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Origin of electron-hole asymmetry in graphite and graphene
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The electron-hole asymmetry has been measured in highly oriented pyrolitic graphite using magneto-optical
absorption measurements. A splitting is observed for transitions at both the K point and the H point of the
Brillouin zone of graphite where the effect of trigonal warping vanishes. This result is fully consistent with the
Slonczewski, Weiss, and McClure Hamiltonian, providing the free-electron kinetic energy terms are included.
Importantly, the free-electron terms enter via the Hamiltonian for an isolated carbon atom and provide a previously
unsuspected source of electron-hole asymmetry in graphene.
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I. INTRODUCTION

The electronic properties of graphite and graphene are
inexorably intertwined. Graphite is a semimetal with small
carrier pockets located along the HKH edge of the hexagonal
Brillouin zone. Early attempts to calculate the band structure
within a two-dimensional tight binding approach failed;
graphite was predicted to be a gapless semiconductor with
a linear dispersion where the bands touch.1

Today this result is understood to be the well-known
band structure of graphene. Slonczewski and Weiss (SW),
based on detailed group theoretical considerations, derived
a Hamiltonian for graphite involving seven tight binding
parameters, γ0, . . . ,γ5,�.2 In contrast to graphene, in graphite
the interlayer coupling leads to an in-plane dispersion that
depends on the momentum kz parallel to the c axis. In a
magnetic field the Slonczewski, Weiss, and McClure (SWM)
Hamiltonian3 has infinite order since the trigonal warping
term γ3 couples Landau levels with orbital quantum number n

to Landau levels with quantum number n + 3. Fortunately,
the infinite Hamiltonian can be truncated and numerically
diagonalized to find the eigenvalues.4 At the H point the effect
of γ3 vanishes and the Landau-level energy spectrum depends
only on γ0. This is the origin of a widespread misconception
in the literature, including our own work, that there is no
electron-hole asymmetry at the H point.

Graphite has been extensively investigated,5–19 in particu-
lar, magneto-optical techniques have been used to probe the
energy spectrum at the H and K points where there is a
joint maximum in the optical density of states.20–25 Within the
effective bilayer model26 for graphite, with only two parame-
ters, γ0 and an effective interlayer coupling 2γ1, the observed
splitting of the K-point transitions in the magnetoreflectance
data was described by including the electron-hole asymmetry
due to the nonvertical coupling term γ4 phenomenologically.23

Furthermore, the observed splitting of the H -point transitions
was not assigned to electron-hole asymmetry as there is no
trigonal warping at the H point, so the effect of γ4 vanishes.24

In this article we extend our previous magneto-optical
investigation of graphite to lower energies, lower temperatures,
and higher magnetic fields. A splitting of both the H - and
K-point transitions due to the electron-hole asymmetry is

observed. This, at first sight, extremely surprising result, can
be understood from the SWM Hamiltonian and originates from
the often neglected free-electron kinetic energy terms that
occur in the diagonal matrix elements.4 When these terms are
included, electron-hole asymmetry exists for all values of kz.
Importantly, the free-electron terms arise in the Hamiltonian
for an isolated carbon atom providing a previously unsuspected
source of electron-hole asymmetry in graphene.

II. SWM HAMILTONIAN

Starting from the SWM Hamiltonian (see the appendix)
Nakao4 derived an explicit form for the Landau-level energy
spectrum at the H point, unfortunately neglecting, for sim-
plicity, the small free-electron kinetic energy terms h̄2k2/2m,
where k is the in-plane wave vector and m is the free-electron
mass. These terms are quantized in a magnetic field and
their values are significant for all magnetic fields. The SWM
Hamiltonian can easily be diagonalized at the H point and the
correct expression for the Landau-level spectrum, including
the free-electron terms, is

En
3± =

� ±
√

(� + h̄2s/2m)2 + 3nsγ 2
0 a2

0

2
+ nh̄2s

2m
,

En
1,2 =

� ±
√

(� − h̄2s/2m)2 + 3(n + 1)sγ 2
0 a2

0

2
(1)

+ (n + 1)h̄2s

2m
,

where n = 0,1,2, . . ., is the orbital quantum number, s =
2eB/h̄, and a0 = 0.246 nm. The Zeeman term has been
omitted since it simply shifts the energies by ±gμBB/2
and can easily be added if required. At the H point the
electron-hole asymmetry is provided by the free-electron
term nh̄2s/2m. Thus, the dipole-allowed transitions, En

3− →
En+1

3+ and En+1
3− → En

3+, will be split by δE = h̄2s/m � 0.23
meV/T. Note that h̄2s/2m � sγ 2

0 a2
0 so, to a very good

approximation, En+1
3± = En

1,2, i.e., the Landau ladders remain
doubly degenerate at the H point.
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FIG. 1. (Color online) (a) Calculated Landau-level dispersion
(solid lines) along kz using the SWM parameters of Nakao4 and
including the free-electron terms. For comparison the calculated
values of Nakao (symbols) are shown. (b) Calculated Landau-level
dispersion along kz neglecting the free-electron terms.

In a similar way, the bilayer expression26 can be modified
phenomenologically to include the free-electron term

En
3± = ± 1√

2
[(λγ1)2 + (2n + 1)ε2

−
√

(λγ1)4 + 2(2n + 1)ε2(λγ1)2 + ε4]1/2

+
(
n + 1

2

)
h̄2s

2m
, (2)

where n = 1,2, . . ., λ = 2, ε = vf

√
2eh̄B is the characteristic

magnetic energy, and vf = √
3ea0γ0/2h̄ is the Fermi velocity.

Equation (2) has not been derived explicitly; however, we have
verified that the predicted behavior is in exact agreement with
SWM with γ3, . . . ,γ5,� = 0. Equally, the two special Landau
levels (LL0 and LL-1) whose energy remains close to zero can
be reproduced within the bilayer approximation using

En
3± = (n + 3/2)h̄2s/2m − (n + 1)16(h̄2s/2m)2,

with n = −1,0.
Before presenting the experimental data, the importance of

the free-electron kinetic energy terms is demonstrated by nu-
merically diagonalizing the truncated 600 × 600 SWM matrix
for a magnetic field B = 0.3 T using the SWM parameters of
Nakao4 to allow a comparison. The calculated Landau-level
dispersion along kz is shown in Fig. 1(a), including the free-
electron terms. The symbols (circles and triangles) in Fig. 1(a)
are taken from the calculations of Nakao at the same magnetic
field (Fig. 3 of Ref. [4]). The triangles distinguish the triply
degenerate Landau levels, which have a markedly different
dispersion along kz and correspond to leg orbits. Clearly
there is perfect agreement between the two calculations. On
the other hand, the calculations in Fig. 1(b) that neglect the
free-electron terms significantly differ. Notably, the electron
cyclotron energy is underestimated, while the hole cyclotron

FIG. 2. (Color online) (a) Differential magnetotransmission spec-
tra of graphite measured at magnetic fields in the range 55–59 T
at T � 1.8 K. (b) Magnetic-field dependence of the observed
optical transitions in graphite. The calculated SWM energies of the
transitions are shown as lines: H point �n = ±1 (thin blue lines),
“effective” H point �n = ±2 (dashed red lines), �n = 0 (dotted
green lines), and K point �n = ±1 (thick black lines).

energy is overestimated. Thus, the free-electron terms have to
be included in the SWM Hamiltonian if the correct energy
spectrum is to be obtained. As our SWM calculations agree
perfectly with the results of Nakao, we conclude that the
free-electron terms were omitted from Eq. (9) of Ref. [4] but
included in the numerical calculations of Nakao.

III. MAGNETOABSORPTION

For the measurements, highly oriented pyrolitic graphite
(HOPG) was exfoliated to produce mm size, �20- to
40-nm-thick samples based on an estimated transmission of
�20%. Samples of different thickness give similar results
that also agree with previous measurements on natural
graphite.24 The magnetotransmission measurements were
performed in pulsed fields �60 T (�400 ms). A tungsten
halogen lamp provides a broad spectrum in the visible
and near-infrared range and the absorption is measured in
the Faraday configuration with the c axis of the graphite
sample parallel to magnetic field. A nitrogen-cooled InGaAs
photodiode array or an extended InGaAs detector analyzed
the transmitted light dispersed by a spectrometer. The use
of two detectors allows us to cover a wide energy range
0.6–1.1 eV. Differential transmission spectra were produced
by normalizing all the acquired spectra by the zero-field
transmission. Measurements to higher fields �150 T were
performed using a semidestructive technique and pulse lengths
of �10 μs and the transmission of a polarized CO laser
(0.229 eV) measured as a function of the magnetic field using a
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FIG. 3. (Color online) (left) Band structure of graphite along the
HKH edge. (Right) Schematic of the Landau-level energies at the H

point showing the electron-hole asymmetry. Arrows indicate dipole-
allowed transitions (�n = ±1). Transitions are labeled as “effective”
E3− → E3+ transitions with “apparent” dipole selection rules �n =
±1,0, ± 2.

nitrogen-cooled HgCdTe photodiode coupled with a 200-MHz
low-noise amplifier and an infrared tunable wave plate.

Representative differential absorption spectra measured
at T � 1.8 K in magnetic fields B = 55–59 T are
shown in Fig. 2(a). The spectra contains a large num-
ber of lines reflecting the large number of K- and
H -point transitions that cross in this energy region.
Nevertheless, a clear splitting of the H -point and the
K-point transitions is observed (arrows). The energy of the
observed transitions are plotted as a function of magnetic
field in Fig. 2(b). Before discussing these results, it is useful
to consider the possible transitions at the H point. Dipole-
allowed transitions have a change in the orbital quantum
number of ±1. Due to the doubly degenerate Landau-level
spectrum at the H point with En+1

3± = En
1,2, there are a large

number of allowed transitions between the valence band (E3−
or E2) and the conduction band (E3+ or E1). However, the
understanding of the problem is greatly facilitated by the fact
that all transitions involving bands E2 or E1 are degenerate
with E3− → E3+ transitions with “apparent” selection rules
�n = 0 and �n = ±2. This is shown schematically in Fig. 3.
The electron-hole asymmetry, also shown schematically here,
splits both the �n = ±1 and the �n = ±2 transitions, while
the �n = 0 transitions remain unaffected. From Eq. (1) the
splitting of the �n = ±2 transitions is δE = 2h̄2s/m, i.e.,
twice the size of the splitting of the �n = ±1 transitions.

The energy of the observed H - and K-point transitions
are plotted as a function of magnetic field in Fig. 2(b). As
seen in the raw data, a splitting of the H -point and the K-
point transitions is observed. The SWM transitions energies,
calculated using the parameters in Table I, are indicated by the
solid and dotted lines.

The energy of the H -point transitions depends only on
γ0 = 3.15 eV and the calculated splitting is independent of all

TABLE I. Summary of the SWM parameters used.

γ0 = 3.15 eV γ1 = 0.37 eV γ2 = −0.0243 eV
γ3 = 0.31 eV γ4 = 0.07 eV γ5 = 0.05 eV
� = −0.002 eV

other SWM parameters and vanishes only if the free-electron
terms are not included in the Hamiltonian. We have verified
that the predictions of Eq. (1) are exact. The observed splitting
of the H -point En(n+1)

3− → E
n+1(n)
3+ transitions (blue solid lines)

is beautifully reproduced by the calculations. We stress that
in either approach there are no fitting parameters; the size
of the splitting is simply given by h̄2s/m � 0.23 meV/T. In
addition, the observed splitting of the “effective” E3− → E3+
transitions with “apparent” selection rules �n = ±2 (dashed
red lines) is twice as large, in agreement with the predictions
for electron-hole asymmetry in Eq. (2).

The calculated splitting of the K-point transitions depends
on the SWM parameters used, notably γ4 and γ5. We adjust
very slightly γ1 = 0.37 eV to fit the observed transitions (slope
of the magnetic-field dependence) and use the accepted values
for the other SWM parameters that are summarized in Table I.
The agreement turns out to be very good, making a further
refinement of the parameters unnecessary. A comparison of the
SWM splitting �23 meV at B = 60 T with h̄s/m � 14 meV
suggests that γ4 and γ5 are responsible for approximately 40%
of the splitting. The relative importance of the contribution
of the free-electron kinetic energy terms to the electron-hole
asymmetry means that any data analysis that neglects them
would lead to a significant over estimation of size of γ4 or γ5.

Polarization-resolved magnetotransmission, in fields up to
±140 T are shown in Fig. 4(a). Mainly K-point transitions are
observed in this energy range. The different field directions
corresponds to different polarizations and the features are
shifted in field due to the different energy of the n → n + 1
and n + 1 → n transitions. The feature around 100 T is the
fundamental 0 → 1 transition, which should not be split
(shifted) since the LL0 is special and has a free-electron

FIG. 4. (Color online) (a) Magnetotransmission of graphite show-
ing mainly K-point transitions. (b) Calculated SWM transitions
together with the measured splitting (symbols). There is no electron-
hole asymmetry for the 0 → 1 K-point transition that splits due to
the Zeeman term.
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term �(n + 3/2)h̄2s/2m with n = 0 which is identical to the
free-electron term of the n = 1 Landau level (n + 1/2)h̄2s/2m.
The SWM prediction for the transitions are shown in Fig. 4(b)
together with the measured field splitting. It can be seen
that there is indeed no effect of electron-hole asymmetry for
the calculated 0 → 1 K-point transition (solid and broken
lines). Nevertheless, the measured position is shifted by �10 T
between the two polarizations. An enhanced spin splitting of
the 0 Landau level (lowering of the energy of the full spin level
due to exchange) could give rise to a measurable electron-hole
asymmetry, shifting one of the transitions to lower magnetic
field [as observed in Fig. 4(b)] when filling effects are taken
into account.10,27

IV. CONCLUSION

We have measured the electron-hole asymmetry in HOPG
using magneto-optical absorption measurements. A splitting
is observed for transitions at both the K point and the H

point of the Brillouin zone of graphite where the effect of
trigonal warping vanishes. This, at first sight, surprising result
is fully consistent with the SWM Hamiltonian, providing the
free-electron kinetic energy terms are included. The free-
electron terms arise in the Hamiltonian of an isolated carbon
atom (the basic building block of the SWM Hamiltonian). We
have shown that the free-electron terms lead to a significant
electron-hole asymmetry correcting a long-standing erroneous
assumption found throughout the literature (including our own
work) that since the effect of γ3, the SWM trigonal warping
parameter vanishes at the H point, there is no electron-hole
asymmetry at the H point in graphite.

Finally, we note that the free-electron terms enter the Hamil-
tonian of both graphite and graphene via the Hamiltonian of
an isolated carbon atom.1,2 Moreover, the Landau-level energy
spectrum of graphene in the vicinity of the Dirac point can be
derived from the SWM Hamiltonian simply by setting all the
interlayer coupling parameters γ1, . . . ,γ5 = 0. The analytic
solution of this simplified Hamiltonian is nothing other than
Eq. (1). Thus, the free-electron terms provide a previously
unsuspected origin for the observed electron-hole asymmetry
in graphene.28
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APPENDIX: SWM HAMILTONIAN

We include here for completeness the magnetic Hamilto-
nian for graphite, following the notation of Nakao.4 The SW
Hamiltonian, which is based on a Taylor expansion of the full
tight binding Hamiltonian (valid close to the HKH edge of
the Brillouin zone) is given by2,4

HSW =

⎛
⎜⎜⎜⎜⎜⎝

E1 + h̄2k2

2m
0 σ−k+ σ−k−

0 E2 + h̄2k2

2m
−σ+k+ σ+k−

σ−k− −σ+k− E3 + h̄2k2

2m

√
3

2 γ3�k+
σ−k+ σ+k+

√
3

2 γ3�k− E3 + h̄2k2

2m

⎞
⎟⎟⎟⎟⎟⎠

,

with

E1 = � + γ1� + 1

2
γ5�

2

E2 = � − γ1� + 1

2
γ5�

2 (A1)

E3 = +1

2
γ2�

2

where σ± = −(a0

√
6/4)(γ0 ± γ4�), � = 2 cos(πξ ), ξ =

c0kz/2π , a0, and c0 are lattice constants and the wave vector
k± = kx ± iky is measured from the HKH zone edge. Note
that for � = 0, which occurs at the H point (kz = ±π/c0), the
effect of the trigonal warping parameter γ3 vanishes.

A magnetic field was introduced by McClure3 using the
usual Peierls substitution k → k + eA/h̄.29 Here we use
the Landau gauge A = (0,Bx,0) for a magnetic field along
the z direction. Physical insight is facilitated if we write
the magnetic Hamiltonian of McClure using annihilation
and creation operators a = √

sk− and a† = √
sk+, where

k± → kx ± i(ky + eBx/h̄) and s = √
2eB/h̄. Making this

substitution we obtain as a first step

H ′ =

⎡
⎢⎢⎢⎢⎢⎣

E1 + h̄2s
2m

(a†a + 1
2 ) 0 σ−

√
sa† σ−

√
sa

0 E2 + h̄2s
2m

(a†a + 1
2 ) −σ+

√
sa† σ+

√
sa

σ−
√

sa −σ+
√

sa E3 + h̄2s
2m

(a†a + 1
2 )

√
3γ3�

2

√
sa†

σ−
√

sa† σ+
√

sa†
√

3γ3�

2

√
sa E3 + h̄2s

2m
(a†a + 1

2 )

⎤
⎥⎥⎥⎥⎥⎦

.

For the linear harmonic oscillator wave function φn, a and a† satisfy the usual relations, aφn = √
nφn−1, a†φn = √

n + 1φn+1,
and [a,a†] = 1. Applying these rules and using the basis set ϕ(n) = (φn,φn,φn−1,φn+1), it is trivial to derive an expression for
H ′ϕ(n). The terms with γ3 couple the levels φn−1 to φn+2 and φn+1 to φn−2. Due to the coupling it is not possible to obtain the
Landau-level energies simply by diagonalizing the 4 × 4 matrix H ′. Instead, the magnetic Hamiltonian has infinite order. Using
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the notation of Nakao,

HSWM =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D0(−1) O O D1(−1) O . . .

O D0(0) O O D1(0) . . .

O O D0(1) O O . . .

D
†
1(−1) O O D0(2) O . . .

O D
†
1(0) O O D0(3) . . .

. . . . . .

. . . . . .

. . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where O is a 4 × 4 zero matrix and the other matrices and are obtained from the transpose of H ′ϕ(n) by excluding the γ3 terms
[D0(n)] or including only the γ3 terms [D1(n), D

†
1(n)] as appropriate. Operating with H ′ on the basis set ϕ(n) it is easy to show

that,

D0(n) =

⎡
⎢⎢⎢⎣

E1 + h̄2s
2m

(n + 1
2 ) 0 σ−

√
ns σ−

√
(n + 1)s

0 E2 + h̄2s
2m

(n + 1
2 ) −σ+

√
ns σ+

√
(n + 1)s

σ−
√

ns −σ+
√

ns E3 + h̄2s
2m

(n − 1
2 ) 0

σ−
√

(n + 1)s σ+
√

(n + 1)s 0 E3 + h̄2s
2m

(n + 3
2 )

⎤
⎥⎥⎥⎦ ,

D1(n) =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0

0 0
√

3γ3�

2

√
(n + 2)s 0

⎞
⎟⎟⎠ .

The full basis set is now ψ = [ϕ(−1),ϕ(0),ϕ(1),ϕ(2), . . . ,] and it is easy to verify that HSWMψ correctly reproduces the
observed coupling when operating on φn with H ′. It is important to exclude from D0(−1) and D0(0) terms corresponding to
negative quantum numbers of φn to avoid coupling to levels that physically do not exist.

At the H point, � = 0 so the γ3 matrix elements vanish and the Landau levels can be obtained simply by diagonalizing the
4 × 4 matrix D0(n). The analytic expressions for the Landau levels at the H point are given in Eq. (1). Away from the H point,
the infinite matrix HSWM has to be truncated and numerical techniques used to find the eigenvalues.
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