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X-ray diffraction study of plastic relaxation in Ge-rich SiGe virtual substrates
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We report on the experimental and theoretical investigation of the relaxation in Ge-rich SiGe/Ge/Si
heterostructures. The experimental x-ray diffraction data are interpreted with the help of a model including
both edge and 60◦ misfit dislocations in the calculated x-ray scattering intensity. Our results show that highly
positionally correlated edge dislocations dominate in the relaxation of the compressive strain at the Ge/Si interface,
while a smaller tensile strain at the SiGe/Ge interfaces released by uncorrelated/little correlated 60◦ dislocations.

DOI: 10.1103/PhysRevB.85.245311 PACS number(s): 61.05.cp, 61.72.−y, 61.72.uf

I. INTRODUCTION

Strained Ge is a promising material both for electronic1 and
optoelectronic applications2 and its monolithic integration in
Si microelectronics is highly desirable. The amount of strain
impacting the electronic and optical properties can be tuned
upon deposition of the Ge layer on suitably designed SiGe
virtual substrates (VS). Among many other VS, the use of re-
verse graded SiGe VS (RGVS) has recently been proposed.3,4

In such structures a thick, relaxed Ge heteroepitaxial layer
is first deposited on a Si(001) substrate. Subsequently, the
desired in-plane lattice parameter for the Ge epilayer growth
is achieved upon decreasing the Ge content x in a sequence of
Si1−xGex layers in which the strain is relaxed via the insertion
of misfit dislocations. It is therefore of paramount importance
to understand the plastic relaxation mechanisms of the virtual
substrate governing the dislocation formation and evolution.

In epitaxial heterostructures comprising diamond-lattice
semiconductors, the lattice mismatch is plastically relaxed
when the deposited epilayer reaches a critical thickness. In case
of compressive misfit f , i.e., when the epilayer has an in-plane
lattice parameter larger than that of the substrate, two different
behaviors are usually observed for large (f > 2%) and small
misfits (f < 2%), respectively (see reviews in Refs. 5–7). In
the former case, the strain is released mostly by 90◦ (edge,
Lomer type) dislocations having their Burger vectors entirely
contained heterointerface plane. These 90◦ dislocations can
glide along the heterointerface. This mobility enables the
almost periodic arrangements of the dislocation lines aligned
along the [110]-equivalent directions, resulting in a further
reduction of elastic energy.

On the contrary, small misfits are relaxed via 60◦ misfit
dislocations that are either nucleated at the film free surface
or as a result of the motion of threading dislocations already
present in the film. The glide along {111} planes allow them
to reach the heterointerface and form misfit segments, always
terminated by threading arms.

In the less studied tensile heterostructures, particularly, the
ones forming the RGVS, a clear picture of the relaxation

mechanisms is still missing. It has been recently proposed3

that, at least for small f , little correlated 60◦ misfit dislocations
are the main contributors to the strain release.

X-ray diffractometry is routinely employed in the studies
of relaxed epitaxial films. Its primary use is to obtain precise
values of lattice parameters from diffraction peak positions. By
comparing a symmetric and an asymmetric reflection, one can
separately determine the mismatch (i.e., the Ge concentration)
and the degree of relaxation.8 If the dislocation type is known,
the dislocation density can be calculated from the degree of
relaxation.

To determine the dislocation types and their correlations
from the x-ray diffraction peaks, the analysis of the whole
diffraction pattern is needed. The scattering from crystals with
dislocations is described by the kinematical diffraction theory,
and general formulas for the x-ray intensity can be readily
formulated.9,10 However, they involve statistical average over
dislocation ensemble. If statistical properties of dislocation
distribution are known, the scattering intensity from misfit
dislocations can be calculated by Monte Carlo methods.11 A
notable simplification is reached in the case of large dislocation
densities, when the film thickness is large compared to the
mean distance between dislocations. In this case, the positional
correlations between dislocations can be easily included, if the
correlation length is also smaller than the film thickness.10,12

The x-ray scattering theory has been also extended to epi-
taxial films consisting of layers with different composition and
relaxation degree, and to graded layers.13–17 These works use
additional approximations that simplify the scattering intensity
calculation. Particularly, they assume that dislocations of only
one type (the 60◦ dislocations) are present in the film and that
the positional correlations are absent.

In this study, we compare x-ray scattering calculations and
XRD measurements for heterostructures containing several
types of dislocations, with different correlation degrees be-
tween them. We show that dislocation types, densities, and
correlations can be obtained from the x-ray reciprocal space
maps. We find that the large misfit between Si substrate and Ge
buffer layer is mostly released by correlated 90◦ dislocations,

245311-11098-0121/2012/85(24)/245311(9) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.85.245311


KOPP, KAGANER, CAPELLINI, DE SETA, AND ZAUMSEIL PHYSICAL REVIEW B 85, 245311 (2012)

while the smaller tensile misfit between Si1−xGex layers and
Ge buffer is released mainly by 60◦ dislocations that are
observed to be only little correlated.

II. EXPERIMENTAL

The two samples investigated in this study were grown by
means of an ultrahigh vacuum chemical vapor deposition tech-
nique (UHV-CVD) using ultrahigh pure silane and germane on
Si(001) substrates. After an ex situ wet cleaning, the substrates
are loaded in a fast entry load lock and annealed at 1100 ◦C
in H2 in order to remove contaminants from the surface.
Subsequently, a 500-nm thick silicon layer is deposited at
800 ◦C in order to improve the morphological and structural
quality of the substrate. In order to obtain the relaxed Ge/Si
system forming the first part of our RGVS, we have used a two-
temperature UHV-CVD. The first deposition step occurs at a
temperature 330 ◦C. At such low temperature, the adsorption
of GeH4 molecules and the subsequent incorporation of Ge
atoms is limited by the desorption of the H atoms. This
kinetic effect hinders the Stranski-Krastanov growth expected
for the Ge-Si system18 and favors the plastic relaxation
of the Ge heteroepitaxial layer via the insertion of misfit
dislocations. After the complete relaxation is achieved, the
growth temperature can be increased to accelerate the growth
and to improve the structural quality of the deposited crystal.
Details of the complex temperature profile used to obtain the
rest of the 1000-nm thick Ge layer can be found in Ref. 19.

On top of the Ge layer at 500 ◦C, we deposited a 700-nm
thick constant composition Si0.15Ge0.85 layer (sample 1) or a
step graded reverse Si1−xGex multilayer whose composition
decreases from x = 1.00 down to x = 0.83 in 700 nm
(sample 2). Notice that the last 100 nm of the graded layer have
a silicon contents slightly higher than the subsequent thick cap
layer in order to reduce the dislocation density at the topmost
heterointerface, thus improving the expected crystal quality of
the virtual substrate. The process pressure of this part of the
RGVS was 4 mTorr, leading to a growth rate ∼20 nm/min.
Both samples were completed with a 900-nm thick Si0.15Ge0.85

cap layer grown at 1 mTorr (∼5 nm/min). A detailed analysis
of RGVSs is beyond the scope of this paper and going to
be presented elsewhere.20 A SmartLab diffractometer from
Rigaku equipped with a 9 kW rotating anode Cu source
in line focus geometry was used with Ge(400)×2 crystal
collimator and Ge(220)×2 crystal analyzer to carry out the
x-ray measurements.

III. THEORY

A. X-ray intensity from relaxed epitaxial films

Our aim is to calculate the x-ray scattering intensity from
a relaxed heteroepitaxial multilayer film with dislocations,
possibly of different types and with different positional
correlations, located at a number of different interfaces, as
shown schematically in Fig. 1. In this section, we formulate the
general expressions for the scattering intensity from a relaxed
film10 in a way that allows a direct generalization to the case
of several layers.

Let us begin with the general expressions for the scattering
intensity from a distorted crystal.9 Crystal lattice defects are

FIG. 1. Geometry of the network of dislocations in a stepped
heteroepitaxial system.

atoms displaced from their ideal positions in the periodic
lattice. The displacements can vary on distances much larger
than the unit cell size, so that each unit cell is displaced
as a whole. The position of a unit cell in a crystal with
lattice defects is given by the sum Rs + U(Rs) of the position
Rs of this unit cell in a reference periodic lattice and its
displacement U(Rs). The index s runs over all the lattice
cells. We consider here strongly distorted crystals, with the
x-ray scattering intensity concentrated in the vicinity of the
reciprocal lattice points. Then the intensity I (q) depends only
on the deviation q = Q − Q0 of the scattering vector Q from
the nearest reciprocal-lattice vector Q0 of the reference lattice.
In the kinematic approximation, the expression for the x-ray
scattering intensity can be written as a Fourier integral:9

I (q) =
∫∫

dRsdRs ′eiq·(Rs−Rs′ )G(Rs ,Rs ′ ) (1)

of the correlation function G(Rs ,Rs ′ ) defined as

G(Rs ,Rs ′ ) = 〈exp{iQ · [U(Rs) − U(Rs ′ )]}〉. (2)

The unit cell structure factor for the actual reflection gives a
constant factor to Eq. (1) that is omitted here. The integration
in Eq. (1) is carried out over the sample volume. The angular
brackets in Eq. (2) stand for statistical average over the random
positions of lattice defects.

For an epitaxial film, the substrate can be taken as the
reference lattice. The displacement U(R) consists of two
terms: (i) the displacement Uc of the pseudomorphic film
due to the difference in lattice parameters with the substrate
and (ii) the displacement Ud caused by the dislocations at
a heterointerface. Only Ud is the argument of the statistical
average over the random positions of the dislocations, while

245311-2



X-RAY DIFFRACTION STUDY OF PLASTIC RELAXATION . . . PHYSICAL REVIEW B 85, 245311 (2012)

Uc is a deterministic function (an explicit expression is given
below) and can be taken out of the average (2).

The triple-crystal x-ray diffractometry provides high col-
limation of the incoming and the outgoing beams in the
scattering plane, while in the direction normal to this plane
a broad angular acceptance is allowed (the vertical divergence
of the beam in a standard diffractometer setup). As a result,
the scattering intensity (1) is integrated in the triple-crystal
measurements by the wave vector component qy normal to
the scattering plane. Integration over qy in Eq. (1) gives rise
to a delta-function δ(Rs y − Rs ′ y). As a result, two points Rs

and Rs ′ in Eq. (2) lie in one same plane y = const, where the
integration in Eq. (1) is carried out. The integration over the
film of thickness d (possibly comprising several layers, as in
Fig. 1) can be finally written as10

I (qx,qz) =
∫∫ d

0
dz1dz2

∫ ∞

−∞
dx eiqxx+iqz(z1−z2)

× eiQz[Uc
z (z1)−Uc

z (z2)]Gd (x,z1,z2), (3)

where the correlation function for dislocations is

Gd (x,z1,z2) = 〈
eiQ[Ud (R1)−Ud (R2)]

〉
. (4)

Here, we take into account that the correlations between two
points (x1,z1) and (x2,z2) depend on the distance between these
points in the plane of interface x = x1 − x2, as a result of the
translational symmetry. However, the depths z1 and z2 enter
the equations separately, because of a final film thickness.

The displacement in a pseudomorphic film Uc has the only
nonzero component in the direction of surface normal, Uc

z (z),
since the lateral spacing of a pseudomorphic film is kept equal
to that of the substrate. The requirement of the absence of the
normal stress at the surface gives

dUc
z

dz
= 1 + ν

1 − ν
f 0(z), (5)

where f 0(z) is the misfit between the layer and the substrate
lattices at a distance z from the surface, ν is the Poisson ratio.
For a film consisting of layers with constant misfit, considered
in the present paper, Uc

z is a piece-linear function of z. We
restrict ourselves to the isotropic approximation, since both
Si and Ge possess rather little anisotropy, with the anisotropy
ratio A = 2c44/(c11 − c12) equal to 1.56 and 1.66, respectively.
Such anisotropy has a minor effect on the x-ray diffraction
images of dislocations.21 We use the same value of the Poisson
ratio ν = 0.275 for both materials.

The dislocation displacement Ud (R) at a point R in the film
is caused by all dislocations at all interfaces in the film. Owing
to linearity, it is just the sum of displacements due to individual
dislocations, Ud (R) = ∑

j,p,t u(p)
j (R − Rt ), where p denotes

different types of dislocations (i.e., different Burgers vectors
and dislocation line directions), j stands for summation over
different interfaces, Rt are dislocation positions, and u(R) is
the displacement field of a dislocation. For misfit dislocations
lying parallel to the surface, u(R) can be represented as a sum
of three terms, displacement due to a dislocation in the infinite
medium, the image dislocation, and an additional surface
relaxation term. Explicit expressions for all components of
the Burgers vector are given in Appendix B of Ref. 10.

Evaluation of x-ray intensity (3) requires calculation of
correlation function Gd (x,z1,z2) for a given statistical dis-
tribution of dislocations. The statistical average can be done
numerically by means of Monte Carlo methods.11 However, if
the dislocation density is sufficiently large and the correlations
between dislocation positions can be neglected, the calcula-
tion can be drastically simplified.9,10 In this case, only the
correlations between close points are of interest and the differ-
ences of displacements Q·[Ud (R1) − Ud (R2)] can be replaced
by distortions ∂[Q · Ud (R)]/∂R. The correlation function
can be represented as Gd (x,z1,z2) = exp[−T (x,z1,z2)], and
T (x,z1,z2) is expanded in power series of the distance
R1 − R2. The linear term in the expansion is imaginary and
the quadratic term is real:

Im T (x,z,ζ ) = qd
x (z)x + qd

z (z)ζ, (6)

Re T (x,z,ζ ) = wxx(z)x2 + 2wxz(z)xζ + wzz(z)ζ 2, (7)

where x and ζ = z1 − z2 are the components of the vector
R = R1 − R2. The components of the vector qd (z) in Eq. (6)
are calculated as

qd
x (z) = −

∑
j,p

ρ
(p)
j

∫ ∞

−∞
dx

∂Q · u(p)
j

∂x
, (8)

qd
z (z) = −

∑
j,p

ρ
(p)
j

∫ ∞

−∞
dx

∂Q · u(p)
j

∂z
, (9)

and the components of the 2 × 2 symmetrical matrix ŵ(z) in
Eq. (7) are

wmn(z) =
∑
j,p

ρ
(p)
j

2

∫ ∞

−∞
dx

∂Q · u(p)
j

∂xm

∂Q · u(p)
j

∂xn

. (10)

Here, ρ
(p)
j is the linear density of the dislocations of type p at

the j th interface, xm and xn stand for x or z.
The integration over x and ζ is performed analytically, and

the diffracted intensity (3) is represented as

I (qx,qz) = π

∫ d

0

dz√
det[ŵ(z)]

× exp

[
−1

4
w−1

mn(z)(q − q0(z))m(q − q0(z))n

]
,

(11)

where q0 = qd + qc contains both the dislocation (8), (9), and
composition related

qc
z = 1 + ν

1 − ν
Qzf

0(z) (12)

shift of the peak position for each layer in the film.

B. X-ray intensity from a multilayer film

The general expression for the scattering intensity (11) and
the expressions for the vector q0 and the matrix ŵ are formally
the same of those holding for the x-ray intensity scattered from
a system comprising a single epitaxial layer on a substrate,
with the dislocation network located at the heterointerface.10 In
case of several stacked heteroepitaxial layers with dislocations
at heterointerfaces, the calculation of q0 and ŵ is more
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complicated. As a matter of fact, the contribution from each
interface to q0 and ŵ should be calculated separately at points
above and below the interface. The explicit expressions are
derived below.

The substitution of explicit formulas for dislocation dis-
placements into Eqs. (8)–(10) enables the analytical calcula-
tion of integrals. The wave vectors defining the peak position
are

q0
x (z) = −Qx

∑
j,p

b
(p)
jx ρ

(p)
j H (dj − z),

(13)
q0

z (z) = − ν

1 − ν
Qz

∑
j,p

b
(p)
jx ρ

(p)
j H (dj − z) + qc

jz,

where b
(p)
jx is the mismatch-releasing component of the Burgers

vector of dislocations of type p at the j th interface. The
distance of the interface from the surface z = 0 is dj , see Fig. 1.
H (x − x ′) is the step-like Heaviside function. Equation (13)
shows that the peak position of a j th layer is affected only

by the dislocations laying at and under the j th interface,
since for z > d the integrals

∫ ∞
−∞ dx∂(Q · u)/∂x = 0 and∫ ∞

−∞ dx∂(Q · u)/∂z = 0.
When calculating the elements of the matrix ŵ, it is needed

to take into account that the dislocations at the interface z = dj

contribute to this matrix for the layers both above and below
the interface, so that the matrix elements can be represented
as

wmn(z) =
∑
j,p

[
w(j,p)

mn (z)H (dj − z) + w̃(j,p)
mn (z)H (z − dj )

]

(14)

with different expressions for w
(j,p)
mn (z) and w̃

(j,p)
mn (z). They

can be evaluated analytically by substituting the dislocation
displacements given in Appendix B of Ref. 10 into Eq. (10).
The final expressions are bulky. In order to demonstrate their
structure, we present here one of the integrals for dislocations
with Burgers vector b(bx,0,0): for z < d,

∫ ∞

−∞

∂ux

∂x

∂uz

∂z
dx = b2

x

π

[
−z2α2

4d3
− 3z4α2

4(d + z)5
+ 3z3α2

2(d + z)4
− α2

8d
+ zα2

8d2

+ 2 − 4α + α2

16(d − z)
+ 2 − 4α + α2

16(d + z)
+ −2z + 4zα − zα2

8(d + z)2
+ 2z2 − 4z2α − 5z2α2

8(d + z)3

]
,

while for z > d,∫ ∞

−∞
dx

∂ux

∂x

∂uz

∂z
= b2

x

π

[
d2α2

4z3
− 3d4α2

4(d + z)5
+ 3d3α2

2(d + z)4
+ −2 + 4α − α2

8z
+ 2d − 4dα + dα2

8z2

+ −2 + 4α − α2

16(d − z)
+ 2 − 4α + α2

16(d + z)
+ −2d + 4dα − dα2

8(d + z)2
+ 2d2 − 4d2α − 5d2α2

8(d + z)3

]
.

Here, it is denoted α = 1/[2(1 − ν)]. Then, integral for x-ray
intensity (11) remains to be calculated numerically.

C. Positional correlations of dislocations

The formulas above are derived assuming that dislocation
positions at a heterointerface are random and independent. One
can expect that the dislocations are positionally correlated, to
reduce the elastic energy. Although the elastic energy has a
minimum for periodic dislocations, this arrangement can not
be achieved in many cases. Particularly, the 60◦ dislocations
have inclined glide planes that allow them to penetrate into
the film but do not allow to glide along the interface. On the
other hand, the edge Lomer dislocations can glide along the
interface and therefore can reach a state much closer to a
periodic arrangement.

The account of correlations in a general case is fairly
complicated, based on the cumulant expansion.9 When the
dislocation density is large (practically, it is enough if the
mean distance between dislocations is smaller than the film
thickness), the x-ray intensity from correlated dislocations
can be calculated in quadratures.11 Further simplification
is obtained when the correlation length of the positional
correlations is small compared to the film thickness. It was
initially suggested10 and recently argued in details,12 that in

this case, the effect of correlations reduce, for each type of
dislocations, to a constant factor g(p) that vary from 0 to
1. The limiting value g(p) = 1 corresponds to uncorrelated
dislocations, while the opposite limit g(p) → 0 corresponds
to periodic dislocations. In this approximation, the account
of correlations simply consists in replacement of all matrix
elements w

(j,p)
mn and w̃

(j,p)
mn in Eq. (14) with g(p)w

(j,p)
mn and

g(p)w̃
(j,p)
mn . Presence of correlations does not affect the imag-

inary part of the correlation function Im T (x,z,ζ ). Hence the
positions of diffraction peaks do not depend on the dislocation
correlations, while the widths of the diffraction peaks decrease
with the increasing correlations.

D. Example: two-layer film with different types of dislocations

Before proceeding to analysis of the experimental data, let
us calculate x-ray diffraction peaks for a model epitaxial sys-
tem consisting of two layers with different types of dislocations
at two interfaces. The model system is sketched in Fig. 2(a).
The parameters are chosen to be close to the experimental
systems considered in the next section. The top layer (layer 1)
has a thickness of 1.6 μm, while the bottom layer is 1.0-μm
thick. The interface 1 between the layers is populated by
uncorrelated 60◦ dislocations with density ρ1 = (36.2 nm)−1.
The interface 2 between the layer 2 and the substrate

245311-4



X-RAY DIFFRACTION STUDY OF PLASTIC RELAXATION . . . PHYSICAL REVIEW B 85, 245311 (2012)

(001) substrate

layer 2

layer 1

interface 1

interface 2

(a)

-0.10 -0.05 0.00 0.05 0.10
10-5

10-4

10-3

10-2

10-1

100

101

in
te

ns
ity

(a
rb

.u
ni

ts
)

layer 2layer 1

layer 2layer 1

(e)(d)

(c)(b)

-0.10 -0.05 0.00 0.05 0.10

uncorrelated:
g1=g2=1.0

-0.10 -0.05 0.00 0.05 0.10
10-5

10-4

10-3

10-2

10-1

100

101

in
te

ns
ity

(a
rb

.u
ni

ts
)

q (nm-1)

-0.10 -0.05 0.00 0.05 0.10

only 1

only 2

1 and 2

q (nm-1)

correlated:
g1=1.0, g2=0.1

FIG. 2. (Color online) (a) A model epitaxial film consisting of two layers with 60◦ dislocations at the top interface and 90◦ at the bottom
interface. (b)–(e) Transverse scans through symmetrical (004) reflection: (b) and (c) uncorrelated dislocations on both interfaces, (d) and (e)
uncorrelated dislocations at the top interface and correlated dislocations at the bottom interface.

contains 90◦ dislocations having density ρ2 = (9.1 nm)−1,
either uncorrelated (g2 = 1) or correlated (g2 = 0.1).

In Figs. 2(b)–2(e), the transverse scans through symmetric
(004) reflection are shown. The peaks from both layers
are presented. Figure 2(b) compares the peaks of layer 1
obtained for uncorrelated dislocations at both interfaces (black
line), only at the interface 1 (red line), and only at the
interface 2 (green line). Dislocations at either top or bottom
interface cause broadening of the peak, and a collective effect
of both dislocation networks is larger than any of them
alone. Similarly, Fig. 2(c) shows that the dislocations at both
interfaces influence the peak of layer 2.

In Figs. 2(d) and 2(e) the dislocations at the lower interface
are taken correlated, g2 = 0.1. They cause very little effect on
the peak 1 but provide some broadening of the peak 2. Still,
the peak 2 remains narrower than in the case of uncorrelated
dislocations. The diffraction peaks for the model two-layer
system in Fig. 2 show that calculation of any peak needs
to include contributions from dislocations at all interfaces
in the film. Positional correlations of dislocations reduce the
contribution of the respective interface. Particularly, strong
correlations between dislocations at some interface result in
very small contribution of this interface to diffraction peaks of
the other layers.

IV. RESULTS

A. Calculation method and parameters

The reciprocal space maps (RSMs) near symmetric (004)
and asymmetric (2̄2̄4) reflections have been used to deter-
mine the dislocation types, densities, and correlations. The

diffracted intensity has been calculated with the equations
given above, allowing both edge and 60◦ dislocations at
each interface. Dislocations in each set can be positionally
correlated.

We assume that the dislocations are oriented along the [110]
and [11̄0] directions with equal densities and distributions.
Burgers vectors of the dislocations with the line direction
perpendicular to the scattering plane are b = a(1/

√
2,0,0)

for 90◦ (edge) and b = a/2(1/
√

2, ± 1/
√

2, ± 1) for 60◦
dislocations. Here, a is the substrate lattice spacing. All
dislocations possess the same sign of the bx component of
the Burgers vector, that releases the misfit. The signs of other
components (screw and tilt components by and bz) are realized
with equal probabilities and without correlations.

The parameters to be determined for each layer are the
Ge concentration of the Si1−xGex alloy, and densities and
correlations for dislocations of two possible types. The RSMs
contain enough information to obtain all these unknowns. First,
the positions of the diffraction peaks from a given layer in a
symmetric and an asymmetric RSMs allow to determine the
misfit and strain. The actual in-plane strain of a layer is defined
with respect to its cubic state

ε = (
ax − a0

x

)/
a0

x, (15)

where ax and a0
x are the measured in-plane and fully relaxed

(cubic) lattice parameters of the evaluated layer, respectively.
The Ge content in Si1−xGex alloys is calculated using the
quadratic dependence of the misfit on the Ge concentration.22

It remains to determine from the diffraction peak profiles
the ratio of densities of two types of dislocations, and
the correlation parameters for each type of dislocations.
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TABLE I. In-plane strains in the layers ε, mean distances between dislocations l = ρ−1, and the correlation parameters g obtained in the
fits of reciprocal space maps for two samples 1 and 2.

90◦ dislocations 60◦ dislocations

Layer composition Layer thickness, nm ε, % l = ρ−1, nm g l = ρ−1, nm g

Sample 1 Si0.14Ge0.86 1600 0.20 1299 ± 1100 0.96 ± 0.01 36 ± 2 0.99 ± 0.04
Ge 1000 0.14 9.26 ± 0.03 0.32 ± 0.01 · · · · · ·

Sample 2 Si0.14Ge0.86 900 0.22 ∼3000 · · · 323 0.39
Si0.17Ge0.83 100 0.28 · · · · · · 146 0.36
Si0.12Ge0.88 200 0.16 · · · · · · 132 0.39
Si0.08Ge0.92 200 0.15 · · · · · · 115 0.40
Si0.05Ge0.95 200 0.17 · · · · · · 89 0.42

Ge 1000 0.17 9.28 ± 3.87 0.13 ± 0.03 454 1.00 ± 0.30

The longitudinal and the transverse scans in symmetric and
asymmetric reflections of a given layer, i.e., four independent
measurements, can be used to obtain these three parameters.
A good agreement between calculated and experimentally
measured curves proves that the model is adequate. We use
the longitudinal and transverse scans through the diffraction
peaks to make the initial fits, since calculation of the whole
RSM is a time-consuming procedure. Further refinement of
the parameters is made by fitting the whole RSMs.

The parameters are fitted by using a nonlinear least-square
fitting procedure (one of the versions of Levenberg-Marquadt
algorithm23). The error intervals for the parameters presented
in Table I below are the root-mean-squared deviations of the
parameters determined in the fits.

B. Two-layer Si1−xGex /Ge/Si epitaxial film

Figure 3 presents, by the color intensity distribution, the
experimental reciprocal space maps of sample 1 in symmetric
(004) and asymmetric (2̄2̄4) reflections. The sample contains
a Ge buffer layer on the Si substrate and one Si1−xGex layer
grown on the buffer. We find x = 0.858 from the diffraction
peak positions. We refer to this layer as SiGe layer. The
peaks in the asymmetric reflection follow the direction of
the diffraction vector. However, both peaks are rigidly shifted

FIG. 3. (Color online) The reciprocal space maps of symmetric
(004) and asymmetric (2̄2̄4) reflections of sample 1. The color inten-
sity distribution are the experimental data, the contour lines present
the calculated intensity distribution. The yellow arrow marks the
direction from Si(2̄2̄4) reflection to the origin of the reciprocal lattice.

from the relaxation line evidencing that both layers are slightly
over-relaxed. This indicates the presence of extra tensile strain
in the layers due to the different thermal expansion coefficients
of substrate and layer materials.19 By means of equation (15)
we obtained the strains to be equal to εSiGe = 0.20% and
εGe = 0.14% for the SiGe layer and Ge buffer, respectively.
The peaks of both layers have elliptic shape, with different
aspect ratios. In both reflections, the SiGe layer peak is notably
more extended in the direction perpendicular to the diffraction
vector. This difference points to different types of dislocations
at the two heterointerfaces: the 60◦ dislocations give rise to
larger aspect ratios than edge dislocations.10 The fit results
presented below confirm this conclusion.

The calculated RSMs are shown in Fig. 3 as contour lines.
The longitudinal and transverse scans through the SiGe and
Ge peaks are compared in Fig. 4. Parameters obtained in the
fit and used in the calculations presented above are listed in
Table I. We find that only 90◦ dislocations are present at the
substrate-buffer interface. The 60◦ dislocations were allowed
in the fit, but their density has been found to be zero. The 90◦
dislocations are notably positionally correlated, giving the cor-
relation parameter g = 0.32. The 60◦ dislocations dominate
at the SiGe/Ge interface. They are uncorrelated, g = 0.99.
This is also expected, since these dislocations glide in the
inclined planes and are immobile after they reach the interface.

These results are in agreement with what observed in similar
samples by Capellini et al.3 Using a very simple model and the
results of plan view and cross sectional transmission electron
microscopy (TEM) measurements, these authors have found
that the strain in the Ge layer is released by the formation
of highly ordered, [110] oriented 90◦ misfit dislocations at
the Ge/Si interface directions, having an average distance of
9 nm, while the strain in the SiGe layer is released mostly
by 60◦ dislocations, with misfit segments in the interface layer
arranged in almost uncorrelated manner.

The peaks of the Ge buffer layer, both in symmetric and
asymmetric reflections, have low-intensity tail in the direction
to the SiGe peak. This tail extends mostly in the growth
direction and is compatible with the presence of an alloyed
transition layer at the interface. Supported by secondary
ion mass spectroscopy results20 we have included in the
calculations a 100-nm-thick transition layer at the SiGe/Ge
interface. This layer consisted of three compositional steps
with same thicknesses and Ge content changing from the
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FIG. 4. (Color online) The longitudinal and transverse scans through the Ge buffer and SiGe top layer peaks of the sample 1.

bottom to the top as follows: x = 0.987, 0.974, 0.962. For
the sake of simplicity, no dislocations were allowed between
steps, as well as at the bottom interface. The addition of the
transition layer improved the agreement between measured
and simulated XRD data.

C. Many-layer SiGe/Ge/Si epitaxial film

The deposition procedure for sample 2 was programed in
such a way to obtain a stack consisting of five Si1−xGex layers
on a Ge buffer layer. The experimental and calculated RSMs
for this sample are presented in Fig. 5 both for (004) and (224)
reflections. The longitudinal and the transverse scans through
diffraction peaks are shown in Fig. 6. Each peak in the RS
scans displayed in Figs. 6(a) and 6(d) is associated to a layer
in the sample stack.

FIG. 5. (Color online) The reciprocal space maps of symmetric
(004) and asymmetric (2̄2̄4) reflections of sample 2. The color
intensity distribution are the experimental data, the contour lines
present the calculated intensity distribution. The yellow arrow marks
the direction from Si(2̄2̄4) reflection to the origin of the reciprocal
lattice.

The analysis of the RSMs and the scans has been performed
similarly to that for sample 1 in the previous section. The
measured strain for each layer of the stack are reported in
Table I. The reason for nonzero strain values was discussed in
the previous section. The diffraction peaks of the Ge buffer
and the top SiGe layer are well distinguished and allow
the determination of the both types of dislocations. Thin
intermediate layers have small dislocation densities and show
only weak contrast at RSMs. These layers show distinct peaks
in the asymmetric reflection but not in the symmetric one, see
Figs. 5, 6(a), and 6(d). When both dislocation types are allowed
in the calculation, the fit delivers comparable densities of two
dislocation types with highly correlated 90◦ dislocations. This
is unlikely, and we restrict the fit allowing only 60◦ dislocations
at the intermediate interfaces.

The fit results are collected in Table I. For SiGe layers
of sample 2, due to low dislocation densities or possible
existence of (thin) transitional layers, the statistical errors are
comparable with the corresponding parameter values. In this
case, the estimated errors are not presented in the final results.

As in sample 1, the large misfit between Si substrate and Ge
buffer layer is plastically relaxed by means of 90◦ dislocations.
The dislocation densities in samples 1 and 2 almost coincide,
since the misfit between Si and Ge is completely relaxed in
both cases. However, in sample 2, the dislocations at Ge/Si
interface are much better correlated, with approximately three
times smaller correlation parameter g. The difference between
samples is clearly visible by comparing the widths of the Ge
peaks in RSMs in Figs. 3 and 5: the Ge peaks of sample 2 are
notably sharper, given the same dislocation density.

The growth procedure and the overall thermal budget of
the two investigated samples is nominally identical, and thus
the misfit dislocations should have had the same “drive” to
correlate. We believe that the different degree of correlation
observed here can be due to experimental parameter fluctua-
tions during the initial low-temperature deposition step of the
relaxed Ge layer. As a matter of fact, owing to the closeness
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FIG. 6. (Color online) The longitudinal and transverse scans through the Ge buffer and SiGe top layer peaks of the sample 2.

of the deposition temperature (∼330 ◦C) to the dihydride
desorption temperature (∼350 ◦C) from Ge/Si surfaces,24

slight changes in the growth temperature or in its reading
can drive major changes to the ad-molecules mobility and,
consequently, to the structural quality of the heterointerface.
This can have an impact on the nucleation of the misfit
dislocations and on their mobility at the early stage of the
growth, thus leading to a different spatial correlation.

Both types of dislocations are also allowed in the fit of
the top SiGe layer, but the fit results in Table I show that
mostly 60◦ dislocations are present at the top interface. These
dislocations are correlated (g = 0.39), in contrast to sample 1
where 60◦ dislocation at the SiGe/Ge interface are completely
uncorrelated. We believe that this enhanced correlation can be
due to the lower density of MDs injected at each interface of
sample 2 compared to the higher strain relaxation occurring at
the single heterointerface of the RGVS present in sample 1.

V. CONCLUSIONS

Misfit dislocations in the SiGe/Ge/Si multilayer epitaxial
system have been studied by x-ray diffraction. Kinematical
calculation of the x-ray intensity is made for different disloca-
tion types, densities, correlations at different interfaces. Good
agreement between fit results and the experiment allows to
describe the dislocation network. The fits show that the Ge/Si
interface contains highly positionally correlated edge disloca-
tions, while the SiGe/Ge interface contains uncorrelated/little
correlated 60◦ dislocations.
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