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Effect of 13C isotope doping on the optical phonon modes in graphene:
Localization and Raman spectroscopy
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The effect of 13C isotope impurities on the phonon properties of graphene is discussed theoretically. We
calculated the values of the phonon lifetimes due to isotope impurity scattering for all values of densities, isotopic
masses, and for all wave vectors using second-order perturbation theory. We found that for natural concentrations
of 13C, the contribution of isotopic scattering to the phonon lifetime of the optical modes is negligible when
compared to the electron-phonon interaction. Nevertheless, for atomic concentrations of 13C as high as ρ = 0.5
both contributions become comparable. Our results are compared with recent experimental results and we find
good agreement both in the 13C atomic density dependence of the lifetime as well as in the calculated spectral width
of the G-band. Due to phonon scattering by 13C isotopes, some graphene phonon wave functions become localized
in real space. Numerical calculations show that phonon localized states exist in the high-energy optical phonon
modes and in regions of flat phonon dispersion. In particular, for the case of in-plane optical phonon modes, a
typical localization length is on the order of 3 nm for 13C atomic concentrations of ρ ≈ 0.5. Optical excitation
of phonon modes may provide a way to experimentally observe localization effects for phonons in graphene.
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I. INTRODUCTION

The 13C isotope exists in natural carbon in a 1.1% abun-
dance and the remaining 98.9% are 12C. Because of the low
concentration of 13C, we can usually neglect this isotope effect
for discussing the physical properties of graphene-related
materials. However, if we consider, for example, the intrinsic
spectral linewidth in Raman spectroscopy, the isotope effect
might be essential as one of the important intrinsic scattering
mechanisms. When we intentionally increase the 13C isotope
concentration in an sp2 material, the graphene-related material
made of varying concentrations of 13C has provided interest-
ing information for better understanding of phonon related
properties1 as well as growth mechanisms.2,3 The advantage
of the isotope enrichment technique is that only phonon
frequencies or thermal properties can be modified without
changing the electrical or chemical properties, so that we can
distinguish the electron-phonon interaction from electronic
or electron-electron interactions in making assignments for
unassigned optical spectral features.1 In the case of crystal
growth, if we substitute a 12C atom in a gas source molecule
by a 13C atom, we can get information on how the carbon
atoms from the gas molecule are used for the crystal growth
of carbon nanotubes2 and graphene.3

Miyauchi et al.1 made a 100% 13C single wall nanotube
(SWNT) sample by chemical vapor deposition using 13C
ethanol. Comparing the Raman spectra of 13C SWNTs and
12C SWNTs, they assigned the phonon-assisted peaks in the
photoluminescence spectra. Kalbac et al.4 observed the Raman
spectra of a special bilayer graphene sample on a substrate in
which the top (bottom) layer of the bilayer graphene consisted
of pure 12C (13C) so that they could separately investigate
the single-layer components of bilayer graphene. Costa et al.5

observed a frequency shift and broadening of the Raman G
band in single-wall carbon nanotubes as a function of 13C
concentration, and they suggested that these effects were
caused by phonon localization due to the elastic scattering
of phonons by the 13C atoms.5 In addition, they studied the
laser energy dependence of the G′ and D bands for pure 12C
and pure 13C samples. They found for each band that the slope
of the curve, which is sensitive to the electronic structure,
does not change with the isotope mass. This result serves as
strong experimental evidence that isotope enrichment does not
modify the electronic structure.

Many theoretical works are focused on thermal transport
properties of isotope-enriched samples. Savić et al.6 studied
the phonon transport of isotope disordered SWNTs and boron
nitride nanotubes in the presence of isotope disorder by
an ab initio calculation. They calculated the reduction in
thermal conductivity due to the impurities, and they concluded
that the reduction is mostly due to diffusive scattering of
phonons by the isotopes. More recently, Yamamoto et al.7

extended the previously mentioned calculations to study
phonon transmission fluctuations in carbon nanotubes, finding
a universal behavior with respect to phonon transmission,
tube chirality, and concentrations and masses of isotopes.
In these two works,6,7 the three transport regimes (ballistic,
diffusive, and localized) are observed, and localization lengths
are calculated via atomistic Green’s function formalisms,
while localization effects of the phonon wave function are not
discussed. As pointed out by Savić et al., localization effects
are difficult to observe in thermal transport measurements
because the thermal conductance is mostly dominated by the
ballistic and diffusive contributions. The localization regime
appears in the high-energy optical modes, and thus special
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experimental techniques capable of probing these high-energy
modes are required to observe any localization effects.

We are here interested in optical phonon scattering and
the localization effect in graphene, which are the main topics
of the present paper. Phonon localization is another example
of Anderson’s localization theory,8,9 which is applicable to
several wave phenomena like light10 or water waves,11 but has
in the past been mostly associated with electronic transport
in disordered crystals. When the phonon wave function is
localized, the phonon mean free path λph becomes finite and
proportional to the square of the localization length λ.

When we discuss the electron-phonon interaction of
graphene,12,13 we generally treat the phonon wave function
as delocalized in the crystal. However, in a real graphene
sample, we know that 1.1% of the atoms are 13C and thus
phonons have a finite lifetime τ and a finite localization length
λ due to the phonon scattering by 13C, which is one of the
main contributions to the natural linewidth γ of the Raman
spectra. Further, we need theoretical understanding on how the
localization length λ of the phonon is changed as a function
of 13C concentration so that we can explain the experimental
observations of Costa et al.5

In this work, we calculate the phonon wave function in a
large unit cell, large enough so that the localization length
λ is smaller than the size of this unit cell. When we add an
impurity to a perfect crystal lattice, the translational symmetry
is broken, and the wave vectors associated with the unit cell are
no longer good quantum numbers. This means that phonons
are scattered into other states, and some of the wave functions
are localized in real space by mixing many q states, where q

is the phonon wave vector.
It should be mentioned that the anharmonicity of the

vibration also produces phonon scattering. However, in this
paper, we do not discuss this effect for simplicity. Since the
anharmonicity effect should be significant for large phonon
amplitudes, this phenomenon is important only for high
temperatures and can, in principle, be tuned in experiments.

Our objective in the present work is twofold. On the one
hand, we calculate the optical phonon lifetimes due to impurity
scattering in order to have a value to compare with competing
processes. The advantage of performing this estimation is
that, assuming all scattering processes to be independent
(Matthiessen’s rule), our calculation of λ provides a way to
directly compare the lifetimes of the different interactions
that are important for phonon properties, such as the electron-
phonon interaction. Additionally, we calculate the localization
length as a function of impurity density to study localization
effects caused by isotope impurities. We focus particularly on
the LO and iTO modes because of their importance in the
Raman G band, the dominant feature in the first order spectra.

The outline of this paper is as follows. In Sec. II, we
briefly introduce the theoretical background necessary for the
calculation of phonon lifetimes and localization lengths. In
Sec. III, we show the calculated results for phonon lifetimes
as a function of 13C isotope concentration and for the different
wave vectors in the Brillouin zone (BZ). We compare our
calculated results with the experimental values obtained by
Costa et al.5 and we also calculate the phonon localization
length λ as a function of phonon frequency ω. In Sec. IV, a
summary of the present work is given.

(a) (b)

FIG. 1. (a) Unit cell of graphene and the translation vectors a1

and a2. (b) The BZ of graphene. Here, a is the lattice constant of
graphene (0.246 nm).

II. THEORETICAL BACKGROUND

We solve the phonon lifetime and localization problem
within the harmonic approximation in which up to fourth-
nearest-neighbor interactions are considered and using the
force constants of Jishi et al.14 The unit cell and the BZ
of graphene are shown in Fig. 1. The effect of adding a
13C isotope impurity to the lattice will not modify the force
constant parameters, as the extra neutron in each nucleus will
not modify the chemistry of the bonding. However, the isotope
impurity will affect the dynamics due to the increased mass of
the ion which is incorporated into the perturbed Hamiltonian.
In Sec. II A, we briefly describe the solution to the unperturbed
problem, in which we obtain expressions that will be useful
for calculating phonon lifetimes, and in Sec. II B, we describe
the model we used for estimation of phonon lifetimes.

A. Unperturbed Hamiltonian

The unperturbed Hamiltonian of phonons, within the
harmonic approximation, is given by

H =
∑
i,ν

pν
i · pν

i

2mν

+
∑

i,j,ν,ν ′

uν
i �

νν ′
ij uν ′

j

2
, (1)

where the subscripts i, j label the unit cell in the supercell and
ν labels the atom within the unit cell (i.e., i = 1,2, . . . ,N , and
ν = 1,2, which corresponds to the graphene sublattice A or B,
respectively) and uν

i and pν
i are the amplitude and momentum

of vibrations at the (i,ν)th atom, respectively. The term �νν ′
ij

is the interaction potential between the atoms at (i,ν) and
(j,ν ′), and mν is the mass of the atom at site ν within the unit
cell. uν

i and pν
i satisfy the commutation relation [uν

il,p
ν ′
j l′ ] =

ih̄δij δνν ′δll′ , where l,l′ = x,y,z. uν
i and pν

i can be expressed
by a Fourier transformation for wave vectors q within the BZ:

uν
i =

∑
q

eiq·rν
i√

N
uν

q, (2)

and

pν
i =

∑
q

e−iq·rν
i√

N
pν

q, (3)
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where rν
i is the equilibrium position of atom (i,ν). Then Eq. (1)

can be expressed in terms of q:

H =
∑
q,ν

pν
q · pν

q
†

2mν

+
∑
q,ν,ν ′

uν
q
†�νν ′

q uν ′
q

2
, (4)

where �νν ′
q = ∑

j �νν ′
ij eiq·(rν′

j −rν′
i ). We diagonalize the Fourier

transform of the interaction potential �q according to

∑
ν ′

�νν ′
q√

mνmν ′
eν ′
qn = ω2

qneν
qn, (5)

where ωqn (eqn) is the eigenvalue (eigenvector) of the nth nor-
mal phonon mode for wave vector q. The eigenvectors satisfy
the normalization condition

∑
ν eν∗

qn · eν
qn′ = δnn′ . Further, we

define the displacement of the nth normal mode with wave
vector q by

Xqn =
∑

ν

√
mνeν∗

qn · uν
q, (6)

and, similarly, for the momentum,

Pqn =
∑

ν

1√
mν

eν
qn · pν

q . (7)

The Hamiltonian of Eq. (4) is thus simplified to

H =
∑
q,n

PqnP
†
qn

2
+ ω2

qnX
†
qnXqn

2
, (8)

where [Xqn,Pq ′n′ ] = ih̄δqq ′δnn′ . Finally, we define the annihi-
lation and creation operators, respectively, as

aqn =
√

ωqn

2h̄
(Xqn + iP †

qn/ωqn), (9)

and

a†
qn =

√
ωqn

2h̄
(X†

qn − iPqn/ωqn), (10)

which satisfy [aqn,a
†
q ′n′ ] = δqq ′δnn′ . The Hamiltonian now

becomes

H =
∑
qn

h̄ωqn

(
a†

qnaqn + 1

2

)
. (11)

B. Estimation of the phonon lifetime

There are two ways to calculate the phonon lifetime for each
phonon mode. In the first approach, we can use the eigenstates
and eigenvalues found for a large graphene supercell and
use these values to determine the T matrix.15 In the second
approach, we can treat the change in the mass matrix as a
perturbation and find the phonon lifetime using perturbation
theory. We use the second approach to gain better physical
insight and to obtain explicit analytic expressions.

If we add 13C isotope impurities into the lattice, we can
consider the Hamiltonian in Eq. (1) in which we set the mass
mν equal to the average mass m̄ = ∑

i,ν mi,ν/2N . Then, the
perturbation to the Hamiltonian 
H is due to the kinetic term

(expressed in terms of velocities) and given by


H =
∑
jν ′

f ν ′
j

2
m̄u̇ν ′

j · u̇ν ′
j , (12)

where f ν ′
j = (mν ′

j − m̄)/m̄. We can express Eq. (2) in terms of

creation and annihilation operators aqn and a
†
qn using Eqs. (9)

and (10),

uν ′
j =

∑
qn

√
h̄

2Nm̄ωqn

eiq·rν′
j (aqn + a

†
−qn)eν ′

qn, (13)

and then replace Eq. (13) in Eq. (12) to obtain


H =
∑

qq ′nn′
hnn′

qq ′ (aqna
†
−q ′n′ + a

†
−qnaq ′n′ ), (14)

where we dropped the terms involving the product of two
creation (annihilation) operators as they do not conserve
energy. These two terms that were dropped are going to
be relevant beyond second-order perturbation theory. The
amplitude for scattering a phonon from q to q ′, denoted by
hnn′

qq ′ , is given by

hnn′
qq ′ = h̄R(q,q ′)

4N

√
ωqnωq ′n′

∑
ν ′

eν ′
qn · eν ′

q ′n′ , (15)

where R(q,q ′) = ∑
j f ν ′

j ei(q+q ′)·rν′
j is the phase factor. We can

use the Fermi golden rule to determine the transition rates
Pi→f for phonon scattering from the initial (i) to final state (f),

Pi→f = 2π

h̄
|〈f |
H |i〉|2δ(Ef − Ei), (16)

within second-order perturbation theory. The transition
probability for scattering from state (q,n) to (q ′,n′) is
given by

P nn′
qq ′ = 2π

h̄
Nqn(Nq ′n′ + 1)

∣∣hnn′
qq ′

∣∣2
δ(h̄ωqn − h̄ωq ′n′ ), (17)

where Nqn (Nq ′n′ ) is the number of phonons in state (q,n)
[(q ′,n′)], and the lifetime of the phonon mode (q,n) is then
given by

τ−1
qn = π

2N2

∑
q ′n′

|R(q,q ′)|2ωqnωq ′n′(e∗
qn · eq ′n′ )2δ(ωqn − ωq ′n′ ).

(18)

Because we assume that the impurities are randomly dis-
tributed, we can use the random phase approximation to
evaluate |R(q,q ′)|2. If we take an ensemble average of
|R(q,q ′)|2 over different realizations of the isotopically doped
samples

〈|R(q,q ′)|2〉 =
〈∑

j,l

f ν ′
j f ν ′

l ei(q+q ′)·(rν′
j −rν′

l )

〉
, (19)

we obtain

〈|R(q,q)|2〉 =
∑

j

f ν ′
j f ν ′

j = N
m2ρ(1 − ρ)

(m0 + ρ
m)2
, (20)

where ρ is the number density of 13C (0 � ρ � 1), m0 is the
mass of 13C, and 
m is the mass difference between 12C and
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FIG. 2. Density dependence of the lifetime given by the function
f (ρ) as defined in Eq. (22).

13C isotopes. We discussed previously that our unperturbed
Hamiltonian of Eq. (1) is the one corresponding to the average
mass m̄ so that the frequency spectrum is equivalent to the one
corresponding to pure 12C but scaled as ∝ (m̄)−1/2 in the case of
general ρ. Thus, if we rescale frequencies as ω = ω0√m̄/m0,
where m0 is the mass of 12C, we can factorize the density ρ and
isotope mass dependence (m0 + 
m) from the summation in
Eq. (18), yielding a phonon lifetime

τ−1
qn = πf (ρ)

2N

∑
q ′n′

ω0
qnω

0
q ′n′ (e∗

qn · eq ′n′)2δ
(
ω0

qn − ω0
q ′n′

)
, (21)

where the frequencies ω0
qn correspond to the nth phonon mode

frequency at q of 12C. The function f (ρ) contains all the
information about isotope mass and density:

f (ρ) = 
m2ρ(1 − ρ)

(m0 + ρ
m)2

√
m0

m0 + ρ
m
. (22)

The function f (ρ) is plotted versus isotope density ρ in Fig. 2
for the cases of 13C and 14C. Here, we see that the effect of
using 14C instead of 13C produces a reduction of the lifetime by
a factor of approximately 4. 14C is an unstable isotope, while
13C is stable and is found in naturally occurring materials.
Thus we focus on 13C for the rest of the paper. Nevertheless,
we keep in mind that using 14C just changes the prefactor of
Eq. (21) as plotted in Fig. 2. In addition, we can transform
Eq. (18) into an integral over the BZ, yielding

τ−1
qn = f (ρ)S

8π

∑
n′

∫
d2q ′ω0

qnω
0
q ′n′(e∗

qn · eq ′n′ )2δ
(
ω0

qn − ω0
q ′n′

)
,

(23)

where S is the area of the unit cell. Here we emphasize
again that the term inside the summation of Eq. (23) has no
dependence on impurity density or isotope mass, so that the
integration of Eq. (23) can be done using pure 12C eigenstates
and eigenvalues, independent of the particular isotopically
doped sample we are considering. Therefore we can express
Eq. (23) as

τ−1
qn (ρ) = f (ρ)Iqn, (24)

where the function f (ρ) contains the density ρ dependence of
the lifetime, while Iqn contains the wave vector (and frequency)
dependence and gives the correct units of s−1. The value of Iqn

FIG. 3. (a) An example of a supercell, with N = 30 unit cells and
60 carbon atoms. Here, Nx and Ny label the number of unit cells in
the x and y directions, respectively. (b) The BZ of this supercell.

is increased as we go to modes with higher frequencies and in
points of the BZ with high density of states. In the next sections,
we will drop the superscripts 0 in Eq. (23) but taking into
account that we are referring to the eigenstates and eigenvalues
of a pure sample containing only 12C atoms. Equation (24) is
the result of using second-order perturbation theory and the
random phase approximation. Inclusion of higher-order terms
in the perturbation expansion will result in a more complicated
expression of the phonon lifetime in Eq. (24) in which the ρ

density dependence can no longer be factorized.

C. Localized states

To estimate the localization length λ of the localized states,
we numerically solve the Hamiltonian of a supercell containing
N unit cells of graphene. Even though this approach may
become time consuming for unit cells large enough to do quan-
titative calculations, the advantage of numerically calculating
the eigenstates and eigenvalues (as opposed to using perturba-
tion theory) is that we can obtain additional information about
the eigenstates that would be difficult to calculate otherwise.
An example of the type of supercell consisting of 2N atoms that
we used in our calculations is shown in Fig. 3. Here, we intro-
duced periodic boundary conditions for the supercell. Because
of the breaking of the translational symmetry by the introduc-
tion of 13C impurity atoms, we change the labels from uν

i , with
i = 1,2, . . . ,N and ν = 1,2, to uμ, with μ = 1,2, . . . ,2N .
Therefore the displacements uμ in the supercell have 6N

components. The diagonalization of this problem is analogous
to the case of the unperturbed Hamiltonian, but in this case, we
diagonalize the large 6N × 6N (real) matrix �νν ′

according to

∑
μ′

�μμ′

√
mμmμ′

eμ′
j = ω2

j eμ

j (μ = 1, . . . ,2N ; j = 1, . . . ,6N ),

(25)

in which ωj (eμ

j ) is the eigenvalue (eigenvector) of the j th
normal mode. The orthonormal condition on the eigenvectors
eμ

j is given by

2N∑
μ=1

eμ

j · eμ

j ′ = δjj ′ . (26)
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If we have extended states, on average |eμ

j | ≈ 1/
√

N . On
the other hand, for a highly localized state, we have |eμ

j | ≈ 1
for only a few atoms and |eμ

j | ≈ 0 for the rest. Therefore
we can distinguish localized states from nonlocalized states
by defining the second moment of the displacement field Aj

(also known as the inverse participation number16) as

Aj =
∑

ν

(
eν
j · eν

j

)2
. (27)

Most of the eigenstates will be extended states in which case
Aj ≈ 1/N , while for localized states Aj is much larger and
Aj ≈ 1.

At the same time, the function Aj is also useful to estimate
the localization length λj of the eigenstates j , since λj and
Aj are related by λj ∝ A

−1/2
j .9 As we know, for the 13C

concentration ρ = 0, all states are extended states. We can
then estimate the localization length of state j by

λj

λ0
=

(
Ā0

Aj

)1/2

, (28)

where λ0 is the size of the supercell and Ā0 is the average value
of Aj for the special case of a pristine graphene sample with
only 12C atoms. For our calculations, we used a supercell
containing N = 2700 unit cells (λ0 ≈ 13 nm) which, for
natural carbon, contains 59 impurity atoms.

III. RESULTS

A. Phonon lifetime

We calculated numerically the phonon lifetime for the
elastic scattering process using Eq. (23). Even though we do
not here intend to discuss acoustic phonon modes, we note that
an analytical expression for the lifetime of the acoustic phonon
modes can be obtained by similar means and can be found in
the literature in relation to discussions of heat transfer.17 This
will be useful to obtain an idea about the order of magnitude
of the optical phonon scattering process, but we also calculate
numerically the values of τ−1

qn from Eq. (23) for all phonon
modes. Due to our special interest in the optical modes, we
discuss these modes in more detail. Then we can compare the
contribution to phonon scattering coming from the presence
of isotopic impurities with competing processes contributing
to τ−1

qn .

1. Low-energy acoustic phonon modes

For the case of low-energy acoustic phonon modes in
graphene, we have linear dispersion relations for the LA and
iTA modes near the � point and a quadratic relation for the
oTA mode. The integration of Eq. (23) over reciprocal space
can be done analytically for the three acoustic modes. Because
of the dot product term in Eq. (23), we have a decoupling in
the expression of the in-plane and out-of-plane phonon modes.
For the in-plane modes, we use ωq ′n′ ≈ cn′q ′ in Eq. (23),
where cn′ is the velocity of the phonon mode. We can define
further an average value over the BZ for the dot product of
the polarization for the in-plane modes pin = 〈(e∗

qn · eq ′n′)2〉.
The exact values for this polarization term in the case of
graphene can be found in the paper by Lindsay et al.18

FIG. 4. (Color online) Plot of Iqn = (τf )−1 for the different
phonon modes and wave vectors in the two-dimensional BZ as defined
in Eq. (24), where f (ρ) is defined in Eq. (22) and plotted in Fig. 2.
Intensity scales are plotted beside each mode map. In-plane optical
phonon modes (iTO and iLO) are seen to have a significantly lower
lifetime than the other modes.

Substituting pin into Eq. (23) and solving the indicated
integral, we obtain for the phonon lifetime

τ−1
qn = f (ρ)Spin

4

(∑
n′

c−2
n′

)
ω3

qn = f (ρ)Spin

2c̄2
ω3

qn. (29)

Similarly, for the out-of-plane phonon modes using
ωq ′ = bq ′2, and pout = 〈(e∗

qn · eq ′n′ )2〉 for n =out-of-plane, we
obtain for the oTA mode

τ−1
qn = f (ρ)Spout

8b
ω2

qn. (30)

The order of magnitude of the phonon lifetime of the optical
in-plane modes (LA and iTA) due to isotopic impurities can
be estimated by evaluating Eq. (29) at the BZ boundaries
and using S = 0.052 nm2, pin ≈ 0.5, c̄ ≈ 20 km/s, h̄ωqn ≈
0.15 eV (ωqn at q ≈ π/a) and evaluating f (ρ) at the desired
13C density. Therefore the order of magnitude of the lifetime
of an in-plane optical phonon mode for the natural 13C isotopic
density (ρ = 0.011) is τ ∼ 30 ps, and for a 13C concentration
of ρ = 0.5, we obtain a much shorter lifetime of τ ∼ 1 ps.

2. General phonon lifetime

For the general case of wave vector q and phonon mode n,
we do a numerical integration of Eq. (23) over the BZ. The
value of (τf )−1 is plotted as a function of q in the BZ and for
all phonon modes in Fig. 4. As discussed in Eq. (24), the value
of (τf )−1 is independent of isotope density or isotope mass
and to obtain a numerical value for the phonon lifetime τ , we
must first calculate the value of f (ρ) of Eq. (22) from Fig. 2
depending on the particular values of 13C concentrations in
the sample. As expected, optical phonon modes are sensitively
affected by the isotope impurities, while acoustic modes close

245406-5



RODRIGUEZ-NIEVA, SAITO, COSTA, AND DRESSELHAUS PHYSICAL REVIEW B 85, 245406 (2012)

FIG. 5. The points are the experimental values for the spectral
width γG (FWHM) of the G band obtained by Costa et al.5 and the
dashed curve is γG obtained by fitting Eq. (31) with the values of
γ

exp
e-ph = 11.2 ± 0.4 cm−1 and γ

exp
ph-imp = 5.2 ± 0.4 cm−1.

to the � point are less affected. For the acoustic modes, and
close to the � point, we observe the power law behavior
obtained in the previous section, i.e., (τf )−1 ∝ ω3 ∝ q3 for the
in-plane modes, and (τf )−1 ∝ ω2 ∝ q4 for the out-of-plane
modes. There is also a large difference in the lifetime scale
between in-plane and out-of-plane phonon modes due to
the large difference in the stiffness of the relevant modes in
graphene.

We now use the calculated values of the phonon lifetime
for the optical modes at the � point to make comparisons with
previously calculated values of the electron-phonon coupling
interaction in graphene. From Fig. 4, we obtain that at the
� point for the in-plane optical modes, (τf )−1 ≈ 0.8 fs−1 and
from Fig. 2, f (0.5) = 1.5 × 10−3 and f (0.011) = 7.5 × 10−5.
Then, the value of the phonon lifetime due to 13C impurities
(no other lifetime limiting effects included) is τph−imp ≈
0.83 ps for an isotopic atomic density of ρ = 0.5 and a value
τph−imp ≈ 16.7 ps for naturally occurring carbon. Previously
calculated results for the electron-phonon coupling at the �

point of the optical modes19,20 are on the order τe-ph ≈ 0.6 ps.
Thus it is expected that for high concentrations of isotope
impurities, the scattering rates for the isotopic impurity can
become as large as that for the electron-phonon interaction.
However, for concentrations lower than ρ = 0.1, the isotope
effect makes only a minor contribution to the phonon lifetime
when compared to the electron-phonon interaction for optical
phonon modes.

Using the experimental values in Costa et al.5 and assuming
the Matthiessen rule holds for the two scattering mechanisms
(τ−1

ph = τ−1
ph-imp + τ−1

e-ph), we can estimate the contribution of the
isotope impurities to the spectral width of the G-band γG. We
plot in Fig. 5 the experimental values of γ

exp
G [full width at half

maximum (FWHM)] and taking into account that the spectral
width γ is related to the lifetime τ as γ ∝ τ−1, we fit these
values as

γG = γ
exp
e-ph + γ

exp
ph-imp

f (ρ)

f (0.5)
, (31)

where f (ρ) is defined in Eq. (22), and where we assume that
the electron-phonon coupling is the main competing process.
The value γ

exp
ph-imp obtained from the fitting as defined in
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FIG. 6. (a) Phonon dispersion for monolayer graphene.14 (b) and
(c) Normalized localization length λ/λ0 (λ0 is the size of super cell)
as a function of the phonon frequency for the atomic isotope impurity
densities of (b) ρ = 0.1 and (c) ρ = 0.2 (surface densities of 3.8 and
7.6 nm−2, respectively).

Eq. (31) corresponds to the linewidth at a 13C concentration
of ρ = 0.5. The values obtained from the fitting are γ

exp
e-ph =

11.2 ± 0.4 cm−1 and γ
exp
ph-imp = 5.2 ± 0.4 cm−1 and the curve

for γG(ρ) is plotted with dashed lines in Fig. 5. We see
that the experimental data are well described by the dashed
curve for our model. The in-plane phonon optical modes at
the � point make the main contribution to the G band in
Raman spectroscopy. If we consider our calculated value of
the phonon lifetimes at the � point of the in-plane optical
modes (τph-imp ≈ 0.83 ps), and using the uncertainty principle,
we obtain γph-imp ≈ h̄/τph-imp ≈ 6.0 cm−1. This result is in
good agreement with the experimental result of 5.2 cm−1.

Considering that isotopic defects do not interact directly
with electrons, we expect our results to extend to other Raman
features. In particular, isotope impurities alone cannot account
for the presence of the D band because of the null matrix
elements for elastic scattering of the electrons by the isotopic
defects. The D band, if present, should originate from other
types of defects and the main contribution of 13C atoms would
be to shift the D-band frequency due to the mass effect and
change the spectral width due to the reduced phonon lifetime.

B. Phonon Localization

To find the phonon localization length, we first compute
Aj = ∑

μ(eμ

j · eμ

j )2 [see Eq. (27)] for random impurities at
different impurity concentrations ρ in a supercell. In the
previous section, we discussed the case where if the phonon
wave function is highly localized, Aj is close to 1, while if it
is delocalized, Aj scales as 1/N . In Fig. 6, we plot the phonon
dispersion of graphene as well as the localization length as
a function of energy for the different eigenstates and for an
impurity density of ρ = 0.1 and 0.2. The localization length
was normalized by λ0 = 13 nm as described in Sec. II C. Here,
it is shown that most states will be extended (λ/λ0 ≈ 1) within
the size of our supercell, but a few states are localized. These
localized states do not occur at random energies but rather
occur preferentially at high phonon energies and in regions
with flat phonon dispersion (near the M or � points). For
high frequencies, and in regions with flat phonon dispersions,
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backscattering effects become increasingly important and thus
localized wave functions are observed. It is in these regions
of the spectrum where the localized regime is established
when considering phonon transport, as discussed in Savić
et al.6 Here we calculate directly the localization length of
the wave function using the inverse participation number Aj .
Calculated characteristic lengths of a few nanometers for the
localization length λ are comparable to those found using a
different approach in Savić et al.6 and Yamamoto et al.7 in the
high-energy spectrum (in the proximity of 1600 cm−1 where
the Raman G band is located).

In the case of 1D crystals, it can be shown that all states
become localized due to random impurities,9 and in the case
of 2D crystals, a similar behavior is expected as in the 1D
case. In the case of 3D crystals, however, a transition from
extended to localized states is expected as the energy is moved
toward the band edge energies. This shows that localization
phenomena are strongly dependent on dimensionality, and
therefore careful attention should be paid when comparing
results for nanotubes and graphene. Considering that the
localized states under consideration have localization lengths
on the order of a typical nanotube diameter, the comparison
is valid in this case but stops to hold when considering
lower frequency phonons with localization lengths on the
micrometer scale. In addition, the parameter space when
studying localization phenomena in carbon nanotubes is very
rich because of the tube diameter and chirality dependence
that is not present in graphene.

In this work, we mainly focus on the � point of the in-plane
optical modes (LO and iTO branches) due to the dominant
effect of these modes on the large G-band feature of the Raman
spectra. Thus the present size of the supercell is sufficient
for our purposes of examining localization effects due to 13C
impurities. We also plot in Fig. 6 the calculated values for
the out-of-plane phonon modes, where localization effects are
also visible in Figs. 6(b) and 6(c) (ω ≈ 900 cm−1). Infrared
measurements of these modes may provide further information
on localization phenomena in this range of frequencies. Even
though a softening of the out-of-plane force constants may
provide an enhanced effect, it is not clear if this effect will
be dominant in an experiment because there will also be
an increase of stiffness when considering the interaction of
graphene with the substrate (increase of the out-of-plane force
constants) or curvature effects if the experiments are done with
carbon nanotubes.

In Fig. 7(a), we plot the average localization length λ for
optical modes in a phonon frequency interval corresponding to
the � point of the in-plane optical modes (ω ≈ 1600 cm−1) as a
function of 13C isotope concentration ρ. From the calculations,
a typical localization length is on the order of λ ≈ 3 nm.
Examples of the average displacement |u| of the atoms with
respect to their equilibrium position as a function of position
(projected on the x axis) for localized states are shown in
Figs. 7(b) and 7(c) for two samples with ρ = 0.2 and 0.4,
respectively. Many factors contribute to having an asymmetric
curve after averaging over many eigenstates. On the one hand,
the effect of increasing the mass of a small number of atoms
in the lattice (by adding 13C impurities to a 12C lattice) is not
the same as decreasing the mass of a small number of atoms
in the lattice (by adding 12C impurities to a 13C lattice). As
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FIG. 7. (a) Localization length λ at the � point of the optical
phonon modes as a function of 13C atomic density ρ. (b) and
(c) Displacement (in arbitrary units) of two different localized
eigenstates as a function of position (projected on the x axis) for
an in-plane optical mode at the � point and corresponding to 13C
concentrations of (b) ρ = 0.2 and (c) ρ = 0.4.

discussed before, the localization length is calculated from the
inverse participation number Aj since λj ∝ A

−1/2
j , and Aj is

calculated using the amplitudes of the atoms in the eigenstate
j . When we decrease the mass of a small number of atoms,
the amplitude of these atoms with decreased mass within
some (optical) eigenstate will be larger than the corresponding
amplitude of the eigenstate in the pristine samples, and the
opposite happens when increasing the mass of a small number
of atoms. Therefore even though in both cases the participation
number will be larger than the one corresponding to the pristine
sample eigenstates, the effect of isotope doping will be more
abrupt in the first (decreasing mass) case. In addition, as the
frequency of an oscillator scales with mass m as ∝m−1/2, when
we change the 13C density of the sample, there are considerable
changes in the density of states and therefore, when averaging
over a frequency window, the comparison of localization
lengths λ at different densities ρ is not straightforward. The
physics behind the localization of the eigenstates is related to
the formation of islands that vibrate at a different frequency
from the rest of the lattice. At a 3-nm-length scale, for example,
around 100 atoms are vibrating in the localized mode and this
regime corresponds to the case of weak localization.21

C. Further interactions

In this work, we only considered 13C impurity scattering,
and disregarded all other kinds of scattering events. The objec-
tive of this approach was to obtain the characteristic lifetimes
associated with the 13C impurity. In this way, it is possible
to compare the effect of this scattering process with all other
competing processes to determine the relative importance of
each. We compared our results for the 13C isotopic impurity
scattering process with previously calculated values of the
electron-phonon interaction which is an important process
when considering optical phonons modes and their effect on
the Raman spectra. Another potentially important term is the
inclusion of anharmonic effects, which are associated with the
thermal expansion of the lattice and such effects are observ-
able through temperature-dependent Raman spectroscopy22

studies, usually included in molecular dynamics simulations
and are also important in phonon transport,23 which will be
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a future work. Because of the temperature dependence of the
anharmonic terms, such effects can, in principle, be tuned
and accounted for in an experiment. In addition, inclusion
of other types of defects like vacancies, grain boundaries,
dislocations, etc., is also necessary, and understanding the
relative importance of each of these scattering processes
on the phonon modes as a function of temperature and
other parameters remains to be investigated both theoreti-
cally and experimentally. In principle, static point defects
such as substitutional atoms can be studied using a similar
approach as the one used in this paper, while extended defects
such as grain boundaries or dislocations require a different
treatment.

IV. CONCLUSIONS

In the present work, we studied the effects of 13C isotope
doping on the optical phonon modes of graphene. Here, we
calculated the values of the phonon lifetimes due to isotope
impurity scattering for all values of 13C densities and for all
wave vectors within second-order perturbation theory. Phonon
lifetimes of optical phonon modes are considerably smaller
(0.8 ps) than the corresponding lifetimes of the acoustic modes
(which scale as a power law of the frequencies). We found that
for natural concentrations of 13C, the contribution of isotopic
scattering of optical modes is negligible when compared
to the electron-phonon interaction. Nevertheless, for atomic
concentrations as high as ρ = 0.5, both contributions become
comparable. Our results were compared with recent experi-
mental results of 13C Raman spectroscopy of nanotubes and
good agreement was found for both the density dependence of
the lifetime as well as in the calculated spectral width of the G
band. We predicted that the reduction of phonon lifetimes by
changing 13C isotopes to 14C would be approximately fourfold.

The localization of optical phonons due to isotope impu-
rities in graphene is calculated by the supercell method. Due

to phonon scattering by 13C isotopes, some graphene wave
functions become localized in real space. Localized states ap-
pear predominantly in the high-energy optical phonon modes
and in regions of flat phonon dispersion, where backscattering
effects become increasingly important. A typical localization
length is on the order of 3 nm for optical phonon modes at high
concentrations of 13C (in the range of number densities ρ =
0.2–0.8). Even though we focused attention mostly on in-plane
optical modes, out-of-plane phonon modes may also provide a
way to measure phonon localization effects and can be studied
experimentally by infrared measurements. Even though these
modes may also show pronounced localization effects due to
reduced out-of-plane force constants, the coupling of graphene
with the substrate (or curvature effects when considering
nanotubes) may introduce more complicated effects.

There are still many issues for further study. Even though
there has been a considerable amount of work done related to
electron-phonon coupling, inclusion of anharmonic effects and
phonon-defect interactions are also important for understand-
ing phonon-related processes in Raman spectroscopy24 and in
phonon transport more generally. In particular, substitutional
defects, vacancies, grain boundaries, and edges may make
an important contribution to the overall phonon scattering
processes. Calculating the relative importance of these inter-
actions in the full parameter space, including the temperature
dependence, is relevant not only for basic science, but also for
technological applications.

ACKNOWLEDGMENTS

We thank Professors M. A. Pimenta, D. A. Broido, and N.
Mingo for useful discussions. The MIT authors acknowledge
NSF Grant No. DMR-10-1004147. R.S. acknowledges MEXT
grant No. 20241023. S.D.C. acknowledges the fellowship from
the Brazilian Agency CAPES for the postdoctoral research at
UFMG.

1Y. Miyauchi and S. Maruyama, Phys. Rev. B 74, 035415 (2006).
2S. Fan, L. Liu, and M. Liu, Nanotechnology 14, 1118 (2003).
3X. Li, W. Cai, L. Colombo, and R. S. Ruoff, Nano Lett. 9, 4268
(2009).

4M. Kalbac, H. Farhat, J. Kong, P. Janda, L. Kavan, and M. S.
Dresselhaus, Nano Lett. 11, 1957 (2011).

5S. D. Costa, C. Fantini, A. Righi, A. Bachmatiuk, M. H. Rümmeli,
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