nature of
phonon-assisted tunneling.17–24 The theoretical studies of in-
elastic quantum transport cover both single-particle and many-

particle approaches. The former includes Landauer-Büttiker
scattering theory25 and nonequilibrium Green’s function,26

which can easily deal with large systems, but it is difficult
to exploit the essential physics beyond the mean-field treat-
ment in strong Coulomb interaction regime. Many-particle
approaches include master equation27–32 and the real-time
diagrammatic technique.33–36 The master equation approach
is perturbative in nature, treating the system-environment
coupling at a second-order level. In other words, it treats
only sequential tunneling and is not enough in the case of
low temperature and strong system-environment coupling. The
real-time diagrammatic technique involves the summation of
many Feynman diagrams. It has the advantage of analyzing the
underlying physics, but is inconvenient numerically, especially
in evaluating dynamics and general response functions.

One of the emerging many-particle approaches to quantum
transport is the hierarchical equations of motion (HEOM)
formalism.37–41 This approach was constructed originally as
a nonperturbative quantum dissipation theory.42–50 It has been
extended recently to coherent quantum-transport problems in
which many-fermion systems are in contact with electron
reservoir (electrode) environments under arbitrary applied
voltage that can be time dependent.37 The resulting HEOM-
based quantum-transport formalism is related naturally to
the sequential, cotunneling, and higher-order cotunneling
processes.37,51 As a mathematical equivalence to the Feynman-
Vernon influence functional path integral theory,52,53 HEOM
has the advantage in both numerical efficiency and applica-
tions to various systems.38–50 Moreover, the initial system-
environment coupling that is not contained in the original path
integral formalism can now be accounted for via proper initial
conditions to HEOM.

We will show in this paper that inelastic quantum transport
can be readily formulated and studied with HEOM. Consider
an interacting electronic system embedded in a phonon bath
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and sandwiched by two electrodes that serve the source and the
drain reservoirs for transport. This situation is covered in the
framework of quantum dissipation theory, so it is promising to
have the HEOM-based studies of inelastic quantum transport.
Nevertheless, the efficiency of HEOM is closely related to
the physical issue about system and environment partition
of full Hamiltonians. Electron tunneling generally involves
the formation of localized polarons, where the tunneling
charge is inseparable from the distortion of its accompanying
nuclear lattice environment. In this work, we exploit the
small polaron transform on the full Hamiltonian for inelastic
quantum transport. In Appendix A we present the details of this
transformation and the related quantum statistical description
of the interacting environments, while in Appendix B we
highlight the construction of HEOM for inelastic quantum
transport in general. In Sec. II we illustrate the resulting
HEOM formalism with the Anderson impurity model of the
quantum-transport system, embedded in the Einstein lattice
phonon bath. Numerical demonstrations in Sec. III include not
only the distinct phonon-assisted features in different tunneling
regimes, but also the effect of alternating field versus that
of phonon bath temperature on inelastic quantum transport.
Our model calculation results would suggest the use of a
proper alternating field, applied on either a bias-voltage or
the quantum-dot system, to control the overheating problem
in mesoscopic quantum-transport devices. The underlying
mechanism seeks to modulate the relative phase of trans-
ferring electron wave function. We conclude this work in
Sec. IV.

II. THE HEOM APPROACH TO INELASTIC
QUANTUM TRANSPORT

A. Model

It is well established that the transient coherent electron
transport under arbitrary time-dependent bias voltage can
be conveniently and accurately studied with the HEOM
formalism.37–41 In the following, we extend this formalism37

to inelastic quantum-transport systems via the polaron picture.
The small polaron transform and the related statistical me-
chanics description of the correlated electron reservoirs and
the phonon bath influence on polaron transport systems are
detailed in Appendix A.

For illustration we adopt the Anderson impurity quantum-
dot (QD) electronic system, which is coupled with a phonon
bath and also with the source and drain electron reservoirs. The
reduced polaron system Hamiltonian reads [cf. Eqs. (A13) and
(A14)]

H =
∑

s

(ε0s − λ)n̂s + (U0 − 2λ)n̂↑n̂↓. (1)

Here n̂s = â
†
s âs ≡ â+

s â−
s is the particle number operator in

the QD’s electronic level of energy εs and spin s =↑ or ↓,
with the on-dot Coulomb repulsion energy U and the phonon-
bath-induced reorganization energy λ ≡ λph of Eq. (A26) in
Appendix A. The total composite Hamiltonian assumes
the form Htotal(t) = H (t) + H ′(t), with H ′(t) the polaron-
transformed system-environment coupling in the stochastic
reservoirs-and-bath environment interaction picture being

given by Eq. (A15):

H ′(t) =
∑
αs

[
â+

s F̂−
αs(t)e

iφph(t) + e−iφph(t)F̂+
αs(t)â

−
s

]
. (2)

The influence of environment on the reduced polaron system
is characterized by the environment correlation functions
C̃±

αs(t,τ ) = 〈F̂±
αs(t)F̂

∓
αs(τ )〉〈eiφph(t)e−iφph(τ )〉, i.e., Eq. (A16)

with Eq. (A18):

C̃σ
αs(t,τ ) = exp

[
σ i

∫ t

τ

dt ′�α(t ′)
]
Cσ ;eq

αs (t − τ )C̃ph(t − τ ).

(3)

It is related to electron transfer to/from (σ = +/−), the system
state s through the α lead. The first component in Eq. (3) arises
from the external applied chemical potential or bias voltage
V (t) = �L(t) − �R(t) that can be time dependent. The last
two components are the steady-state contributions from the
specified α reservoir and the phonon bath, respectively, with
their own thermodynamic equilibrium states.

Adopted further is the Einstein lattice model to describe the
phonon bath (see Appendix A 4). It assumes all phonon bath
modes are of same frequency 	. The resulting phonon bath
contribution to Eq. (3) is given by Eq. (A29), i.e.,

C̃ph(t) =
∞∑

m=−∞
Ame−im	t ≈

Mmax∑
m=−Mmin

Ame−im	t , (4)

with Am given by Eq. (A30), satisfying Am � 0 and
∑

m Am =
1. For numerical purposes, we confine m ∈ [−Mmin,Mmax].
The Einstein lattice model is rather reasonable at low temper-
atures. The Huang-Rhys factor S ≡ λ/	 serves now as the
dimensionless measure of electron-phonon coupling strength.

In Eq. (3), C
σ ;eq
αs (t − τ ) is the equilibrium reservoir

correlation function. It is related to the electrode spectral
density function Jαs(ω) via the fermionic grand ensemble’s
fluctuation-dissipation theorem of Eq. (A23), i.e.,

Cσ ;eq
αs (t) = 1

π

∫ ∞

−∞
dω

eσiωtJαs(ω)

1 − eσβα (ω−μ
eq
α )

, (5)

where βα = 1/(kBTα) is the inverse temperature of the α lead.
The equilibrium chemical potential can be set to μ

eq
α = 0 for

all leads in the absence of external voltage applied on them. In
this work, the temperatures at two reservoirs are set to be the
same, TL = TR = Tres, while the phonon bath temperature Tph

can be either larger or smaller than Tres. Also set the unit with
the Planck constant, Boltzmann constant, and electron charge
as h̄ = kB = e = 1.

For simplicity, we chose the Drude model for the electrode
reservoir spectral density:

Jαs(ω) = 
W 2/2

ω2 + W 2
. (6)

Here the system-electrode coupling strength 
 = 
αs and the
electrode bandwidth W = Wαs are set to be symmetric with
respect to the leads α = L and R and the spins s =↑ and ↓.
To construct the HEOM formalism in the coming section,
we expand the correlation function of Eq. (5) also in an
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exponential series. For Eq. (6) we have

Cσ ;eq
αs (t) ≈

N∑
k=0

ησ
k e−γkt , (7)

with γ0 = W from the Drude pole of Jαs(ω) and γk>0 from the
poles of Fermi function involved in Eq. (5). In this work, we
exploit the [N−1/N] Padé spectrum decomposition of Fermi
function.54,55

B. The HEOM formalism

The dynamics quantities in the HEOM formalism of
quantum transport are a set of well-defined auxiliary density
operators (ADOs).37 The reduced density operator is set to be
the zeroth-tier ADO of the hierarchy, i.e., ρ(t) ≡ trenvρtot(t) ≡
ρ(0)(t), and it couples to a set of first-tier ADOs, {ρ(1)

j }. The
index j specifies the distinct memory-frequency components
of environment correlation functions as decomposed.37 That
is, j ≡ {mσαsk} for the decomposition of Eq. (3) with Eqs. (4)
and (7). Denote for later use m̄ = −m, while σ̄ is the opposite
sign of σ = + or −.

With the detailed derivations presented in Appendix B, we
summarize the final HEOM formalism as follows. We denote
an nth-tier ADO as37,41

ρ
(n)
j ≡ ρ

(n)
j1...jn

; ∀ jr ∈ {j}, j ≡ {mσαsk}. (8)

Its associated (n ± 1)th-tier ADOs are {ρ(n+1)
jj ≡ ρ

(n+1)
j1...jnj

} and

{ρ(n−1)
jr ≡ ρ

(n−1)
j1...jr−1jr+1...jn

}, respectively. We have

ρ̇
(n)
j = −[

iL + γ
(n)
j (t)

]
ρ

(n)
j − i

n∑
r=1

(−)n−r Cjr
ρ

(n−1)
jr

− i

′∑
j ; σ,s∈j

Aσ̄
s ρ

(n+1)
jj , (9)

with γ (0) = ρ(−1) = 0 for the zero-tier ADO or the reduced
density operator ρ = ρ(0). The last sum runs only over
those j �= jr ; r = 1, . . .,n. In Eq. (9), γ

(n)
j (t) collects all the

exponents involved,

γ
(n)
j (t) =

n∑
r=1

[γk + im	 − σ i�α(t)]m,σ,α,s,k∈jr
, (10)

where Aσ
s and Cj are the fermionic superoperators, defined via

their actions on a fermionic/bosonic operator Ô as

Aσ
s Ô = [

âσ
s ,Ô

]
∓ , (11)

Cj Ô = (
Amησ

k

)
âσ

s Ô ± (
Am̄ησ̄

k

)∗
Ôâσ

νs . (12)

In particular, ρ(n−1)
jr and ρ

(n+1)
jj in Eq. (9) are both fermionic or

bosonic when n is even or odd, respectively.
We conclude the above HEOM formalism with the follow-

ing remarks:37

(i) Fermionic ADO labeling: All involved indices in ρ
(n)
j1...jn

should be distinct, and each permutation of them leads to a
sign change such that ρj2j1 = −ρj1j2 . This also accounts for
the sign (−)n−r inside the second sum in Eq. (9). For numerical
code, an ordered set of indices is to be adopted, together with
considering the Hermite conjugated relation below.

(ii) Hermite conjugation (denoting j̄ ≡ {m̄σ̄αsk}):[
ρ

(n)
j1...jn

]† = ρ
(n)
j̄n...j̄1

= (−)[ n
2 ]ρ

(n)
j̄1...j̄n

, (13)

with [ n
2 ] ≡ Int(n/2) being the number of index-swapping

operations involved.
(iii) Steady-state solutions versus initial values to HEOM:

For the cases of time-independent voltage V = �R − �L

applied on the leads, we search for the nonequilibrium steady-
state ADOs with Eq. (9) by setting ρ̇(n) = 0 together with
the constraint of trρ(0) = 1. On the other hand, if the applied
bias voltage is also time dependent, on the top of the constant
potentials �α(t) = �α + δ�(t), the steady-state solutions to
the HEOM with the constant �α will serve as the initial
conditions for the subsequent transient properties of ADOs,
in response further to the time-dependent δ�(t).

(iv) The spin-resolved terminal current to central QD
system is related to the first-tier ADOs via ρσ

αs ≡∑
m,k ρ

(1)
j |j={mσαsk} as

Iαs(t) = −2e Im
{
tr
[
âs ρ+

αs(t)
]}

. (14)

Here e denotes the electron charge and the trace is performed
for all system degrees of freedom. Note the zero-phonon (m =
0) contribution would not be purely elastic and it alone does
not satisfy the steady-state current balance relation of I st

L s(m =
0) = −I st

R s(m = 0).
(v) Our recent analysis (to be published) relates further

the nth-tier ADOs to the nth moment of transport current.
The HEOM construction contains rich information beyond
the averaged current and electron occupation number.

(vi) As a consequence of the fermionic ADO labeling as
described in (i) above, the highest possible level Lmax of tiers
amounts to the number K of first-tier ADOs, {ρ(1)

j }. As j ≡
{mσαsk}, with m ∈ [−Mmin,Mmax] [Eq. (4)] and k ∈ [0,N ]
[Eq. (7)], while each σ , α, and s has two choices, we have
K = 23(Mmax + Mmin + 1)(N + 1). Apparently, the value of
K depends on the accuracy requirement set for the exponential
expansions of environment correlation functions in Eqs. (4)
and (7).

(vii) In practice, HEOM has to be evaluated with a con-
verged or truncated tier level L. The total number of ADOs is
then

∑L
n=0

K!
n!(K−n)! � 2K , where the equal sign holds only with

the aforementioned highest possible Lmax = K . Remarkably,
HEOM usually converges quantitatively at a low truncation
tier level (L = 2 ∼ 3) for weak to moderately strong system-
reservoir coupling strength. The reason is the nonperturbative
nature of the HEOM formalism. One important feature of
the formalism is that for effective noninteracting systems
(U = 2λ) that are characterized completely by single-particle
properties, the resultant HEOM terminates automatically
at L = 2 without approximation.37 This feature highlights
the fact that the underlying hierarchy construction resolves
nonperturbatively the combined effects of e-e interaction,
system-reservoir couplings, and non-Markovian memory of
reservoir.

(viii) HEOM combined with the small polaron transforma-
tion pertains to all the above features, especially those high-
lighted in (vii). The nonperturbative nature now also supports
an accurate and efficient treatment of strong e-ph coupling at
the same level of tier truncation. The reason behind this is as

245427-3



JIANG, JIN, WANG, AND YAN PHYSICAL REVIEW B 85, 245427 (2012)

follows. The small polaron transformation absorbs the e-ph
coupling of arbitrary strength into effective system-reservoir
coupling as Eq. (3), with the phonon factor C̃ph(t) [Eq. (A21)
for general cases] being C̃ph(t = 0) = 1. In other words, the
e-ph coupling does not alter the overall strength of system-
reservoir coupling but redistributes tunneling electrons with
renormalized rates into various inelastic channels associated
with phonon emission (m > 0) and/or absorption (m < 0)
processes, along with the modified zero-phonon (m = 0)
contribution. This is a correct feature of the present HEOM
approach, in which the effects of strong e-ph coupling on
inelastic quantum transport are treated in a renormalized and
also nonperturbative manner via the hierarchy construction as
discussed in (vii).

III. NUMERICAL DEMONSTRATIONS

A. General remarks

We will demonstrate the inelastic transport characteristics
in terms of differential conductance dI/dV ∼ V for some
representative Anderson impurity QD systems of Sec. II A.
The reduced polaron system, Eq. (1) with λ = S	, is specified
with the renormalized single-particle energy εs = ε0s − λ,
where s =↑ , ↓ and the effective two-particle coupling U =
U0 − 2λ which can be either repulsive or attractive. The elec-
tronic system space for numerical evaluation consists of four
Fock states {|0〉,|↑〉,|↓〉,|↑↓〉} with the energies {0,ε↑,ε↓,ε↑↓},
where ε↑↓ = ε↑ + ε↓ + U . The Fermi energy is set to be
Ef = 0.

The inelastic transport features of this system can be
largely understood based on the polaron energetics of the
QD system. The four electronic Fock states are actually four
vibronic manifolds, the unoccupied |0,n0〉, the single-occupied
|↑ ,ns〉 and |↓ ,n′

s〉, and the double-occupied |↑↓ ,nd〉, with
n0,ns,n

′
s ,nd � 0 for the phonon states. For a sequential process

that adds (removes) one electron to (from) the system, tunnel-
ing resonances occur at �L(−�R) = εs + m	 and εs + U +
m	, with m = δns or δn′

s and m = δnd , respectively, where
m � 0 describes the associated m-phonon emission. Interest-
ingly, phonon absorption (m < 0) associated with sequential
tunneling would also occur when the phonon bath temperature
Tph is higher than the electron reservoir temperature Tres. In
other words, the cold carrier electron transiting from one
electrode to another through the QD system can receive
energy from the hot phonon thermal bath to assist transport.
Moreover, we also anticipate cotunneling resonances to occur
at eV ≡ �L − �R = εs,m+m′ − εs,m = m′	, i.e., the Stokes
Raman transition (m′ > 0) between two vibronic manifolds,
for a positive bias voltage. We will illustrate the above inelastic
features in Sec. III B with the HEOM evaluations of differential
conductance in the steady-state configuration. In Sec. III C we
evaluate the photon-phonon-assisted tunneling characteristics
for the cases driven by a terahertz radiation.

We focus on the regime of 
 < λ, in which the system-
electrode coupling is relatively weak and the tunneling charge
is inseparable from the distortion of nuclear environment.
This is often the case with molecule-electron conjunctions.
The tunneling charge-induced phonon emission will result in
a series of Franck-Condon phonon sidebands in the dI/dV

characteristics. To resolve this feature the temperature of
the reservoir (Tres = TL = TR) needs to be low compared
with the phonon energy, i.e., Tres < 	. Besides the phonon
emission, the tunneling charge may also stimulate phonon
absorption when the phonon bath temperature Tph is higher
than Tres. In relation to the zero-phonon peak in dI/dV , the
emission and absorption sidebands appear at the high- and
low-bias-voltage sides, respectively. The HEOM formalism in
Sec. II B is carried out at the tier-2 truncation level. It includes
the cotunneling processes and is also numerically accurate for
the coupling reservoir parameters considered in the following
demonstrations.37,41 We further have the HEOM formalism
explicitly with |m| � 2. Therefore, the sequential tunneling
treats only up to two phonon effects, but the cotunneling level
treatment can support up to four phonon processes. The above
arguments will serve as a basis for the later analysis of phonon
bands in the evaluated dI/dV curves.

In this work, we keep the temperature above the Kondo tem-
perature; thus the possible phonon effect on Kondo resonance
is not evaluated. Recall the two advanced features highlighted
in (vii) and (viii) to the end of Sec. II B. The former or (vii)
concerns the nonperturbative nature of the HEOM treatment
of system-electrode coupling (and also e-e coupling). The
latter or (viii) is about the effect of e-ph coupling, which upon
small polaron transformation leads to renormalized tunneling
rates to various inelastic channels, without altering the overall
effective system-electrode coupling strength. The above two
features validate the present HEOM approach and are an
accurate evaluation of the strong e-ph coupling effect. For
demonstrations, we set the Huang-Rhys parameter S = 1 and
the phonon energy 	 = 1meV (or internal unit). We chose

 = 0.05 meV, with W = 30 or 15 meV, to represent the
inelastic transport in the wide-band (W � 
) regime. The
bias is applied symmetrically on electrodes, i.e., �L = −�R =
V/2. The effective single-particle energy assumes degenerate
ε↑ = ε↓ = εs , whose value can be easily tuned in experiments
by gate voltage. We chose some representing values of εs

and temperatures, Tres and Tph, to demonstrate the inelastic
transport characteristics in different regimes.

B. Phonon-assisted tunneling

1. Sequential tunneling associated with phonon emissions

Consider the resonant transport where �L > εs > �R and
sequential tunneling is dominant when Tres > 
. For the
illustrations in Fig. 1, we set εs = 0, U = 3 	, and 
 = 0.05 	

at three values of T = Tph = Tres: (a) 0.25 	, (b) 0.1 	, and (c)
0.05 	, respectively. Apparently, the two zero-phonon bands
are peaked at the polaron and the bipolaron resonances, �L =
εs = 0 and �L = εs + U = 3 	, respectively. The observed
m-phonon sidebands to the blue side of the zero-phonon
features clearly indicate the stimulated phonon emission
(m > 0) processes associated with the electron transport. Note
that in the spin-nondegenerate case there are four zero-phonon
bands centered at ε↑ (ε↓) and ε↑ + U (ε↓ + U ) in relation to the
spin-up (spin-down) electron tunneling, from the L electrode
to the R electrode through the electronic resonance QD levels.
The adopted spin-degenerate case in this study highlights the
essence of the phonon-assisted features. We have also limited
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FIG. 1. The differential conductance dI/dV (in units of
2e2
L
R

	(
L+
R) ), as a function of �L = eV/2 (in units of 	 = 1 meV)
for the phonon-coupled Anderson impurity QD system, with εs = 0,
U = 3 	, and S = 1, at three values of T = Tres = Tph: (a) 0.25 	,
(b) 0.1 	, and (c) 0.05 	, respectively. Other parameters are 
 =

L = 
R = 0.05 	 and W = 30 	.

the HEOM evaluations with two-phonon (|m| � 2) truncation
so that the phonon bands in Fig. 1 are assigned unambiguously.

Evidently, the temperature is a key factor for the appearance
of Franck-Condon sidebands. In fact, all phonon-emission
peaks would disappear when T � 0.3 	 for the QD system
of study here. The lower the temperature, the sharper the
phonon-emission sidebands will be, with a limiting width of
about 
 at T = 0. The relative intensity between two-phonon
and one-phonon sidebands that are centered at εs + 2	 and
εs + 	 is about A2/A1, where Am is given by Eq. (A30).
This observation can be used in determining the e-ph coupling
strength whenever the Einstein phonon lattice model is valid.
Within the limit of zero temperature and wide-band approx-
imation without considering e-ph coupling, the differential
conductance at zero bias is e2

π
4
L
R

(
L+
R)2 . The zero-phonon peak
of dI/dV can approach this value with the decrease of T .

Note that all results reported in Fig. 1 are based on HEOM
at the tier-2 truncation level. Compared to those obtained at
the tier-1 level that accounts only for sequential processes, the
cotunneling contributions from the tier-2 level calculations are
of only quantitative but not qualitative modification. The basic
feature of multiple-phonon emissions is contained already
in the sequential tunneling description, as it is valid for the
resonance transport considered in Fig. 1, where �R < εs

< �L.

2. Cotunneling with phonon emissions versus sequential
tunneling with phonon absorptions

Consider now the nonresonance (εs > �L) transport
regime, where the electronic energy levels of the QD system lie
above the bias window. This scenario is readily achievable by

FIG. 2. The same as Fig. 1, but with εs = 2.5 	 and Tres =
0.04 	, at three values of Tph/Tres: (a) 1, (b) 5, and (c) 10,
respectively. The dashed curve in panel (c) is the result of sequential
level calculation. Individual resonance is specified with its physical
original, being of the Stokes-Raman (m′ > 0) or phonon-absorption
(m < 0) assisted tunneling.

applying a gate voltage, for example, to the same QD system
considered earlier. We will see the distinct features between
the cotunneling (resonating at eV = 2�L = m′	) and the
photon-absorption-assisted sequential tunneling. The former
is of a steplike feature while the latter shows peak(s). For
the demonstrations presented in Fig. 2, we set εs = 2.5 	 and
Tres = 0.04 	, but there are three specified values of Tph/Tres.
Other parameters remain the same as Fig. 1.

In Fig. 2(a), Tph/Tres = 1, the same situation as in Fig. 1
but for the nonresonance case. It is observed that differential
conductance has a resonance rise at each of �L/	 = 0.5, 1,
and 1.5, followed by a flat step or smooth rise in between
or after. The first two resonance rises, with the centers
corresponding to eV = 2�L = 	 and 2 	, respectively, are
unambiguously due to the cotunneling resonance mechanism,
as detailed in Sec. III A. However, the mechanism underly-
ing the third resonant rise centered at �L = 1.5 	, is less
straightforward. It can be attributed to either the three-phonon-
emission (m′ = 3) assisted cotunneling with eV = 2�L =
3 	 or the one-phonon-absorption assisted sequential tun-
neling with �L = εs − 	 = 1.5 	; see the related comments
in Sec. III A. Note that the present HEOM evaluation takes
into account up to two- and four-phonon events in sequential
tunneling and cotunneling processes, respectively. To identify
the underlying mechanism, we perform the tier-1 truncation
HEOM calculation and exclude the one-phonon-absorption
assisted sequential tunneling for the observed third resonant
rise in Fig. 2(a). Note also that sequential tunneling resonance
is characterized by a peak in conductance, while cotunneling
resonance is by a steplike feature, as evident from the
individual panels of Figs. 1 and 2(a), respectively. These
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characteristics are physically related to the resonant versus
nonresonant transport regions.

In Figs. 2(b) and 2(c), we set Tph/Tres = 5 and 10,
respectively, while Tres = 0.04 	 remains unchanged to mimic
the local heating accompanying the current flow through
the dot system. The local heating can in turn enhance the
probability of phonon-absorption processes, as evident in
the observed dI/dV characteristics. For Fig. 2(b), while the
first two steplike resonances remain cotunneling in nature,
occurring at eV = 2�L = 	 and 2 	, respectively, the third
resonance shows a peak feature and arises therefore mainly
from sequential tunneling, with the phonon-absorption reso-
nance at �L = εs − 	. With Tph being enhanced further in
Fig. 2(c), the phonon-absorption-assisted sequential processes
dominate, resulting in the effective suppression of the cotun-
neling characteristics. Included in Fig. 2(c) is also the result
(dash-curve) of the sequential-tier or tier-1 truncation level of
HEOM evaluation to confirm the above analysis.

We have thus detailed the basic dI/dV ∼ V features
of phonon-assisted tunneling in terms of emission versus
absorption and sequential tunneling versus cotunneling char-
acteristics. Reported in Figs. 1 and 2 are the cases with
U > 0. We have also studied the cases with attractive effective
interaction (U < 0) and find similar resonance characteristics
that are covered at least physically in Figs. 1 and 2.

C. Photon-phonon-assisted tunneling and a possible
method of cooling

Transient quantum-transport features under various time-
dependent external fields carry much more information than
their stationary counterpart. The unified HEOM evaluation
of transient current responses had been extensively carried
out in the coherent or elastic transport limit.37–41,56–58 The
extension to the inelastic cases is straightforward. In the
following, instead of the transient features of current response,
we would rather evaluate the cyclically averaged steady-state
current response to an oscillatory bias potential applied to the
source and drain leads, μL(t) = �L + � sin(ωt) = −μR(t).
While this setup can be directly realized in experiments by
applying an irradiation wave to the contacts,59 the underlying
physics of modulating the relative electron phase can also be
experimentally studied with the irradiation applied on the dots
system.60 In the model study below we will not just reproduce
the additional photon-assisted (ω) phenomenon observed in
experiments,59,60 but also highlight its being a possible local
cooling method in quantum-transport devices.

Considered in Fig. 3 is the cyclically averaged conductance
dĪ/dV (with respect to the time-independent component
V = 2�L/e), at the long-time Floquet steady-state regime, for
the same QD system of Fig. 1, εs = 0 and S = 1, with Tres =
Tph = 0.1 	, but setting U → ∞ to avoid the congestion of
double-occupancy resonances. The driving frequency is set
to be ω = 1.65	, with three specified values of modulation
amplitude, �/	 = 1, 2, and 3. Note that the effective
Coulomb coupling U can prolong the system driven by an
alternating field to achieve the steady-state limit. For the cases
of Fig. 3, the steady-state oscillation is arrived at after about
40 cycles. The photon-phonon-assisted sequential tunneling
has the resonances at �L = εs + nω + m	, as specified by

FIG. 3. The cyclically averaged, steady state dĪ/dV as a function
of �L = eV/2 in response to the alternating-bias-voltage potential
eV + 2� sin(ωt) applied symmetrically to two leads. Units adopted
are the same as Fig. 1. The Anderson impurity QD system has the
effective εs = 0 and U → ∞, with S = 1. The irradiation field carries
the frequency ω = 1.65 	 with the three specified values of amplitude
�: (a) 1, (b) 2, and (c) 3, respectively. Other parameters are 
L =

R = 0.05 	, W = 15 	, and Tres = Tph = 0.1 	. The label (n,m)
specifies the n-photon and m-phonon assisted sequential tunneling
process.

(n,m) in Fig. 3, for the n photons associated |m| phonons
of emission (m > 0) or absorption (m < 0) processes in the
electron transport. The key features of Fig. 3 are summarized
as follows: (i) emergence of the pure photon (n > 0 and
m = 0) and the photon-induced phonon emission (n,m > 0)
processes in the large-bias-voltage side; (ii) suppression of
the zero-photon (or the previous) zero-phonon and m-phonon
emission, i.e., the (n = 0 and m � 0) processes, operated in the
original bias-voltage region; and (iii) emergence of the photon-
phonon-absorption assisted tunneling of the (n > 0,m < 0)
resonance, which would not occur at Tres = Tph in the absence
of oscillating field (cf. Fig. 1). The above features generally
agree with the experimental observations.59,60 Note that the
photon-phonon-assisted tunneling in open QD systems had
also been studied using the standard nonequilibrium Green’s
function approach,61–63 with the effective interaction U being
either neglected or treated in a mean-field approximation. The
basic features as discussed above were also reported.61–63

The observed features (ii) and (iii) above would also suggest
the possibility of applying proper irradiation fields to fight
against the potential heating problem associated with quantum
transport through mesoscopic systems. Note that the heat
capacity of a QD system is usually dominant by phonon
lattice bath rather than carrier electrons. Consider now the
mesoscopic device operated in the bias-voltage region being
of �L � εs + 2	, where heating could occur due to one or
two quanta of 	-phonon energy emitted to the quantum-dot
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system. Note the feature (i) discussed previously regarding the
emergence of the (n > 0,m > 0) processes causing heating
to occur beyond the specified operation region. On the other
hand, feature (ii) with regard to the suppression of phonon
emission appears right within the operation region. It helps the
fight against the QD temperature rise there. Cooling would also
happen due to the existence of the photon-phonon-absorption
assisted (n > 0,m < 0) processes there, i.e., the feature (iii)
of Fig. 3 as discussed earlier. In the absence of oscillating bias
potential, the transport electron energy at a given operation
bias voltage may fall short of what is needed for efficient
transmission. With the additional oscillating bias field, this
shortage can now be supplied for by absorbing phonons
that result in cooling. The feature (iii) regarding the photon-
phonon-absorption assisted tunneling activates this cooling
mechanism. Cooling could be achieved via different means
and mechanisms.11 The alternating-bias-assisted cooling as
suggested here, or more generally, the control of the relative
phase of the transferring electronic wave function, is one of
the viable methods and worthy of further exploration.

IV. CONCLUDING REMARKS

We have combined the HEOM formalism37 with small po-
laron transformation for inelastic quantum-transport systems.
With the Einstein lattice model as an illustration, we have
identified the distinct phonon-assisted dI/dV ∼ V features,
peaks versus steps, in different tunneling regimes. The charac-
teristic peaks in the sequential tunneling regime are associated
with the Franck-Condon sidebands for phonon emissions or
absorptions, while the characteristic steps in the cotunneling
regime are associated with Raman resonances. We have also
studied the effect of external irradiation field versus that of
phonon bath temperature on inelastic quantum transport. Our
results suggest that applying a suitable alternating bias voltage
could be a practical means to fight against the heating problem
in mesoscopic quantum-transport devices. Physically, this is
to control the relative phase of the transferring electronic
wave function, which can also be implemented by applying
irradiation fields on quantum wire/dot systems.

HEOM is a versatile and nonperturbative theoretical tool in
the study of time-dependent and strongly correlated systems,
including inelastic quantum transport, with a broad range of
couplings beyond the Einstein lattice model. Interesting prob-
lems such as the Kondo physics in quantum impurity systems
in the presence of arbitrary phonon lattice environments can
be readily studied with the HEOM approach. Note that strong
e-ph interaction can also result in a net attraction between
electrons and consequently, the Cooper pair generation in
superconductor. An HEOM-based, time-dependent density
functional theory37,57 to extend the first-principles calculations
to inelastic transport is also in progress.
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APPENDIX A: THE ONSET OF SMALL POLARON
TRANSFORM

1. An inelastic quantum-transport model

Consider a molecular wire or quantum-dot system, spec-
ified with an arbitrary electronic Hamiltonian He, in contact
with both electrodes and a phonon bath. The total composite
Hamiltonian is then

HT = He + Hres + He-res + Hph + He-ph. (A1)

In general, the many-electron system Hamiltonian He is
expressed in terms of the creation (â†

μs) and annihilation (âμs)
operators, for an electron in the specified system orbital μ with
spin s.

The electrodes serve as electron reservoirs, assuming the
Hamiltonian of

Hres =
∑

α

hα =
∑
αks

εαks ĉ
†
αks ĉαks . (A2)

Here ĉ
†
αks (ĉαks) denotes the creation (annihilation) operator

for the kth single-electron state with energy εαks and spin s in
the α electrode. The system reservoir’s coupling assumes the
transfer type

He-res =
∑
αkμs

(t∗αμks â
†
μs ĉαks + tαμks ĉ

†
αks âμs)

≡
∑
αμs

(â†
μsF̂αμs + F̂ †

αμs âμs), (A3)

with F̂αμs ≡ ∑
k t∗αμks ĉαks .

The phonon bath is modeled by a collection of harmonic
oscillators:

Hph = 1

2

∑
j

ωj

(
p̂2

j + x̂2
j

)
. (A4)

The system-phonon bath coupling assumes the form of

He-ph = −Q̂e

∑
j

cj x̂j ≡ −Q̂eF̂ph. (A5)

The electronic system operator Q̂e here defines the dissipative
mode through which the phonon bath acts on the system. In
this work, we chose it as the total number operator of the
system:

Q̂e = N̂e ≡
∑
μs

n̂μs. (A6)

Note that in the absence of electrode contact, the total number
of electrons in the system is conserved. This implies that
[N̂e,He] = 0. Thus, the dissipative mode specified in Eq. (A6)
would not cause energy relaxation if there were no exchange of
particles between system and environment. Note also that the
statistical nature of the couplings with the electron reservoirs
and phonon bath will be characterized later in terms of spectral
density functions in Appendix A 3.

2. Small polaron transform and related environment
correlation functions

The polaron transform is unitary, with the intention to
optimally reduce the effective e-ph coupling in the transformed
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(He + Hph + He-ph). This goal is perfectly achievable for
a nondemolishing dissipative mode, i.e., [Q̂e,He] = 0, as
exemplified with Q̂e = N̂e [Eq. (A6)], with the celebrated
Holstein small polaron transform:

Õ ≡ eiN̂eφ̂phOe−iN̂eφ̂ph , (A7)

where

φ̂ph =
∑

j

cj

ωj

p̂j . (A8)

It satisfies ˙̂φph = −F̂ph and i[φ̂ph,F̂ph] = ∑
j c2

j /ωj = 2λph.
The coupling strength adopted here, in terms of phonon-bath-
induced reorganization energy λph, agrees with its general
expression via spectral density [see Eq. (A26)].

The details of the small polaron transform on the total
composition Hamiltonian is as follows. Besides [N̂eφ̂ph,He] =
0 and [N̂eφ̂ph,Hres] = 0, Eqs. (A4)–(A6) and (A8) lead to also

i[N̂eφ̂ph,Hph] = −He-ph,

i[N̂eφ̂ph,He-ph] = −2λphN̂
2
e , (A9)[

N̂eφ̂ph,N̂
2
e

] = 0.

Therefore H̃e = He, H̃res = Hres,

H̃ph = Hph − He-ph + λphN̂
2
e , (A10)

and

H̃e-ph = He-ph − 2λphN̂
2
e . (A11)

Using the identities [N̂e,â
†
μs] = â

†
μs and [N̂e,âμs] = −âμs , we

obtain further

H̃e-res =
∑
αμs

(
â†

μsF̂αμse
iφ̂ph + F̂ †

αμsâμse
−iφ̂ph

)
. (A12)

The small polaron-transformed total composite Hamiltonian is
then H̃T = (He − λphN̂

2
e ) + Hres + Hph + H̃e-res. From N̂e =∑

μs â
†
μsâμs ≡ ∑

μs n̂μs , we have

N̂2
e = N̂e + 2

∑
μν

n̂μ↑n̂ν↓ +
′∑

μ,ν,s

â†
μsâ

†
νs âνs âμs . (A13)

The last sum runs only those μ �= ν, as (â†
μs)2 = 0.

In line with a stochastic description, we recast the total com-
posite Hamiltonian H̃T in the (Hres + Hph)-based environment
interaction picture,

HT(t) = (
He − λphN̂

2
e

) + Hsys-env(t), (A14)

with the interaction picture of H̃e-res recast as

Hsys-env(t) =
∑
αμs

[
â†

μsF̂αμs(t)e
iφ̂ph(t) + H.c.

]
. (A15)

Here F̂αμs(t) ≡ eiHrest F̂αμse
−iHrest = eihαt F̂αμse

−ihαt and
φ̂ph(t) ≡ eiHpht φ̂phe

−iHpht are stochastic operators in the
electron-reservoir and phonon-bath subspaces, respectively.
Their effects on the reduced polaron system are characterized
completely by their correlation functions.

For the sake of bookkeeping, we introduce σ = − or + and
σ̄ the opposite sign of σ , in relation to the electron tunneling
into or out of the central system through leads. Denote

also F̂+
αμs ≡ F̂

†
αμs ≡ (F̂−

αμs)
†. The environment correlation

functions then read

C̃σ
αμνs(t,τ ) ≡ 〈[

F̂ σ
αμs(t)e

σ̄ iφph(t)
][

F̂ σ̄
ανs(τ )eσiφph(τ )

]〉
env

= Cσ
αμνs(t,τ )C̃ph(t − τ ). (A16)

It contains both the electron reservoir and the phonon bath
components.

The electron reservoir correlation function is

Cσ
αμνs(t,τ ) = 〈

F̂ σ
αμs(t)F̂

σ̄
αsν(τ )

〉
α
. (A17)

Here, 〈O〉α ≡ trα(Oρβ
α ) denotes the thermodynamic average

over the grand canonical ensemble density operator of ρβ
α ∝

e−β(hα−μαN̂α) for the α reservoir under chemical potential μα .
Apparently, the number operator N̂α of the electrons in the
α reservoir satisfies [hα,N̂α] = 0. It is about the electron
number conservation in an isolated electrode. In the presence
of time-dependent external chemical potential �α(t) applied
to the electrode α, the interaction reservoir correlation in
Eq. (A17) is nonstationary. In this work we adopt the adiabatic
ansatz that neglects the plasmon effects by which the electrode
Hamiltonian assumes hα + �α(t)N̂α , with the electrode state
energy of εαks + �α(t), while the relative state distribution or
ρβ

α remains unchanged. It results in

Cσ
αμνs(t,τ ) = exp

[
σ i

∫ t

τ

dt ′�α(t ′)
]

Cσ ;eq
αμνs(t − τ ), (A18)

where C
σ ;eq
αμνs(t − τ ) denotes the equilibrium counterpart.

The phonon bath contribution in Eq. (A16) reads

C̃ph(t − τ ) = 〈eσ̄ iφ̂ph(t)eσiφ̂ph(τ )〉ph. (A19)

Here, 〈O〉ph ≡ trB(Oe−βHph )/trBe−βHph denotes the thermo-
dynamic average over the canonical ensemble of the
phonon bath. The Wick’s theorem in the Gaussian statis-
tics leads to C̃ph(t − τ ) = exp[�ph(t − τ )], with �ph(t) =
〈φ̂ph(t)φ̂ph(0)〉ph − 〈φ̂ 2

ph〉ph. Note that before the polaron trans-
form the electron-phonon coupling is given by Eq. (A5) and
the phonon bath correlation function reads

Cph(t) ≡ 〈F̂ph(t)F̂ph(0)〉ph. (A20)

To establish the relation between C̃ph(t) and Cph(t), we
exploit the identity 〈Ȧ(t)B(0)〉 = −〈A(t)Ḃ(0)〉 in the ther-
modynamic average. Thus, that ˙̂φph(t) = −F̂ph(t) leads to

�̈(t) = −〈 ˙̂φph(t) ˙̂φph(0)〉ph = −Cph(t). The initial conditions
are �(0) = 0 and �̇(0) = −〈F̂phφ̂ph〉ph = −iλph. The second
identity is obtained by using the facts that 〈{F̂ph,φ̂ph}〉ph = 0
and 〈[F̂ph,φ̂ph]〉ph = i2λph. We obtain therefore

C̃ph(t) = exp

[
−iλpht −

∫ t

0
dτ

∫ τ

0
dτ ′Cph(τ ′)

]
. (A21)

3. Environment spectral density functions and
fluctuation-dissipation theorems

In the thermodynamics limit or Gaussian statistics, the envi-
ronmental influence is completely characterized by the spectral
density functions. They will be defined formally through the
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anticommutator/commutator of involving fermionic/bosonic
stochastic operators.

The spectral density functions for the α-electrode influence
are

Jαμνs(ω) ≡ 1

2

∫ ∞

−∞
dt eiωt 〈{F̂αμs(t),F̂

†
αsν(0)}〉α. (A22)

This definition is consistent with the conventional expression
of Jαμνs(ω) = π

∑
k t∗αμkstανksδ(ω − εαks) for the linear cou-

pling of the noninteracting reservoir. The equilibrium part of
the reservoir correlation function C

σ ;eq
αμsν(t − τ ) [Eq. (A18)] is

determined via the fermionic grand ensemble’s fluctuation-
dissipation theorem:

Cσ ;eq
αμνs(t) = 1

π

∫ ∞

−∞
dω

eσiωtJ σ
αμνs(ω)

1 − eσβ(ω-μeq
α )

, (A23)

where J−
αμνs(ω) = J+

ανμs(ω) = Jαμνs(ω).
The spectral density for the phonon bath interaction in

Eq. (A5) before polaron transformation is

Jph(ω) ≡ 1

2

∫ ∞

−∞
dt eiωt 〈[F̂ph(t),F̂ph(0)]〉ph. (A24)

It assumes Jph(ω) = 1
2π

∑
j |cj |2[δ(ω − ωj ) − δ(ω + ωj )] for

the linear coupling of a harmonic phonon bath. The interacting
phonon bath correlation function Cph(t) is then determined
via the bosonic canonical ensemble’s fluctuation-dissipation
theorem:

Cph(t) = 1

π

∫ ∞

−∞
dω

e−iωtJph(ω)

1 − e−βω
. (A25)

It is also easy to verify that the phonon-bath-induced reorga-
nization energy λph specified earlier follows the more general
definition of

λph ≡ 1

2π

∫ ∞

−∞
dω

Jph(ω)

ω
. (A26)

We have thus completed the small polaron transform of
a transport system in which the reduced polaron system
Hamiltonian is given by He − λphN̂

2
e . The effects of interacting

environment on the reduced system are dictated by the correla-
tion functions in Eq. (A16), C̃σ

αμνs(t,τ ) = Cσ
αμνs(t,τ )C̃ph(t −

τ ), with the two components being specified by Eq. (A18) and
Eq. (A21), respectively. The involved equilibrium correlation
functions before polaron transformation are further related to
the spectral density functions Jαμνs(ω) [Eq. (A22)] and Jph(ω)
[Eq. (A24)] via the corresponding fluctuation-dissipation
theorem expressions.

4. The Einstein phonon bath model

To illustrate the polaron transform theory presented in the
previous subsections of this Appendix, let us consider the
phonon bath spectral density the form of

Jph(ω) = πλphω[δ(ω − 	) + δ(ω + 	)]. (A27)

This is the Einstein lattice model, assuming all phonon
frequencies are the same {ωj = 	}. The coupling strength
parameter in Eq. (A27) follows its definition of Eq. (A26).
The Huang-Rhys factor amounts to λph/	 ≡ S.

Substituting Eq. (A27) into Eq. (A25) leads to

Cph(t) = λph	[(N̄ + 1)e−i	t + N̄ei	t ], (A28)

with N̄ = 1/(eβ	 − 1) being the mean occupation number. It
results in∫ t

0
dτ

∫ τ

0
dτ ′Cph(τ ′)

= λph

	
[(N̄ + 1)(1 − e−i	t − i	t) + N̄ (1 − ei	t + i	t)]

= −iλpht + S[(N̄ + 1)(1 − e−i	t ) + N̄ (1 − ei	t )].

Therefore Eq. (A21) becomes

C̃ph(t) = e−S[(N̄+1)(1−e−i	t )+N̄(1−ei	t )]

=
∞∑

m=−∞
Ame−im	t , (A29)

with

Am =
{

(N̄ + 1)mĀm if m � 0
N̄−mĀ−m if m < 0

, (A30)

where

Ām�0 = e−S(2N̄+1)
∞∑

k=0

[SN̄ (N̄ + 1)]kSk+m

k!(k + m)!
. (A31)

Apparently,
∑

m Am = C̃ph(0) = 1. Note that Im(z) =∑∞
k=0

1
k!
(m+k+1) (z/2)m+2k; these coefficients can also be

expressed in terms of the modified Bessel functions of the first
kind Im(z). In the zero-temperature limit N̄ = 0, Eq. (A30)
with Eq. (A31) reduces to Am<0 = 0 and Am�0 = e−SSm/m!,
the Poisson distribution.

APPENDIX B: THE HEOM FORMALISM VERSUS PATH
INTEGRAL THEORY

1. Influence functional path integral formalism

It is well known that the reduced density operator, ρ(t) ≡
trenvρT(t), can be formulated with the Feynman–Vernon
influence functional path integral theory52,53 or its equivalent
HEOM formalism.37,45,46 This formalism is exact, as long as
the influence of environment can be completely characterized
by the two-time correlation functions, even nonstationary such
as Eq. (A16). In contact with the total Hamiltonian of Eq. (A14)
and the environment correlation functions of Eq. (A16), we
summarize the path integral formalism in this subsection
while constructing its equivalent HEOM in Appendix B 2,
respectively.

Let U(t,t0) be the reduced Liouville-space propagator, by
which

ρ(t) ≡ U(t,t0)ρ(t0). (B1)

In a path integral formalism of quantum dynamics of
open systems, the subspace of the reduced system should
be assigned with a specific representation. We denote
{|ψ〉} as a generic basis set, and ψ ≡ (ψ,ψ ′). Therefore,
ρ(ψ,t) ≡ ρ(ψ,ψ ′,t) ≡ 〈ψ |ρ(t)|ψ ′〉. The corresponding
reduced Liouville-space propagator in the path integral
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formulation can be expressed as52

U(ψ,t ; ψ0,t0) =
∫ ψ[t]

ψ0[t0]
Dψ eiS[ψ] F[ψ] e−iS[ψ ′]. (B2)

Here, S[ψ] is the classical action functional of the reduced
system, evaluated along a path ψ(τ ), subject to the constraint
that the two ending points ψ(t0) = ψ0 and ψ(t) = ψ are fixed.
We denote ψ(τ ) and ψ ′(τ ) the forward and backward paths
in the integral evolution, for the left ket and right bra sides
of ρ, respectively. In the absence of environment, i.e., setting
Hsys-env(t) = 0 in Eq. (A14), F[ψ] = 1, with Eq. (B2) being
nothing but ∂tU = −iLU , or equivalently, the Liouville-von
Neumann equation, ρ̇(t) = −iLρ = −i[H,ρ]. The reduced
system here refers to the polaron so that H = He − λphN̂

2
e ,

the first term in Eq. (A14).
The key quantity in Eq. (B2) is the influence functional

F[ψ]. It is determined by the system-environment coupling
Hamiltonian Hsys-env(t) in Eq. (A14), along with the two-time
correlation functions of environment as Eq. (A16). In relation
to HEOM, we introduce further the dissipation functional
R[τ ; {ψ}] by which ∂tF = −RF , or

F[ψ] ≡ exp

{
−

∫ t

t0

dτ R[τ ; {ψ}]
}

. (B3)

Through the cumulant expression of the influence functional,
we obtain

R[t ; {ψ}] = i
∑
σαμs

Aσ̄
μs[ψ(t)]Bσ

αμs[t ; {ψ}], (B4)

where σ̄ refers to the opposite sign of σ = + or −:

Aσ
μs[ψ(t)] = aσ

μs[ψ(t)] + aσ
μs[ψ

′(t)], (B5)

Bσ
αμs[t ; {ψ}] = −i

{
Bσ

αμs[t ; {ψ}] − B ′σ
αμs[t ; {ψ ′}]}, (B6)

with

Bσ
αμs[t ; {ψ}] =

∑
ν

∫ t

t0

dτ C̃σ
αsμν(t,τ ) aσ

νs[ψ(τ )],

B ′σ
αμs[t ; {ψ ′}] =

∑
ν

∫ t

t0

dτ
[
C̃σ̄

αsμν(t,τ )
]∗

aσ
νs[ψ

′(τ )]. (B7)

The above equations complete the influence functional path
integral theory of reduced system dynamics.

Note that for the fermionic {âσ
μs} operators, their path-

integral representations {aσ
μs[ψ(t)]} are not c numbers but

Grassmann variables.53,64 Consequently, the quantities defined
in Eqs. (B5)–(B7) are all Grassmann variables, satisfying
the algebraic rule of xy = −yx. In particular, we have
(Bσ

αμs)
2 = 0.

Note also that the A term [Eq. (B5)] depends only on the
end points of the path and thus have the explicit operator-level
form, while the B term [Eq. (B6)] of the dissipation functional
contains memory and does not support a simple operator-level
expression. We may therefore recast ∂tF = −RF as

∂tF = −i
∑
σαμs

Aσ̄
μs[ψ(t)]Bσ

αμs[t ; {ψ}]F

≡ −i
∑
σαμs

Aσ̄
μs[ψ(t)]Fσ

αμs[t ; {ψ}], (B8)

with Fσ
αμs ≡ Bσ

αμsF defining a first-tier auxiliary influence
functional. It in turn defines the first-tier auxiliary propagator
Uσ

αμs(ψ,t ; ψ0,t0) and then the first-tier auxiliary density
operator ρσ

αμs(t) similarly as Eqs. (B2) and (B1), respectively.
Consequently, Eq. (B8) amounts to the following equation of
motion:

ρ̇(t) = −iLρ(t) − i
∑
σαμs

Aσ̄
μsρ

σ
αμs(t). (B9)

Aσ
μs is now the fermionic superoperator, with the path integral

expression of Eq. (B5). As only the terminal path points are
involved, it can be equivalently defined via its action on a
fermionic/bosonic operator Ô as

Aσ
μsÔ = [

aσ
μs,Ô

]
∓. (B10)

In particular, Aσ̄
μsρ

σ
αμs(t) = [aσ

μs,ρ
σ
αμs(t)] in Eq. (B9), as the

first-tier auxiliary density operator ρσ
αμs(t) is fermionic.

To continue, we take the time derivative on ρσ
αμs(t) or

equivalently on its influence functional Fσ
αμs ≡ Bσ

αμsF :

∂tFσ
αμs = (

∂tBσ
αμs

)
F + Bσ

αμs(∂tF)

= (
∂tBσ

αμs

)
F − i

∑
σ ′α′μ′s ′

Aσ̄ ′
μ′s ′ Bσ ′

α′μ′s ′Bσ
αμsF . (B11)

The second expression is obtained by using the identity
of ∂tF = −RF together with Eq. (B4). We may define
Fσ,σ ′

αμs,α′μ′s ′ ≡ Bσ ′
α′μ′s ′Bσ

αμsF as a second-tier auxiliary influence
functional. It implies that the ∂tF part always leads to the
tier-up dependence.

Consider now the role of ∂tBσ
αμs to Eq. (B11). From

Eqs. (B6) and (B7) we have

∂tBσ
αμs[t ; {ψ}] = B̃σ

αμs[t ; {ψ}] − iCσ
αμs[ψ(t)]. (B12)

The C term depends only on terminal points of the path integral
and is given by37

Cσ
αμs[ψ(t)] =

∑
ν

{
C0,σ

αμνsa
σ
νs[ψ(t)] − C0,σ̄

ανμsa
σ
νs[ψ

′(t)]
}
,

(B13)

with C0,σ
αμνs ≡ C

σ,eq
αμνs(t = 0) = C̃σ

αμνs(t,t) = [C0,σ
ανμs]

∗ being ex-
ploited. Like the Aσ

αμs of Eqs. (B5) or (B10), the Grassmann
variable Cσ

αμs[ψ(t)] of Eq. (B13) also has a simple operator-
level expression. Making contact with Eq. (B11), the C term
from Eq. (B12) leads to the tier-down dependence.

The memory-containing part B̃σ
αμs in Eq. (B12) is defined

similarly as Eqs. (B6) and (B7), but with C̃σ
αμνs(t,τ ) there

being replaced with ∂t C̃
σ
αμνs(t,τ ), resulting in the term B̃σ

αμsF
outside the hierarchy in Eq. (B11). Several methods have been
proposed to bring these terms back to the desired hierarchy
construction.37,41 Apparently, the exponential-like expansion
of C̃σ

αμνs(t,τ ) is the most straightforward choice whenever
temperature is nonzero.

2. Construction of the HEOM formalism

For illustration, we detail below the HEOM construction
for the polaron transport system in Sec. II. As the system
considered there consists of only spin levels, the orbital μ

and ν indexes are removed hereafter. However, we allow the
system-electrode couplings to be spin and lead dependent,
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with Jαs(ω) = 
αsW
2
αs/2

(ω−	αs )2+W 2
αs

, rather than Eq. (6), and thus the
parameters of γ σ

αsk and ησ
αsk for the exponential expansion of

Eq. (7). It is easy to verify that (γ σ̄
αsk)∗ = γ σ

αsk . We will see soon
that the above generalization does not increase the number of
equations in the final HEOM formalism.

To proceed, let γ̃ mσ
αsk ≡ γ σ

αsk + im	 and η̃mσ
αsk ≡ Amησ

αsk , by
which the environment correlation function C̃σ

αs(t,τ ), Eq. (3)
with Eqs. (4) and (7), can be recast as

C̃σ
αs(t,τ ) =

∑
m,k

η̃mσ
αsk eσ i

∫ t

τ
dt ′�α(t ′)e−γ̃ mσ

αsk (t−τ ). (B14)

Note that (γ̃ m̄σ̄
αsk )∗ = γ̃ mσ

αsk , where m̄ = −m and σ̄ the opposite
sign of σ = + or −. We have[

C̃σ̄
αs(t,τ )

]∗ =
∑
m,k

(
η̃m̄σ̄

αsk

)∗
eσi

∫ t

τ
dt ′�α(t ′)e−γ̃ mσ

αsk (t−τ ). (B15)

For the sake of bookkeeping, we introduce the abbreviation

j ≡ {mσαsk} and j̄ ≡ {m̄σ̄αsk},
so that γ̃j ≡ γ̃ mσ

αsk , η̃j ≡ η̃mσ
αsk and (η̃m̄σ̄

αsk)∗ = η̃∗̄
j
. We may recast

Eq. (B4) with Eqs. (B5)–(B7) as

R[t ; {ψ}] = i
∑

j ; σ,s∈j

Aσ̄
s [ψ(t)]Bj [t ; {ψ}], (B16)

where Aσ
s [ψ(t)] = aσ

s [ψ(t)] + aσ
s [ψ ′(t)] and

Bj [t ; {ψ}] = −i{η̃jBj [t ; {ψ}] − η̃∗̄
j
Bj [t ; {ψ ′}]}, (B17)

with

Bj [t ; {ψ}] =
∫ t

t0

dτ eσi
∫ t

τ
dt ′�α(t ′)e−γ̃j (t−τ )aσ

s [ψ(τ )]. (B18)

We have

∂tBj [t ; {ψ}] = −[γ̃j − σ i�α(t)]Bj [t ; {ψ}]
− iCj [ψ(t)], (B19)

with

Cj [ψ(t)] = η̃j a
σ
s [ψ(t)] − η̃∗̄

j
aσ

s [ψ ′(t)]. (B20)

An nth-tier ADO can be defined generically as

ρ
(n)
j (t) ≡ ρ

(n)
j1...jn

≡ U (n)
j (t,t0)ρ(t0), (B21)

with the path integral expressions of

U (n)
j (ψ,t ; ψ0,t0) =

∫ ψ[t]

ψ0[t0]
Dψ eiS[ψ]F (n)

j [ψ]e−iS[ψ ′] (B22)

and

F (n)
j = F (n)

j1j2...jn
= Bjn

. . .Bj2Bj1F . (B23)

As the Grassmann nature of individual Bjr
, all involving in-

dices {jr ; r = 1, . . .,n} in F (n)
j = F (n)

j1j2...jn
, should be distinct,

and each permutation of indices leads to a sign change; see
remarks after Eq. (12).

The HEOM in terms of auxiliary influence functionals can
be readily obtained from the time derivative of Eq. (B23)
by using Eq. (B19), ∂tF = −RF , with Eq. (B16) and
the permutation Bjn

. . .Bjr+1Cjr
= (−)n−rCjr

Bjn
. . .Bjr+1 . We

obtain

∂tF (n)
j = −γ

(n)
j (t)F (n)

j − i

n∑
r=1

(−)n−rCjr
F (n−1)

jr

− i
∑

j ; σ,s∈j

Aσ̄
s Fjj (B24)

with

γ
(n)
j (t) =

n∑
r=1

[
γ̃jr

− σri�αr
(t)

]
, (B25)

which is just Eq. (10). While F (n)
j is the influence functional

of the nth-tier ADO ρ
(n)
j , where

F (n−1)
jr = Bjn

. . .Bjr+1Bjr−1 . . .Bj1F (B26)

and

F (n+1)
jj = Bj (Bjn

. . .Bj1 )F (B27)

are those of the (n − 1)th-tier ρ
(n−1)
j r

and the (n + 1)th-tier

ρ
(n+1)
jj , respectively. The HEOM (9) is simply the ADO’s

expression of Eq. (B24), while Eqs. (11) and (12) are the
operator-level expressions of Eqs. (B5) and (B20), respec-
tively, for the simplified case considered in Sec. II.
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