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Graphene-based polaritonic crystal
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It is shown that monolayer graphene deposited on a spatially periodic gate behaves as a polaritonic crystal. Its
band structure depending on the applied gate voltage is studied. The scattering of electromagnetic radiation from
such a crystal is presented calculated and its spectral dependence is analyzed in terms of Fano-type resonances
between the reflected continuum and plasmon-polariton modes forming narrow bands.
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I. INTRODUCTION

Coupling of light to the surface charges at a metal-dielectric
interface gives rise to a special kind of evanescent elec-
tromagnetic (EM) waves called surface plasmon-polaritons
(SPPs).1 The specific properties of SPPs allow for their
use in variety of practical applications. The sensitivity of
SPPs to the properties of the dielectric, the metal, and the
interface is used in SPP-based sensors2,3 and in high-resolution
imaging.4–6 Surface plasmons give rise to very large EM fields
at the surface, which is important for surface-enhanced optical
spectroscopies.7 Moreover, the SPP wavelength can be much
smaller than the photon wavelength, opening the possibility
for further miniaturization of photonics components, a new
field of research called nanoplasmonics.8 Of particular interest
is the ability to tune SPP modes in plasmonic devices by
external control: using an electric field in a liquid crystal,9

a magnetic field in a magneto-optically active substrate,10

thermal heating,11 or a light beam focused on a nonlinear
coating.12

The possibility of tuning the amount of free carriers in
graphene using an external gate allows for an effective control
of the material’s optical properties.13–16 Exploring graphene,
a tunable two-dimensional (2D) metal, for plasmonics at
the nanoscale reveals new physical effects and opens excit-
ing possibilities in this field.17–20 When compared to their
counterparts in conventional 2D electron systems, SPPs in
graphene exhibit some new and unusual properties, such as the
1/4-power density dependence of the SPP frequency17 and the
existence of s-polarized waves.18 Moreover, SPPs in graphene
can potentially be used in a variety of practical applications.
For example, using the amplification of SPPs in graphene
opens the possibility to create a terahertz radiation source;21

employing the attenuated total reflection (ATR) configuration
with a gated graphene layer allows for a resonant switching of
the reflection coefficient of an external EM wave from nearly
unity to almost zero.22

Recently, a new class of metamaterials with a high potential
interest for transformation optics was proposed, based on
SPPs in graphene, either deposited on a uneven surface23

or composed of an array of microribbons.24 When SPPs
propagate along a periodically modulated surface, the concept
of a “surface polaritonic crystal” can be introduced,5 where the
SPP dispersion shows a band-gap structure,25 in analogy with
a photonic crystal. In this paper we propose and theoretically
analyze a different type of SPP crystal, based on a graphene

sheet deposited on top of a periodically modulated gate
electrode (wafer), as schematically represented in Fig. 1(a).
Using graphene as a polaritonic crystal opens the possibility
of tuning the positions and the widths of the gaps in the
spectrum as well as the plasmonic resonance frequencies.
This can be done not during the fabrication process (as in
Ref. 26), but dynamically, by varying gate voltage applied to
graphene.

The paper is organized as follows. In Sec. II we describe
the model of the polaritonic crystal and derive expressions
for the SPP dispersion relation and for the reflectivity of this
structure. In Sec. III we discuss the general properties of SPPs
in a graphene-based polaritonic crystal as well as the details
of SPP excitation via an external electromagnetic wave, with
and without the prism. Finally, in Sec. IV, the main results of
the paper are summarized.

II. ELECTROMAGNETIC WAVES IN MONOLAYER
GRAPHENE DEPOSITED ON A PERIODICALLY

MODULATED GATE

In order to achieve the periodic modulation of graphene’s
conductivity, we consider a single graphene layer in the plane
z = 0 deposited on a SiO2 substrate with a dielectric constant
ε1 [see Fig. 1(a)]. The opposite side of the substrate has
a periodic relief with a spatial period D, such that h(x) =
h(x + D). To be specific, we will consider the dielectric
thickness modulation of the form h(x) = h0[1 + a cos(gx)],
where a is the modulation depth and g = 2π/D. A conductive
wafer is placed beneath this modulated surface, serving as a
gate contact. If a constant gate voltage V is applied between
the graphene layer and the wafer, a periodic modulation of
the graphene conductivity can be achieved. If D � h(x),
the carrier density in graphene can be expressed as n(x) =
ξε1V/4πeh(x), where e is the electron charge and ξ is
a coefficient between 1 and 2 depending on the charge
distribution in the corrugated gate electrode (further in the
paper we use ξ = 1). Owing to the periodicity of the surface
relief, the carrier density in graphene is a periodic function
with the same period D, thus resulting in the periodicity of
its optical conductivity, σ (x,ω) = σ (x + D,ω). The latter can
be related to the local value of the chemical potential counted
with respect to the Dirac point, μ(x) = h̄vF {πn(x)}1/2, where
vF is the Fermi velocity.
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FIG. 1. (Color online) (a) Geometry of the system: “Sandwich-
like” structure containing a graphene layer on a substrate composed
of a dielectric spacer (with dielectric constant ε1) and a transparent
conductive wafer with a periodic interface relief. (b) Real part of
the SPP frequency versus wave vector in the first Brillouin zone,
calculated for a single graphene layer at interface of two semi-infinite
dielectric media. (c),(d) Edges of the first two lowest gaps (at edge
and at center of Brillouin zone) versus modulation depth a (c) or gate
voltage V (d). The parameters are the following: ε2 = 1, ε1 = 3.9,
h0 = 300 nm, D = 20.67 μm, a = 0.6 (b) and (d). In panels (b)
and (c) V = 50 V, corresponding to an average chemical potential
μ̄ ≈ 0.222 eV. In panel (b) the light lines for the cladding media,
kc/ω = √

εm, are shown dashed (m = 1) and dash-dotted (m = 2).

As it is shown below, the periodic modulation of the optical
conductivity leads to the possibility of direct coupling of a
propagating EM wave to the surface plasmons [Fig. 1(a),
left, where ε2 is the dielectric constant of the medium above
graphene]. However, only those SPP modes which lie within
the light cone, ω/k = c/

√
ε2, shown by dash-dotted lines in

Fig. 1(b), can be excited this way. In general, for the SPP
excitation one has to consider an ATR structure like the one
described in Ref. 22, which includes a prism with a dielectric
constant ε3 [Fig. 1(a), right]. Usually there is a gap between
the graphene sheet and the prism, which we shall model as a
dielectric layer of a thickness d and a dielectric constant ε2.
We assume that the prism occupies the half space z < −d and
a p-polarized EM wave impinges on the boundary z = −d,
coming from z = −∞ at an angle of incidence �.

Since the dielectric properties of the structure
are periodic along x, the solution of Maxwell’s
equations, rotE(m) = iκH(m), rotH(m) = −iκεmE(m) for
the p-polarized wave [with components E = (Ex,0,Ez)
and H = (0,Hy,0)] can be written as Fourier-Floquet

series:

H (m)
y (x,z) =

∞∑
n=−∞

[
A(m)

n exp
(
κq(m)

n z
)

+B(m)
n exp

(−κq(m)
n z

)]
exp[i(k + ng)x], (1)

E(m)
x (x,z) =

∞∑
n=−∞

q(m)
n

iεm

[
A(m)

n exp
(
κq(m)

n z
)

−B(m)
n exp

(−κq(m)
n z

)]
exp[i(k + ng)x]. (2)

In Eqs. (1) and (2), q(m)
n =

√
[(k + ng)/κ]2 − εm is the in-

plane component of the photon wave vector in the medium m

(m = 1,2,3; m = 3 applies only for the ATR configuration),
κ = ω/c, and c is the speed of light in vacuum. Although the
substrate is finite, for simplicity we shall consider the medium
1 as semi-infinite in the wave equations. If the gate electrode
is transparent, this simplification is not crucial for the analysis
of the optical properties of the modulated structure. Boundary
conditions at z = −d imply the continuity of the tangential
components of the electric and magnetic fields, [E(3)

x (x, −
d) = E(2)

x (x, − d), H (3)
y (x, − d) = H (2)

y (x, − d)]. At z = 0,
the tangential component of the electric field is continuous,
E(1)

x (x,0) = E(2)
x (x,0), while the discontinuity of the tangential

component of the magnetic field, H (1)
y (x,0) − H (2)

y (x,0) =
−(4π/c)jx = −(4π/c)σ (x,ω)Ex(x,0), stems from the pres-
ence of surface currents (caused by the SPP electric field)
in the graphene layer. Applying these boundary condi-
tions, one can find the explicit form of the transfer ma-
trices, M̂m←m+1, which relate the coefficients in Eqs. (1)
and (2) for different m, (. . . ,A(m)

n ,B(m)
n ,A

(m)
n+1,B

(m)
n+1, . . .)

T =
M̂m←m+1(. . . ,A(m+1)

n ,B(m+1)
n ,A

(m+1)
n+1 ,B

(m+1)
n+1 , . . .)T . The ma-

trices M̂m←m+1 consist of 2 × 2 blocks M̂m←m+1
n,l ,

M̂1←2
n,l = 1

2

⎛
⎝Q

(1,+)
n,l − 4πq

(2)
n

icε2
σn−l Q

(1,−)
n,l + 4πq

(2)
n

icε2
σn−l

Q
(1,−)
n,l − 4πq

(2)
n

icε2
σn−l Q

(1,+)
n,l + 4πq

(2)
n

icε2
σn−l

⎞
⎠ ,

M̂2←3
n,l = 1

2

(
Q

(2,+)
n,l eκ[q(2)

l −q
(3)
l ]d Q

(2,−)
n,l eκ[q(2)

l +q
(3)
l ]d

Q
(2,−)
n,l e−κ[q(2)

l +q
(3)
l ]d Q

(2,+)
n,l e−κ[q(2)

l −q
(3)
l ]d

)
,

where Q
(m,±)
n,l = δn,l

(
1 ± F (m)

n

)
, F (m)

n = εmq(m+1)
n /εm+1q

(m)
n ,

δn,l is a Kronecker symbol, σn = D−1
∫ D

0 σ (x,ω)
exp(−ingx)dx is the spatial Fourier harmonic of the
graphene conductivity.

The meaning of the coefficients A(m)
n , B(m)

n is different for
the different media. The waves corresponding to the different
terms in Eqs. (1) and (2) can be either propagating [with
Im(q(m)

n ) < 0] or evanescent [with Re(q(m)
n ) > 0]. Since the

incident wave in the medium 3 possesses only the n = 0
component (zero harmonic), Im(q(3)

0 ) < 0 and the coefficients
B(3)

n = δn,0Hi exp(−κq
(3)
0 d) are proportional to the magnetic-

field amplitude (Hi) in the incident wave. In the medium
1, the coefficients A(1)

n ≡ 0 correspond to the absence of
the corresponding harmonics coming from z = ∞. Then,
multiplying the matrices M̂1←2M̂2←3, and taking into account
the block-diagonal structure of the matrix M̂2←3, after some
algebra we obtain the following equations for the amplitudes
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of the reflected harmonics, rn = A(3)
n exp(−κq(3)

n d):

R̂ × (. . . ,rn,rn+1, . . .)
T = (. . . ,H i

n′ ,H
i
n′+1, . . .)

T , (3)

where the elements of the matrix R̂ and the vector Hi
n are

Rn,n′ =
[
δn,n′F (1)

n − 4πq
(2)
n′ σn−n′

icε2

] [
Sn′ + F

(2)
n′ Cn′

]
+δn,n′

[
Cn′ + F

(2)
n′ Sn′

]
, (4)

Hi
n = −

{[
δn,0F

(1)
0 − 4πq

(2)
0 σn

icε2

][
S0 − F

(2)
0 C0

]
+ δn,0

[
C0 + F

(2)
0 S0

]}
Hi, (5)

with Cn = cosh(κq(2)
n d) and Sn = sinh(κq(2)

n d).

III. RESULTS AND DISCUSSION

In order to obtain the general properties of SPPs in graphene
with periodically modulated conductivity, we first consider the
eigenvalue problem for the matrix R̂ leading to the dispersion
relation for SPPs in a flat 2D graphene layer placed between
two lossless dielectric media (ε1 and ε2). We put ε3 = ε2 and
solve the equation det(R̂) = 0. It yields complex eigenvalues
because the graphene conductivity σ (x,ω) has both real and
imaginary parts, therefore the SPP eigenmodes are dissipative.
The SPP dispersion curve for the real part of the frequency
eigenvalue, ω, vs wavenumber for the first Brillouin zone,
k ∈ [−g/2,g/2], is presented in Fig. 1(b). The imaginary part
of the frequency (mode damping) is an order of magnitude
smaller than ω. As it can be seen from Fig. 1(b), the SPP
dispersion curve is periodic in the k space, with the period g.
There are bands of allowed SPP frequencies, separated by gaps
opening at the edges and in the center of the Brillouin zone,
where SPPs do not exist. As expected, the widths of the gaps
increase with the increase of the modulation depth a [Fig. 1(c)].
A natural question arises: is it possible to control dynamically
the gap widths through some nondestructive external knob?
The positive answer to this question is evident from Fig. 1(d).
Since the chemical potential of graphene can be tuned by the
gate voltage, one can shift the spectral position and width of the
gaps by changing V . Therefore the SPP crystal band structure
can be controlled dynamically.

Another feature of the SPP spectrum in periodically
modulated graphene is that the “scan line,” k = κ

√
ε2 sin � ,

located within the dash-dotted lines in Fig. 1(b) crosses the
SPP dispersion curves. This situation is completely different
from the case of uniform graphene,22 where both phase and
group velocities of SPPs are smaller than the velocities of light
in the surrounding dielectrics. SPPs in periodically modulated
graphene can be excited by an external propagating EM wave,
without an ATR prism. This is illustrated by Fig. 2, where the
amplitudes of the reflected field harmonics are presented; they
have been calculated by solving Eq. (3) for d = 0 and ε3 = ε2

(in this case, ω is real).
At normal incidence (� = 0), the zero harmonic reflection

coefficient of the SPP crystal exhibits just one maximum at
h̄ω ≈ 10 meV [see Figs. 2(a) and 2(b)], which approximately
corresponds to the upper edge of the second gap in Fig. 1(b).
This is related to the parity of the SPP mode with respect

FIG. 2. (Color online) (a) Zero harmonic reflection coefficient
|r0/Hi |2 vs frequency and incidence angle for SPPs in periodically
modulated graphene with V = 50 V. (b)–(d) Zero harmonic reflection
coefficient (red solid lines) and relative square amplitudes, |rn/Hi |2,
of n = 1 (blue dashed lines) and n = −1 (black dashed lines)
harmonics for the incidence angles � = 0◦ (b), � = 20◦ (c), and
� = 80◦ (d) [the latter two correspond to the vertical dashed lines in
panel (a)]. (e),(f) Zero harmonic reflection coefficient vs frequency
and gate voltage for � = 20◦ (e) and � = 80◦ (f). Other parameters
are the same as in Fig. 1. In panels (a), (e), and (f) red (blue) color
corresponds to high (low) values of the reflection coefficient. In panels
(b) and (d) Fano-type fits are shown by dash-dotted (orange) lines,
with R0 = 0.1508, δR = 0.035, q = 2, h̄ω0 = 10 meV (b) and R0 =
0.116, δR = 0.08, q = 0.08, ω0 = 10.68meV (d); h̄γ = 0.1 meV.

to x = 0, since it is excited by a plane wave and h(x) is an
even function. Also from Fig. 2(b) it is clearly seen that the
enhanced reflection of the zero harmonic corresponds to the
excitation of the SPP harmonics with n = −1 and n = 1. They
correspond to the bottom of the third allowed SPP band and,
for normal incidence, are mixed into the k = 0 band bottom
mode. For oblique incidence [Figs. 2(c)–2(f)], there are two
resonances corresponding to the second and third SPP bands
and producing reflected field harmonics with n = ±1. SPPs
are effectively excited when the frequency and the in-plane
component of the wave vector of the incident EM wave
match those of SPP eigenmodes of the modulated graphene.
The energy of the incident wave is transferred into the SPP
harmonics with n = ±1, while the reflected wave in the far
field contains only zero harmonic. Note that the position and
the amplitude of the resonances can be controlled by changing
the gate voltage [Figs. 2(e) and 2(f)]. Quite interestingly, the
direct excitation of n = ±2 and higher SPP bands can produce
propagating EM waves with |k ± g| � κ

√
ε2, scattered at

angles

�±1 = arcsin

(
k ± g

κ
√

ε2

)
.

Let us focus on the characteristic spectral dispersion of the
zero harmonic reflection coefficient around each of the SPP
resonance frequencies [Figs. 2(b) and 2(c)] where an intrinsic
mode of the SPP crystal is excited. This is an asymmetric
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FIG. 3. (Color online) Reflection coefficient of zero harmonic
|r0/Hi |2 vs frequency ω and angle of incidence � for ATR excitation
of SPPs in graphene with parameters ε3 = 16, ε2 = 1, ε1 = 3.9, h0 =
300 nm, D = 10.34 μm, a = 0.6, d = 10 μm, V = 50 V (a), or 90
V (b).

Fano-type resonance with a maximum accompanied by a
neighboring minimum. a phenomenon first discovered in the
ionization spectra27 of He and now known in many different
branches of physics including light scattering by photonic
crystals.28 If a discrete mode couples to a continuum of
excitations, the Fano resonance arises from the constructive
(destructive) interference of the localized and delocalized
waves, taking place above (below) the discrete mode frequency
ω0. A simple analytic expression to describe such a line shape
was suggested by Fano:27

F (ω) = (qγ + ω − ω0)2

(ω − ω0)2 + γ 2
, (6)

where γ is the mode damping and q is an asymmetry parameter
related to the relative strengths of the transitions associated
with the discrete and continuum modes. Figure 2(b) shows
a Fano-type fit, R(ω) = R0 + δR · F (ω), to the calculated
reflectivity spectrum (R0 and δR are constants). The coupling
between the continuum of propagating EM modes in the
medium 2 and the SPP Bragg mode of the polaritonic crystal
decreases with the increase of the incidence angle. When �

is close to the Brewster angle, �b = atan(
√

ε1/ε2) ≈ 63◦, the
resonant excitation of n = ±1 modes results in two narrow and
almost symmetric minima in the spectrum [see Fig. 2(d) where
the Fano fit corresponds to q = 0.08, compared to q = 2 in
Fig. 2(b)].

As mentioned above, the direct excitation of SPPs by a
propagating wave allows for probing only the part of the
polaritonic crystal band structure comprised between the dash-
dotted light lines in Fig. 1(b). Beyond this, one has to use the
ATR scheme where SPPs are excited by an evanescent wave
with a sufficiently large wavenumber, k = κ

√
ε3 sin � . The

results calculated for the ATR structure are presented in Fig. 3,
where the SPP excitation conditions correspond to a minimum
of the zero harmonic reflectance related to the gap between
the first and the second SPP bands. The mode anticrossing,
corresponding to the edges of the gap, is clearly seen in
Figs. 3(a) and 3(b) (near � ≈ 50◦, see insets). Comparison
of Figs. 3(a) and 3(b) shows that increasing the gate voltage
results in an increase of the gap width, as it could be anticipated
from Fig. 1(f).

IV. CONCLUSIONS

To conclude, we have demonstrated that a single graphene
layer deposited on a “sandwichlike” structure with a peri-
odically corrugated gate electrode has the properties of a
polaritonic crystal, namely, possesses a band structure with
gaps that can be tuned by the gate voltage. We showed
that electrostatic gating of graphene on top of a substrate
with a periodically modulated thickness results in a periodic
modulation of the charge-carrier density in graphene which
gives rise to a periodic modulation of graphene’s conductivity.
This crystal exhibits Fano-type resonances in the reflectance
coefficient of the reflected EM wave due to the excitation
of surface plasmon-polariton Bragg modes. In this kind of
crystal, the Fano resonances involving SPPs in graphene can
be excited directly (without using a prism) by the incident
EM wave upon its diffraction on the periodic modulation of
graphene’s conductivity.
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(2009).
20V. Ryzhii, A. Satou, and T. Otsuji, J. Appl. Phys. 101, 024509

(2007).

21V. Ryzhii, M. Ryzhii, and T. Otsuji, J. Appl. Phys. 101, 083114
(2007); F. Rana, IEEE Trans. Nanotechnol. 7, 91 (2008).

22Yu. V. Bludov, M. I. Vasilevskiy, and N. M. R. Peres, Europhys.
Lett. 92, 68001 (2010).

23A. Vakil and N. Engheta, Science 332, 1291 (2011).
24L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Zh. Hao, H. A. Bechtel,

X. Liang, A. Zettl, Y. Ron Shen, and F. Wang, Nat. Nanotechnol. 6,
630 (2011).

25W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, Phys.
Rev. B 54, 6227 (1996); N. Glass, M. Weber, and D. Mills, ibid. 29,
6548 (1984).

26H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu,
Ph. Avouris, and F. Xia, Nat. Nanotechnol. 7, 330 (2012).

27U. Fano, Phys. Rev. 124, 1866 (1961).
28A. Christ, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and

H. Giessen, Phys. Rev. B 70, 125113 (2004); M. V. Rybin, A. B.
Khanikaev, M. Inoue, K. B. Samusev, M. J. Steel, G. Yushin, and
M. F. Limonov, Phys. Rev. Lett. 103, 023901 (2009).

245409-5

http://dx.doi.org/10.1126/science.1153996
http://dx.doi.org/10.1038/nphys989
http://dx.doi.org/10.1021/nl201771h
http://dx.doi.org/10.1021/nl201771h
http://dx.doi.org/10.1103/PhysRevLett.97.266406
http://dx.doi.org/10.1103/PhysRevB.75.041404
http://dx.doi.org/10.1103/PhysRevB.75.205418
http://dx.doi.org/10.1088/0953-8984/21/2/025506
http://dx.doi.org/10.1209/0295-5075/87/27005
http://dx.doi.org/10.1103/PhysRevLett.99.016803
http://dx.doi.org/10.1103/PhysRevB.80.245435
http://dx.doi.org/10.1103/PhysRevB.80.245435
http://dx.doi.org/10.1063/1.2426904
http://dx.doi.org/10.1063/1.2426904
http://dx.doi.org/10.1063/1.2717566
http://dx.doi.org/10.1063/1.2717566
http://dx.doi.org/10.1109/TNANO.2007.910334
http://dx.doi.org/10.1209/0295-5075/92/68001
http://dx.doi.org/10.1209/0295-5075/92/68001
http://dx.doi.org/10.1126/science.1202691
http://dx.doi.org/10.1038/nnano.2011.146
http://dx.doi.org/10.1038/nnano.2011.146
http://dx.doi.org/10.1103/PhysRevB.54.6227
http://dx.doi.org/10.1103/PhysRevB.54.6227
http://dx.doi.org/10.1103/PhysRevB.29.6548
http://dx.doi.org/10.1103/PhysRevB.29.6548
http://dx.doi.org/10.1038/nnano.2012.59
http://dx.doi.org/10.1103/PhysRev.124.1866
http://dx.doi.org/10.1103/PhysRevB.70.125113
http://dx.doi.org/10.1103/PhysRevLett.103.023901

