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Quantum Monte Carlo study of small aluminum clusters Aln (n = 2–13)
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Using fixed node diffusion quantum Monte Carlo (FN-DMC) simulations and density functional theory (DFT)
within the generalized gradient approximations, we calculate the total energies of the relaxed and unrelaxed
neutral, cationic, and anionic aluminum clusters, Aln (n = 1–13). From the obtained total energies, we extract
the ionization potential and electron detachment energy and compare with previous theoretical and experimental
results. Our results for the electronic properties from both the FN-DMC and DFT calculations are in reasonably
good agreement with the available experimental data. A comparison between the FN-DMC and DFT results
reveals that their differences are a few tenths of electron volt for both the ionization potential and the electron
detachment energy. We also observe two distinct behaviors in the electron correlation contribution to the total
energies from smaller to larger clusters, which could be assigned to the structural transition of the clusters from
planar to three-dimensional occurring at n = 4 to 5.
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I. INTRODUCTION

In the last two decades, aluminum clusters, Aln, have
attracted great interest due to their fascinating physical and
chemical properties as well as the possibility of new technolog-
ical applications.1–5 For instance, Al+7 and Al−13 are considered
to be the magic clusters as they contain 20 and 40 valence
electrons, respectively, with closed-shell structures. While
Al013 shows remarkable properties such as the superhalogen
behavior with a very high electron affinity exceeding those
of halogen atoms.6,7 A recent experimental study8 on the
reactivity of anionic clusters Al−n with water demonstrates
that their reactivity varies sharply with cluster size. Certain
clusters, such as Al−16, Al−17, and Al−18, with geometric structure
of multiple active sites result in production of H2 from water.
It indicates that these anionic Al clusters can be potentially
applied in water splitting. Furthermore, the size-dependent
fluctuations in the melting temperatures and latent heats of Al
clusters have attracted much attention for clusters with less
than a few hundred atoms.9,10 Changing the cluster size by
even a single atom can cause a substantial difference in the
melting behavior.

Considerable effort has been made in trying to understand
the properties of the Al clusters and their size dependence.
Experimentally measurable quantities such as ionization po-
tential (IP), electron affinity (EA), and detachment energy
(DE) of Aln clusters play essential roles to reach an atomistic
understanding of their stability and reactivity.6,10,11 In last
years, several experimental and theoretical studies have been
carried out to obtain the IP, EA, and DE of Aln clusters
as a function of their atomic size (number of atoms).
Experimentally, they are usually obtained by using pulsed
cluster beam flow reactor12 and photoelectron spectroscopy
techniques.13–15 Theoretical calculations are mostly based on

density functional theory.6,16–20 These studies have provided
valuable information for our understanding on the Aln clusters.
However, due to lack of accuracy both in theoretical and
experimental techniques, it is still challenging to obtain their
values in chemical accuracy.

Density functional theory (DFT) with approximated local
and semilocal exchange-correlation (xc) energy functionals
is currently the standard approach for computing materials
properties and has been successful in studies for a wide range
of materials. However, there exists no method to estimate the
errors resulting from the approximations in xc energy used in
DFT. It is often doubtful on the accuracy of calculated results
within DFT at describing a given property of materials.21

In order to obtain theoretical results with better precision
and clarify previous theoretical calculations, in this work,
we employ fixed node diffusion quantum Monte Carlo (FN-
DMC) method to study the electronic structure of the Aln
clusters (n = 1–13) in comparison with the DFT calculations.
In quantum Monte Carlo (QMC) method, one solves the
full many-body Schrödinger equation stochastically within
controlled approximations. In principle, the QMC calculation
eliminates those uncertainties presented in the DFT and,
consequently, can yield more accurate results providing a
valuable benchmark.

This paper is organized as follows. In Sec. II, we outline the
theoretical approaches for determination of the atomic struc-
tures and calculation of the total energy of the Al clusters. In
Sec. III, we present the general results of the atomic structures
using the coordination number concept. The total energies
of the Al clusters in different states are obtained and, con-
sequently, the ionization potentials and electron detachment
energies. We also discuss the electron correlation contribution
in these systems. We draw our conclusions in Sec. IV.
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II. THEORETICAL APPROACHES AND
COMPUTATIONAL DETAILS

We combine DFT and QMC calculations to address the
atomic structures and electronic properties of the aluminum
clusters. The atomic structure will be described by plain DFT
within the semilocal xc functional. The total energies of the
clusters will be calculated within the QMC method. Such a
combination is necessary due to the high computational cost
of the QMC calculations. From the obtained energies of the Aln
clusters in different states, we extract the ionization potential
(IP) and electron detachment energy (DE).

A. Atomic structure of Aln clusters

The knowledge of the atomic structures of the Aln clusters
plays a crucial role in the agreement between theoretical cal-
culations and experimental data. The atomic structures of the
neutral, cationic, and anionic Aln clusters are calculated from
first-principles molecular dynamics (MD) simulations based
on DFT22,23 within the generalized gradient approximation24

(GGA) proposed by Perdew, Burke, and Ernzerhof (PBE),25

and the projected augmented wave (PAW) method26 as imple-
mented in the Vienna ab initio simulation package (VASP).27,28

A plane-wave cutoff energy of 240 eV was used for all VASP

calculations within a cubic box of 14 Å and the � point for the
Brillouin zone integration.

For the MD simulations, we use a time step of 1.0 fs,
and the simulations are run for 10 picoseconds going from
high temperature (1000 K) to approximately zero temperature.
Several snapshots are selected along the simulation and
optimize by local optimizers such as the conjugated gradient
as implemented in VASP. This procedure has been used in
several studies with great success.29,30 An anionic (cationic)
Aln cluster is obtained by adding (removing) one electron to
(from) the neutral one and a complete geometric relaxation is
performed.

B. DFT-PBE and FN-DMC

The total energies of the Aln clusters in different states,
which are required to obtain the IP and DE, are calculated
within the DFT-PBE and FN-DMC. In order to discuss
the effects of electron correlation, we also calculate the
total energies of the clusters within the Hartree-Fock (HF)
approximation. In the calculations of the HF and DFT-PBE
total energies, we use the GAUSSIAN03 package,31 with the
GEN basis set, i.e., a 6-311G + + (2d,2p) with valence triple
ζ + double polarization + diffuse on all atoms (VTZ2PD)
from the site EMSL basis set exchange.32

The QMC calculations are performed using the widely
used CASINO code.33 In the calculations, the core electrons are
modeled by an effective core potential, namely, the Dirac-Fock
average relativistic effective potential (AREP)34 as provided
in CASINO. The variational Monte Carlo (VMC) trail wave
functions are of the Slater-Jastrow type,

ψT(R) = D↑(φi)D↓(φi)e
U , (1)

where R is the electronic configuration, D↑↓ are determinants
of up- and down-spin orbitals, φ’s are the single-particle
orbitals with five s, five p, one sp, and three d functions, which

are extracted from a DFT calculation using the GAUSSIAN03
code.31

The Jastrow factor U in Eq. (1) is a sum of homogeneous,
isotropic electron-electron terms u(rij ,α), isotropic electron-
core terms χ (riI ,β) centered on the core and isotropic electron-
electron-core terms f (riI ,rjI ,rij ; γ ), where rij = ri − rj and
riI = ri − rI , ri is the position of the electron i and rI is
the position of the core I . The α, β, and γ represent about
80 variational parameters, which are optimized for each Aln
cluster structure using the method of variance minimization,

σ 2 =
M∑

i=1

[EL(Ri) − EVMC]/M, (2)

where EL = HψT(Ri)/ψT(RM ) with M being the number of
samples and H is the Hamiltonian of the system within the
Born-Oppenheimer approximation. EVMC is the variational
energy evaluated by multidimensional Monte Carlo integration
using samples of the electron positions distributed according
to |ψT(R)|2.

In the diffusion Monte Carlo (DMC) calculation, the
optimized trial VMC wave function is used as a guide wave
function for importance sampling.35 In this method, one uses
the operator e−tH with t = iτ to propagate the trial wave
function, ψT, in imaginary time at the long time limit, t → ∞,
to project out the system ground state or equivalently, ψ0. We
have used the fixed node approximation that assumes that the
nodes of the DMC solution (the nodes of ψ0) are equal to
the nodes of the trial wave function. For the FN-DMC, we
have used a time step of 0.001 a.u., which yields calculations
with a high acceptance ratio, e.g., larger than 99.99%, and
an ensemble of 10 000 walkers is used. For the averages in
the FN-DMC calculations, we consider about 50 000 QMC
moves.

III. RESULTS AND DISCUSSION

A. Atomic structure

Our first goal is the identification of the putative lowest
energy atomic structures for the Aln (n = 2–13) clusters in the
neutral, cationic, and anionic states. We employ the following
approaches: (i) first-principles MD simulations based on the
DFT-PBE framework as implemented in VASP27,28,36 are per-
formed for the neutral clusters. The selected snapshots (atomic
configurations) are optimized using DFT-PBE as implemented
in VASP and are reoptimized using GAUSSIAN03 for basis
set consistency. (ii) Atomic structures from literature16 are
optimized using DFT-PBE as implemented in GAUSSIAN03.
(iii) The relaxed cationic (anionic) clusters are obtained by
removing (adding) one electron from (to) the corresponding
neutral Aln clusters and, then, a complete relaxation is
performed for each configuration. For particular clusters, the
MD simulations are also performed for cationic and anionic
clusters for cross check of the obtained geometry. Following
these procedures, a large number of atomic configurations are
calculated. The obtained lowest energy Aln (n = 2–13) cluster
configurations are shown in Fig. 1.

The atomic structures of the Aln clusters are characterized
by using the effective coordination concept.37,38 In the effective
coordination concept, a different weight is calculated for each
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FIG. 1. (Color online) The lowest energy structures of the neutral
(Al0

n), anionic (Al−n ), and cationic (Al+n ) clusters obtained within the
DFT-PBE as implemented in VASP and GAUSSIAN03.

bond length dij by using a weight function, i.e., wij �= 1.0 for
all ij .37,38 This approach is based on the fact that an atom binds
stronger with closer atoms, and hence, small changes in the
coordination environments can be taken into account. All wij

are calculated with respect to the atom weighted bond length
di

av, which must be calculated for each atom i. Thus bond
length smaller (larger) than the local weighted bond length
di

av contributes with a wij larger (smaller) than the unit. The

TABLE I. Weighted average bond lengths (dav) and average
effective coordination number (ECN) for the Al0

n, Al−n , and Al+n
clusters. The respective atomic structures are shown in Fig. 1.

dav (Å) ECN

n Al0
n Al−n Al+n Al0

n Al−n Al+n

2 2.51 2.61 2.82 1.00 1.00 1.00
3 2.55 2.55 2.72 2.00 2.00 2.00
4 2.62 2.60 2.79 2.36 2.17 2.07
5 2.61 2.63 2.65 2.64 2.76 2.30
6 2.70 2.72 2.72 3.38 3.91 3.20
7 2.69 2.68 2.64 4.04 3.48 3.42
8 2.68 2.69 2.68 3.81 3.84 3.71
9 2.72 2.72 2.72 4.56 4.55 4.55
10 2.69 2.71 2.69 4.35 4.65 4.20
11 2.72 2.71 2.72 4.99 4.94 4.95
12 2.68 2.74 2.69 5.06 5.52 5.05
13 2.77 2.78 2.75 6.27 6.40 5.71

effective coordination number ECNi is obtained by the sum
of all weights wij and, consequently, it is not necessarily an
integer value. This concept can be applied for symmetric or
distorted structures consistently. We would like to mention
that this approach has been used in the study of transparent
conducting oxides29,39 and transition-metal clusters30,40 with
great success. The results for dav and ECN are summarized in
Table I.

We observe that for Al2, the bond lengths of the anionic and
cationic structures are 3.98% and 12.35% larger, respectively,
than that of the neutral configuration, while the changes are
small for Al3. The Al4 and the neutral and anionic Al5 clusters
form planar structures. But the structure of the cationic Al5
cluster is three dimensional (3D). For n > 5, all the Aln clusters
present in 3D structures in consistency with previous studies.16

For larger Aln clusters, the average bond lengths differ slightly
among the neutral, anionic, and cationic clusters, e.g., dav =
2.77, 2.78, 2.75 Å for Al013, Al−13, and Al+13, respectively. We
also find that the ECN of a cationic cluster is always smaller
than that of the corresponding neutral one. But the same does
not hold for the anionic clusters. These results indicate that the
atomic structures of the clusters are indeed affected by gain or
loss of a single electron.

B. Total energy

Based on the above atomic structures, we calculate the total
energies of the Aln clusters within the FN-DMC method and
DFT-PBE. We choose the DFT-PBE wave functions instead
of the HF as the best orbital for the aluminum cluster in
the FN-DMC calculation. There are a few sources of error
in the FN-DMC calculation such as the inaccuracy of the
pseudopotential, the fixed node error as well as the nonlocal
term approximations in the FN-DMC method. It is believed
that the largest among them is the fixed node approximation.
Thus, in order to ensure the accuracy of our calculations,
we have performed several tests for variational Monte Carlo
(VMC) and FN-DMC by using different orbitals from the HF
and DFT-PBE. The trial wave functions from the DFT orbitals
result in lower energies for VMC and FN-DMC instead of HF
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TABLE II. Total energies (in a.u.) calculated within the DFT-PBE (GAUSSIAN03) and FN-DMC (CASINO) for the relaxed clusters Al0
n, Al−n ,

and Al+n , and for the unrelaxed clusters: Al0,−
n (neutral cluster with the anionic geometry: Al−n − 1 electron) and Al+,0

n (cationic cluster with the
neutral geometry: Al0

n − 1 electron). The digits in parentheses are estimated standard errors in the last decimal places.

Relaxed structure Unrelaxed structure

Method n Al0
n Al−n Al+n Al0,−

n Al+,0
n

DFT-PBE 1 − 1.93558 − 1.95425 − 1.71371 − 1.93558 − 1.71371
2 − 3.93089 − 3.98573 − 3.70934 − 3.93003 − 3.68737
3 − 5.95248 − 6.01546 − 5.71953 − 5.95247 − 5.71508
4 − 7.97167 − 8.04834 − 7.73688 − 7.97018 − 7.73156
5 − 10.00239 − 10.07918 − 9.76838 − 10.00033 − 9.76067
6 − 12.05474 − 12.14643 − 11.81385 − 12.05216 − 11.81385
7 − 14.11783 − 14.19540 − 13.90489 − 14.10767 − 13.88742
8 − 16.13937 − 16.21718 − 15.91240 − 16.13327 − 15.90639
9 − 18.17841 − 18.27406 − 17.95516 − 18.17290 − 17.93922

10 − 20.21440 − 20.30890 − 19.99189 − 20.20682 − 19.98593
11 − 22.26452 − 22.36111 − 22.03720 − 22.25884 − 22.03422
12 − 24.31325 − 24.41121 − 24.09155 − 24.30969 − 24.08482
13 − 26.39686 − 26.51931 − 26.16027 − 26.38834 − 26.14704

FN-DMC 1 − 1.9366(1) − 1.9526(3) − 1.71822(4) − 1.9366(1) − 1.71822(4)
2 − 3.9254(2) − 3.9843(1) − 3.70791(9) − 3.9249(2) − 3.6845(1)
3 − 5.9509(2) − 6.0172(3) − 5.7107(2) − 5.9490(4) − 5.7084(2)
4 − 7.9631(4) − 8.0438(6) − 7.7220(6) − 7.9529(6) − 7.7180(6)
5 − 9.9925(6) − 10.0730(3) − 9.7567(3) − 9.9892(4) − 9.7513(4)
6 − 12.0422(6) − 12.1407(5) − 11.7983(2) − 12.0322(7) − 11.7938(4)
7 − 14.1030(13) − 14.1855(13) − 13.8937(3) − 14.0934(6) − 13.8762(9)
8 − 16.1256(10) − 16.2008(6) − 15.8944(6) − 16.1150(8) − 15.8926(16)
9 − 18.1596(5) − 18.2607(7) − 17.9334(6) − 18.1524(29) − 17.9185(10)

10 − 20.1997(10) − 20.2912(11) − 19.9677(10) − 20.1855(25) − 19.9606(13)
11 − 22.2392(13) − 22.3408(10) − 22.0109(7) − 22.2297(14) − 22.0073(17)
12 − 24.2941(11) − 24.3856(12) − 24.0633(12) − 24.2857(7) − 24.0585(7)
13 − 26.3613(8) − 26.4943(9) − 26.1237(12) − 26.3477(27) − 26.1088(23)

ones. Furthermore, we have also performed several tests with
basis sets of different sizes for the orbital. This error is expected
to be small because the many-body electron wave function is
represented by the distribution of an ensemble of electrons and
the basis set in the FN-DMC is just used to expand the guide
wave function that is required for importance sampling. No
significant quantitative influence of the basis set on the total
energy is found.

Table II summarizes the obtained total energies for the
neutral, anionic, and cationic Aln (n = 1, . . . ,13) clusters with
relaxed and unrelaxed structures. For the unrelaxed clusters,
we consider the neutral cluster with the anionic geometry Al0,−

n

(i.e., Al−n − 1 electron) and the cationic cluster with the neutral
geometry Al+,0

n (i.e., Al0n − 1 electron).

C. Electron correlation contribution

In this section, we analyze the contribution of the electron
correlation to the total energy of the Aln cluster. In general,
the ground-state energy of Aln can be defined as

ETOT = EHF + EC, (3)

where ETOT is the total energy of the cluster, EHF is the
Hartree-Fock energy, and EC is the correlation energy. Here,
we assume the FN-DMC energy as being the total energy of the
cluster. Figure 2 shows the relative contribution of the electron
correlation denoted by γ (n) = [EDMC(n) − EHF(n)]/EDMC(n)

as a function of the cluster size. The correlation energies of the
different clusters are of similar dependence on their size. They
increase as the cluster size increases. However, the relative
contribution of the electron correlation γ (n) increases faster
for n � 4.

0 2 4 6 8 10 12 14
Cluster size n

0.02

0.03

0.04

0.05

0.06

γ(
n)

Aln
0
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FIG. 2. (Color online) Dependence of the relative electron corre-
lation energy on the cluster size.
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For small clusters (n � 4), the electron orbital is small and
consequently more localized. In this case, the electron corre-
lation is strong enough leading to a high spin configuration
ground state of the cluster. This can be confirmed by the
spin multiplicity m = 2S + 1 (where S is the total spin) of
the ground states of the Aln clusters. For n = 1, m = 2,3,1
for neutral, anionic, and cationic clusters, respectively: for
n = 2, m = 3,4,2; for n = 3, m = 2,1,3; and for n = 4,
m = 3,2,4. For larger clusters (n > 4), the system ground
state spin arrangement prefer only singlets or doublets so
that the total energy is minimized. The electron correlation
still increases but slower as the cluster size increases. It can
be explained by the fact that the diameter of the electron
orbital increases with increasing the system size. The distinct
behaviors of the correlation energy for smaller and larger
clusters can be assigned to the feature of the atomic transition
from planar to 3D structures. We also notice that, among
the relaxed structures, i.e., neutral, anionic, and cationic, the
largest contribution to the correlation energy is for the anionic
system (open red squares), which is reasonable since this
system has one electron more.

D. Ionization potential

The IP is given by the difference between the ground-state
energies of the neutral and the ionized clusters:

IP = E+
n − En. (4)

If the cationic cluster energy E+
n is calculated with the

corresponding neutral cluster structure, i.e., without relaxation,
the IP is known as vertical IP (VIP). If the structure relaxation
due to loss of the electron is taken into account, the IP is the
so-called adiabatic IP (AIP).

The obtained VIP and AIP from our calculations are shown
in Fig. 3 together with previous theoretical results16 (for
n = 2−10) within the DFT-B3LYP and available experimental
results.12 The largest difference (about 0.5 eV) between our
results and those from Ref. 16 is found in the VIP at n = 2.
Because only the lower and upper bounds of the IP were
obtained in the experiment,12 they are indicated by bars in
the figure. We also validate the accuracy of our FN-DMC
calculations by comparing the obtained energies directly with
the experimental data. In general, our results are in good
agreement with the experimental data, i.e., the trends are
properly described within the error bars. The calculated VIP
is a little larger than the AIP. Quantitatively, the AIP obtained
from the FN-DMC calculations are in better agreement with
the experimental results. But the sharp jump from n = 6 to 7
in the theoretical IP (a peak at n = 6 and a deep minimum
at n = 7) was not observed in the experiment. This jump
can be understood in terms of the shell structure of the
valence electrons. Al06 is a close-shell system, whereas Al07
is a open-shell system with one unpaired electron that can be
easily loosed to form Al+7 . Notice that Al6 is of the largest
AIP (6.64 ± 0.02 eV) but the largest VIP is found for Al13

cluster of value 6.87 ± 0.09 eV. The IP obtained from the
DFT-PBE calculations is also very close to the experimental
data because the differences between the DFT-PBE and the
FN-DMC ionized potentials are only a few tenths of electron
volt. Such an agreement is mainly due to error cancellation in
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FIG. 3. (Color online) Comparison of the obtained vertical and
adiabatic ionization potentials of the Aln clusters with previously
calculated results from Ref. 16 within the DFT-B3LYP and exper-
imental measurements (the vertical green bars) from Ref. 12. The
same experimental data are used in the two figures.

the total energy differences. We also see that the alternations
in the DFT-PBE ionization potentials as a function of the
cluster size are very different from those in the FN-DMC.
For example, the FN-DMC calculations indicate that both the
VIP and AIP of Al11 are smaller than those of its neighbors
Al10 and Al12, but the DFT-PBE shows opposite.

E. Detachment energy

The electron detachment energy is the energy difference
between the anionic and neutral clusters:

DE = En − E−
n . (5)

When both the energies of the anionic and neutral clusters are
calculated from the relaxed structures, we obtain the adiabatic
detachment energy (ADE). To study the vertical electron
detachment energy (VDE), we have also to calculate the total
energy of the neutral cluster with the geometry of the Al−n .
The FN-DMC and DFT-PBE results for the ADE and VDE
are compared with experimental measurements15 in Fig. 4. In
comparison with the errors appeared in the IP (see Fig. 3), the
experimental data of the DE have a better accuracy with an
uncertainty of about 0.1 eV.

245404-5
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FIG. 4. (Color online) Comparison of the vertical and adiabatic
electron detachment energies of the Aln clusters with previously cal-
culated results within the DFT-B3LYP from Ref. 16 and experimental
data from Ref. 15. Note that the same experimental data are used to
compare with the theoretical VDE and ADE.

The FN-DMC and DFT results for the VDE and ADE
follow the experimental trends.13–16 The theoretical results
from different approaches are close to each other within a few
tenths of electron volt. Our calculation results of the VDE and
ADE are slightly larger than those obtained in Ref. 16 within
the DFT-B3LYP except Al8. We consider, in general, both the
FN-DMC and DFT-PBE results are in good agreement with
the experimental data.15 However the FN-DMC calculations,
which are more reliable, show the ADE in better agreement
with experiments. Obvious differences between the FN-DMC

and DFT-PBE results can be seen in the alternations of the DE
for n > 8. In addition, the obtained VDE and ADE increases al-
most linearly for the cluster size from n = 2 to 4. For n > 4, an
alternation is present, especially, in the FN-DMC results. This
reflects alternation between singlet and doublet in the ground
states of the clusters. The absence of alternation for small
clusters arises because the strong electron-electron correlation
affects the orbital occupation leading the cluster ground states
to prefer higher spin multiplicities, as discussed in Sec. II C.
The VDE and ADE of Al13 are 3.989 ± 0.098 and 3.619 ±
0.046 eV, respectively, and much larger than the others.

IV. SUMMARY

In this work, we have determined the impact of the electron
correlation on the structural and electronic properties of small
aluminum clusters using high-accuracy QMC simulations
and examined the reliability of the DFT calculations on
the ionization potential and electron detachment energy. We
obtained the total energy, ionization potential and electron
detachment energy of aluminum clusters Aln (n = 1–13)
within different theoretical frameworks, namely, the FN-DMC
and DFT-PBE. We found that the differences between the
DFT-PBE and FN-DMC results are only a few tenths of
electron volt. However, such a difference can lead to different
alternations in the ionization potential and detachment energy
as a function of the cluster size.

The important feature in our theoretical calculations lies in
small numerical errors and quite good quantitative agreement
with the experimental data. This indicates that the computa-
tionally predicted structures are very close to the experimental
ones. Also, the analysis of the relative electron correlation
contribution to the total energy shows two distinct regimes for
smaller and larger clusters. The transition between these two
regimes could be assigned to the transition of a planar to a
spatial structure.

Although we have used the effective core potential for core
electrons and explicit treatment for the valence electrons only,
the obtained results show that it was accurate enough to pick
up the essential physics. The present results can be useful
for further theoretical and experimental investigation on the
electronic properties of small aluminum clusters.
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