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Scaling theory for percolative charge transport in molecular semiconductors: Correlated versus
uncorrelated energetic disorder
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We recently introduced a scaling theory for charge transport in molecular semiconductors with uncorrelated
Gaussian energetic disorder, considering Miller-Abrahams as well as Marcus hopping and different lattice
structures [Cottaar et al., Phys. Rev. Lett. 107, 136601 (2011)]. A compact expression was derived for the
dependence of the charge-carrier mobility on temperature and carrier concentration. We show here that for
Miller-Abrahams hopping the theory can also be applied to non-Gaussian energetic disorder, without parameter
changes. Moreover, we show how it can be applied to correlated energetic disorder as obtained from randomly
oriented molecular dipoles, which experiments suggest to be often more suitable. The same compact expression
still describes the charge-carrier mobility, with new parameter values as determined from numerically exact
results. The critical scaling exponent for correlated disorder is about twice as large as for uncorrelated disorder,
which is caused by a different topology of the percolating network. The temperature dependence of the mobility
for correlated disorder is significantly weaker than for uncorrelated disorder, while the carrier-concentration
dependence is slightly weaker, due to small deviations of the density of states from a Gaussian. We indicate how
comparison with experiments could distinguish between the different models.
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I. INTRODUCTION

Disordered organic molecular semiconductors play an
important role in organic electronics, with applications in
devices such as organic light-emitting diodes.1,2 Predictive
modeling of devices using these semiconductors requires a
thorough understanding of the charge transport, which occurs
by thermally assisted tunneling—hopping—of charge carriers
between neighboring molecules, which are the transport sites.
This transport is characterized by the charge-carrier mobility
μ (the average velocity of a charge carrier divided by the
applied electric field), which depends on the temperature T ,
carrier concentration c, and electric field F . An important
factor determining μ is the density of states (DOS), i.e., the
distribution of site energies. These energies may be correlated;
for example, if the electrostatic potential distribution is caused
by randomly oriented dipoles,3 which we will call “dipole-
correlated disorder” for short. It has been shown through ex-
perimental current-voltage characteristics that, depending on
the material, either uncorrelated or dipole-correlated energetic
disorder is more appropriate.4–6

For uncorrelated Gaussian energetic disorder and low
carrier concentrations, the mobility μ was determined nu-
merically by Bässler7 using a Monte Carlo (MC) simulation
of a single charge carrier on a simple cubic (SC) lattice
with Miller-Abrahams (MA) hopping rates.8 The low carrier-
concentration case for dipole-correlated disorder has also
been studied using both MC simulation9,10 and a semianalytic
method.11 It was later realized that the dependence of μ on the
carrier concentration plays a crucial role.12,13 This dependence
was determined numerically for uncorrelated disorder using a
master-equation approach, leading to a parametrization of the
mobility function μ(T ,c,F ), by Pasveer et al.14 An analogous
parametrization for dipole-correlated disorder was obtained by
Bouhassoune et al.15

More insight into the transport process has been obtained
using percolation theories based on the concept of a single
critical bond in the system, from which semianalytical expres-
sions for μ(T ,c) at F = 0 have been derived.16–19 However,
none of these theories accurately describes the results of
numerical simulations. In Ref. 20 we developed a scaling
theory based on the concept of fat percolation,21 which states
that not just one but several critical bonds must be taken into
account. We have shown that this scaling theory accurately
describes μ(T ,c) for uncorrelated disorder, not only for the
SC lattice and MA hopping considered in Ref. 14 but also for
a face-centered-cubic (fcc) lattice and Marcus hopping.22 In
the present work, we will extend and apply the scaling theory
to densities of states other than the uncorrelated Gaussian one,
focusing especially on dipole-correlated energetic disorder.
This wide applicability of the scaling theory demonstrates its
very general character.

In Sec. II, we describe the hopping transport model and
its mapping onto a random-resistor network. In Sec. III,
we discuss the scaling theory introduced in Ref. 20. This
theory can be used to obtain μ from this random-resistor
network, leading to an explicit formula for μ(T ,c). In Sec. IV
we demonstrate that for MA hopping the scaling theory as
developed in Ref. 20 can be applied to different DOS types.
Moreover, we show and discuss results for the dependence
of μ on the temperature and carrier concentration for the
case of correlated disorder for both MA and Marcus hopping.
Finally, Sec. V contains the conclusions and an outlook on the
application of our results.

II. HOPPING TRANSPORT AND THE
RANDOM-RESISTOR NETWORK

We consider the mobility of charge carriers with nearest-
neighbor hopping between the sites of a lattice having site
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density Nt, which we take to be either SC or fcc. We take
periodic boundary conditions. Each site has an energy Ei ,
which is the energy of a charge carrier occupying site i. These
site energies can be spatially uncorrelated or correlated. In the
uncorrelated case, we take the DOS g(E) to be Gaussian with
standard deviation σ , g(E) = exp(−E2/2σ 2)/

√
2πσ . We will

later also consider other types of DOS. It has been shown
that for uncorrelated energetic disorder moderate positional
disorder does not have a strong effect on μ, since it is a second-
order effect.7,20 We expect the same to hold for correlated
energetic disorder and will therefore not consider positional
disorder in the present work.

For correlated energy disorder, we consider an energy
landscape generated by placing a randomly oriented dipole
di with fixed magnitude d at every site i. The site energies
then follow from the electrostatic potential of these dipoles:

Ei = −
∑
j �=i

edj · (Rj − Ri)

ε|Rj − Ri |3 , (1)

where ε is the electrical permittivity of the material, e is
the elementary charge, and Ri is the position of site i. The
minimum image convention is used to take into account
the periodic boundary conditions in the calculation of the
electrostatic potential. An appropriate choice of d then yields
a DOS that is approximately a Gaussian with standard
deviation σ (see the Appendix). There is now a correlation
between the energies of two sites, with a correlation function
asymptotically decreasing as 1/R with the intersite distance
R.10

Carriers can hop from an occupied site i to an unoccupied
neighboring site j . Any physical rate should satisfy detailed
balance and can therefore be written as

ωij = ωsymm(|�Eij |) exp(−�Eij/2kBT ), (2)

where kBT is the thermal energy and �Eij ≡ Ej − Ei − eF ·
(Rj − Ri) is the energy difference between the sites, with F
the applied electric field. The symmetric part of the hopping
rate ωsymm(|�E|) determines the type of hopping. For Marcus
hopping we have22

ωsymm(|�E|) = ω0 exp(−�E2/4ErkBT ), (3)

where Er is the reorganization energy (the energy gain of the
atomic arrangement of a molecule adapting to the presence of
a charge) and

ω0 ≡ J 2
0

h̄

√
π

ErkBT
exp(−Er/4kBT ), (4)

with J0 the transfer integral. For MA hopping we have8

ωsymm(|�E|) = ω0 exp(−|�E|/2kBT ), (5)

where ω0 is now a temperature-independent prefactor. We will
give all results for μ in units of the prefactor ω0, where we
should keep in mind that for Marcus hopping ω0 depends on
T and Er.

The charge-carrier mobility μ can be determined by solving
the hopping problem numerically using the master-equation
(ME) method.14 We will use these ME results as a benchmark
and to determine the parameter values in the scaling theory dis-
cussed below. This approach takes into account the dominant

effect of Coulomb interactions, which is to prevent two carriers
from occupying one site. Longer-range Coulomb interactions
are not relevant at the carrier concentrations considered here
of at most a few percent. This was shown by Zhou et al.
for uncorrelated disorder23 and by van der Holst et al. for
correlated disorder.24 We note that these works show that at
higher concentration, around 10%, these interactions cannot
be neglected.

By linearizing in the electric field F , the problem of finding
μ can be mapped onto that of finding the network conductivity
of a random-resistor network on the same lattice,16 with the
conductance Gij of the bond between sites i and j given by

Gij = e2ωsymm(|�Eij |)
4kBT cosh

[
Ei−EF
2kBT

]
cosh

[Ej −EF

2kBT

] (6a)

≈ e2ωsymm(|�Eij )|
kBT

exp

(
EF

kBT
− Ei + Ej

2kBT

)
, (6b)

where EF is the Fermi energy. The approximation Eq. (6b) is
valid for sufficiently low EF, as compared to the energies of the
sites that are relevant for the charge transport. For uncorrelated
Gaussian disorder, this holds for carrier concentrations c �
0.03.20 We will see further on that for correlated disorder the
requirement is that c � 0.01.

III. SCALING THEORY FOR THE CHARGE-CARRIER
MOBILITY

We will now discuss the scaling theory introduced in Ref. 20
to obtain the carrier mobility μ from the random-resistor
network. We consider the problem from a percolation-theory
standpoint. There is a percolation threshold pbond, such that
the portion pbond of bonds with highest conductivity just
forms an infinitely large connected network, the percolating
network.16 We define the critical conductance Gcrit as the
lowest conductance occurring in this network. Gcrit and pbond

are related through �(Gcrit) = 1 − pbond. Here, �(G) is the
cumulative distribution function (CDF) of the distribution
of bond conductances, i.e., �(G) is the probability that a
randomly chosen bond has a conductance lower than or equal
to G.

The key concept in linking Gcrit to the charge-carrier
mobility μ is the notion of fat percolation, first introduced
by Dyre and Schrøder,21 which states that the mobility is
determined not only by the critical bond, but also by the
bonds with conductance close to that of the critical bond.
In our scaling theory, we assume that μ only depends on the
amount of these bonds. This amount is given by f (Gcrit), where
f (G) ≡ d�/dG is the probability density function (PDF) of
the conductance distribution. Since percolation can be viewed
as a critical phenomenon, with a critical point at T = 0, we
propose as a scaling ansatz for the dependence of the mobility
on Gcrit and f (Gcrit) a power-law form, which is expected to
be valid in a scaling regime around the critical point, i.e., at
finite but not too high temperatures. Dimensional analysis then
leads us to consider the following form:20

μ = A
1

N
2/3
t ec

Gcrit[Gcritf (Gcrit)]
λ, (7)
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where in general the prefactor A and the critical exponent λ

depend on the DOS and the type of hopping and lattice, but
not on T or c. These parameters can be determined from fits
to numerically exact ME results. This equation holds only in
the scaling regime, i.e., at a sufficiently low temperature or,
equivalently, a sufficiently large disorder strength σ . Outside
this regime, a large range of conductances determines the
mobility and the full distribution f (G) becomes relevant, not
only f (Gcrit). The analysis in Ref. 20 has shown that the scaling
regime corresponds to σ̂ ≡ σ/kBT � 2 for a Gaussian DOS
and uncorrelated disorder, which means that the scaling theory
has a wide applicability range.

To apply Eq. (7) we must explicitly determine Gcrit and
f (Gcrit). We first consider MA hopping. Using Eq. (5) in
Eq. (6b) gives

Gij = e2ω0

kBT
exp

(
EF − max(Ei,Ej )

kBT

)
. (8)

Consider now the site percolation problem, instead of the bond
percolation problem. There is a site percolation threshold psite,
such that the bonds in between the portion of sites psite with
lowest energy just form a percolating network. Similar to the
critical conductance Gcrit, we define the critical energy Ecrit as
the maximum energy occurring in this network. From Eq. (8)
we see that the bonds connecting these sites are exactly the
bonds of highest conductivity, and so the site percolating
network is identical to the bond percolating network. Since
a site has a probability psite to be in the percolating network,
a bond has probability pbond = p2

site (for uncorrelated energy
disorder). The critical energy Ecrit can now be linked directly
to the percolation threshold pbond:

√
pbond = psite = 	(Ecrit) ≡

∫ Ecrit

−∞
g(E)dE, (9)

where 	(E) is the CDF of the density of states. From Eq. (8)
we see that Gcrit and Ecrit are related by

Gcrit = e2ω0

kBT
exp

(
EF − Ecrit

kBT

)
. (10)

The conductance distribution function f (G) can be derived
from Eq. (8) and the DOS g(E). Using Eq. (9) we then obtain

f (Gcrit) = 2kBT

Gcrit
g(Ecrit)

√
pbond. (11)

Combining Eqs. (7), (10), and (11) yields the following
expression for the charge-carrier mobility μ, valid only for
MA hopping:

μ(T ,c) = A
eω0

N
2/3
t kBT c

[2kBT g(Ecrit)
√

pbond]λ

× exp

(
EF(T ,c) − Ecrit

kBT

)
. (12)

Since the topology of the percolating network is determined
purely by site percolation, it does not depend on the DOS as
long as the energetic disorder is uncorrelated. Consequently,
for uncorrelated disorder, the parameters A, λ, and pbond do not
depend on the DOS either. In fact, site percolation is a standard
problem and values of pbond can be found in general percolation
literature.25 We note that Ecrit does depend on the DOS,

but can be determined straightforwardly from pbond using
Eq. (9). This means that for uncorrelated disorder, Eq. (12)
can predict the mobility for MA hopping for any DOS without
any change in the parameters. We note that if g(Ecrit) ≈ 0, i.e.,
if there are very few sites around Ecrit available, Eq. (12) only
holds at very low temperatures. This is because it is only at
these temperatures that the few sites close to Ecrit determine
the transport. Such a situation may occur, for example, in
host-guest systems for guest concentrations at the crossover
in between the low guest-concentration regime in which the
guest molecules act as traps and the high guest-concentration
regime in which the transport takes place via direct hopping
between the guest sites. For correlated disorder the topology of
the percolating network does depend on the DOS. Hence, the
parameters A, λ, and pbond will in this case also depend on the
DOS. However, for this case we will not explicitly construct
the percolating network, but apply an approach explained in
the next section.

The discussion above does not hold for Marcus hopping,
because in that case the bond percolating network is not
identical to the site percolating network. However, just like
for MA hopping the dependence of Gij on Ei and Ej can
be written in the form exp[−E(Ei,Ej )/kBT ], where E is
an energy function of Ei and Ej that does not depend on
T or c. Consequently, Eq. (10) still holds, although there
is now no straightforward relationship between Ecrit and the
DOS, such as Eq. (9) for the case of MA hopping. Therefore,
Eq. (11) no longer holds, but it can be analytically shown that
Gcritf (Gcrit) is still independent of c and scales linearly with
T . Consequently, we find the following expression for μ, valid
for both Marcus and MA hopping:20

μ(T ,c) = B
eω0

N
2/3
t Wc

(
W

kBT

)1−λ

× exp[(EF(T ,c) − Ecrit)/kBT ], (13)

where the prefactor B depends on the DOS, the lattice, and
the type of hopping, but not on T or c. The parameter W is a
measure for the width of the DOS. For the Gaussian DOS we
choose W = σ ; other shapes of the DOS will be discussed in
the next section. The choice of W is in a sense arbitrary, but a
different definition would simply result in a different value of
the prefactor B.

IV. RESULTS

To apply the theory derived in the previous section, we
must determine the various fitting parameters. In the case
of uncorrelated disorder, the parameters pbond, Ecrit, Gcrit,
and f (Gcrit) can be found by explicitly determining the
percolating network for large lattices by numerical techniques.
We then fit Eq. (7) to the carrier mobility as determined
from ME calculations at various temperatures T and carrier
concentrations c, with A and λ as fitting parameters. The
prefactor B in Eq. (13) then follows directly from the value of
A. The validity of this approach was demonstrated in Ref. 20.
The obtained parameter values for the two different lattices
and hopping types are listed in Table I. The dependence of
these parameters on the reorganization energy Er in the case
of Marcus hopping is discussed at the end of this section. This
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TABLE I. Bond percolation threshold pbond, prefactor A, critical
exponent λ in Eqs. (7) and (12), prefactor B, and critical energy Ecrit

in Eq. (13), for uncorrelated Gaussian disorder. Results are given for
Miller-Abrahams (MA) and Marcus hopping, and simple cubic (SC)
and fcc lattices. The last column gives the value C in an optimal fit of
the low carrier-concentration mobility μ0(T ), as given by Eq. (16), to
exp(−Cσ̂ 2) in the range 2 � σ̂ � 6, with σ̂ = σ/kBT . The number
of digits given in each entry is compatible with the accuracy with
which the parameters could be obtained. All values were taken from
Ref. 20.

Lattice Hopping Er[σ ] pbond A λ B Ecrit[σ ] C

SC MA N/A 0.097 2.0 0.97 0.47 − 0.491 0.44
SC Marcus ∞ 0.139 1.8 0.85 0.66 − 0.766
SC Marcus 10 0.131 1.8 0.85 0.63 − 0.748 0.69
SC Marcus 3 0.118 1.8 0.85 0.59 − 0.709 0.49
SC Marcus 1 0.104 1.8 0.85 0.51 − 0.620 0.44
fcc MA N/A 0.040 8.0 1.09 0.7 − 0.84 0.40
fcc Marcus ∞ 0.058 8.0 1.10 1.2 − 1.11
fcc Marcus 10 0.054 8.0 1.10 1.1 − 1.09 0.66
fcc Marcus 3 0.048 8.0 1.10 1.0 − 1.06 0.45
fcc Marcus 1 0.042 8.0 1.10 0.8 − 0.98 0.40

table was already given in Ref. 20, but is included here in order
to facilitate comparison with the results obtained for correlated
energetic disorder, discussed below.

In Fig. 1(a) we show the validity of Eq. (12) by plotting
the temperature dependence of the mobility for MA hopping
with uncorrelated disorder for three different types of DOS:
a Gaussian, an exponential, and a constant DOS. In all three
cases, W is a measure for the width of the DOS. For the
Gaussian DOS, W = σ is the standard deviation. For the
exponential DOS W = kBT0 is the decay energy: g(E) =
exp(E/kBT0)/kBT0 for E � 0 and g(E) = 0 for E > 0. For
the constant DOS W is half the size of the energy region in
which the DOS is nonzero: g(E) = 1/2W for −W � E � W

and g(E) = 0 otherwise. The results of Eq. (12) (lines)
describe the ME results (symbols) very well for W/kBT � 2,

using the same values A = 2.0, λ = 0.97, and pbond = 0.097
[which determines Ecrit through Eq. (9)] for each type of DOS.

We will consider the exponential DOS in more detail,
because this type of DOS is often used in analyzing the mo-
bility of organic field-effect transistors (OFETs).26 Applying
Eq. (13) to this case gives

μ(T ,c) = B
eω0

N
2/3
t kBT0c

(
T0

T

)1−λ

×
(

exp (Ecrit/kBT0) c

	(1 − T/T0)	(1 + T/T0)

)T0/T

, (14)

where 	(z) ≡ ∫ ∞
0 dy exp(−y)yz−1 and Eq. (2) in Ref. 26 was

used to express EF in terms of c. For MA hopping on an SC
lattice, we have from Eq. (9) Ecrit = −1.17kBT0 leading to
exp(Ecrit/kBT0) = 0.32. We compare this to the result given
by Vissenberg and Matters (VM)26 for MA hopping:

μ(T ,c) = σ0,VM
e

Ntc

(
πNt (T0/T )3c

(2α)3Bc	(1 − T/T0)	(1 + T/T0)

)T0/T

,

(15)

where σ0,VM is a conductivity prefactor and the critical number
Bc ≈ 2.8. Equation (15) was derived within a percolation
analysis of variable-range hopping (VRH) on a randomly
and uniformly distributed collection of sites, with a decay
length α−1 of the wave functions localized at the sites. We
note that the concentration dependence in Eqs. (14) and (15)
is the same. The temperature dependence is similar in the
sense that the dominant factor is Arrhenius-like, μ(T ) ∝
exp[−Ea/kBT ], with an activation energy Ea. In our case
we have Ea = Ecrit − EF [see Eq. (13)], whereas in the VM
case Ea = kBT0 ln[πNt(T0/T )3/(2α)3Bc] − EF. We note that
the value of Ea in our approach converges to a finite value for
T → 0, while in the VM case it diverges to infinity. It could be
worthwhile to reanalyze mobilities in OFETs with the present
theory.

We now consider correlated energy disorder. Figure 2 shows
that the topologies of the percolating networks for uncorrelated
and correlated disorder are very different. Shown are the

FIG. 1. (Color online) (a) Dependence of the charge-carrier mobility μ on the temperature T for different densities of states (DOS),
uncorrelated disorder, an SC lattice, MA hopping, and carrier concentration c = 10−3. In all cases W is a measure for the width of the DOS.
Symbols: master-equation (ME) results. Curves: scaling theory, Eq. (12), with A = 2.0 and λ = 0.97 for all three curves, and Ecrit determined
from Eq. (9) with pbond = 0.097. (b) Dependence of μ on T for different lattices and hopping rates, with dipole-correlated disorder and
c = 10−3. Symbols: ME. Curves: scaling theory, Eq. (13), with values of B, λ, and Ecrit as given in Table II. For clarity the mobilities for
Marcus hopping have been multiplied by 10. The error in the ME results is smaller than the symbol sizes.
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Uncorrelated disorder, c� 10�3, Σ�kBT � 3 Correlated disorder, c� 10�3, Σ�kBT � 3

FIG. 2. (Color online) Normalized current (line opacity) in bonds of a 30 × 30 square lattice with uncorrelated Gaussian energetic disorder
(left) and dipole-correlated energetic disorder (right), both with standard deviation σ . The red circles indicate bonds with a power dissipation
of at least 30% of the maximum power dissipation. The results shown are for Marcus hopping with reorganization energy Er→∞, c = 10−3,
and σ/kBT = 3. A small electric field has been applied from left to right.

bond current distributions on a two-dimensional square lattice,
for uncorrelated (left) and dipole-correlated (right) Gaussian
disorder. Also shown are the critical bonds, i.e., those bonds
at which most power is dissipated. We see that the correlated
case is very different from the uncorrelated case: both the high-
current bonds and the critical bonds are much more clustered.
This clustering makes it almost impossible in the case of
correlated disorder to use a percolation analysis as described
above to determine pbond, Ecrit, Gcrit, and f (Gcrit) for three-
dimensional lattices with the typical sizes of 100 × 100 × 100
sites that we used. In order to circumvent this problem, we
applied Eq. (13) to this case and fitted the parameters B, λ,
and Ecrit directly to this expression. The results for the two
different lattices and hopping types are listed in Table II. The
values of the parameter pbond and A are not included in the
table, since they are not used in this approach. We note that
the different topology of the percolating network for correlated
and uncorrelated disorder is reflected in the value of the critical
exponent λ, which is around two for correlated disorder and
around unity for uncorrelated disorder.

TABLE II. λ, B, and Ecrit for dipole-correlated disorder. The last
column gives the value C in an optimal fit of μ0(T ), as given by
Eq. (17), to exp(−Cσ̂ 2) in the range 2 � σ̂ � 6.

Lattice Hopping Er[σ ] λ B Ecrit[σ ] C

SC MA N/A 2.0 0.36 −1.26 0.33
SC Marcus ∞ 1.7 0.43 −1.37
SC Marcus 10 1.7 0.42 −1.37 0.61
SC Marcus 3 1.7 0.38 −1.37 0.38
SC Marcus 1 1.7 0.29 −1.37 0.32
fcc MA N/A 2.2 0.78 −1.43 0.31
fcc Marcus ∞ 2.2 1.1 −1.56
fcc Marcus 10 2.2 1.1 −1.56 0.60
fcc Marcus 3 2.2 1.0 −1.56 0.38
fcc Marcus 1 2.2 0.7 −1.56 0.31

The validity of Eq. (13) with the parameter values obtained
above for the case of dipole-correlated disorder is shown in
Fig. 1(b). This figure shows the temperature dependence of
the mobility for SC and fcc lattices with MA hopping and
Marcus hopping for Er → ∞. As in Fig. 1(a) we observe a
very good agreement between the results of the scaling theory
and the ME results for σ̂ � 2.

Of special interest is the temperature dependence of the
mobility at low carrier concentration c → 0, i.e., the mobility
of a single noninteracting carrier. For uncorrelated Gaussian
disorder we find, starting from Eq. (13),20

μ0(T ) = B
eω0

N
2/3
t σ

σ̂ 1−λ exp[−Ecrit/kBT ]

× lim
c→0

exp[EF(T ,c)/kBT ]

c

= B
eω0

N
2/3
t σ

σ̂ 1−λ exp[−σ̂ 2/2 − Ecrit/kBT ]. (16)

This expression does not apply to the dipole-correlated case
because the DOS is not exactly Gaussian for that case. Instead,
make use of Eq. (A5) to obtain

μ0(T ) ≈ B
eω0

N
2/3
t σ

σ̂ 1−λ exp[−0.56σ̂ 1.9 − Ecrit/kBT ] (17)

for correlated disorder. This is an approximate expression be-
cause Eq. (A5) is an approximation of the exact limit Eq. (A4).
We remind the reader that in the case of Marcus hopping ω0

depends on T via Eq. (4), leading to an additional temperature
dependence that is not explicitly shown in Eqs. (16) and (17).

The temperature dependence of the mobility in the limit of
zero carrier density and zero electric field is often expressed
as μ0(T ) ∝ exp(−Cσ̂ 2). We find that this provides a quite
accurate description of Eqs. (16) and (17) when considering
a limited temperature range 2 � σ̂ � 6. To facilitate the
comparison with earlier work, we have included the value
of C in such a fit in Tables I and II, taking into account the
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FIG. 3. (Color online) (a) Dependence of μ on c for different lattices, with correlated disorder, MA hopping, and σ/kBT = 6. Symbols:
ME results. Curves: scaling theory, Eq. (13), with values of B, λ, and Ecrit as given in Table II. The dashed curves assume the DOS to be
perfectly Gaussian, while the solid curves use the corrected form, Eq. (A3). (b) Dependence of μ on the reorganization energy Er for different
lattices, with correlated disorder, Marcus hopping, σ/kBT = 6, and c = 10−3. Interpolation was used to determine B at values of Er not listed
in Table II.

dependence of ω0 on T for the case of Marcus hopping. We
note that for correlated disorder the much lower value of Ecrit

leads to a significantly weaker temperature dependence, i.e.,
a lower value of C. This is consistent with the results found
in Ref. 15. For the case of an SC lattice with uncorrelated
Gaussian disorder and MA hopping, the obtained value of C

(0.44) is similar to the best-fit value C = 4/9 found from an
MC simulation of this system by Bässler.7 This result is often
interpreted as if the temperature dependence of the mobility
is determined by the rate of hops from the average carrier
energy −σ 2/kBT to a “transport level” with an energy around
−(5/9)σ 2/kBT . We note that the origin of the similar factor
exp[−(1/2)σ̂ 2] in Eq. (16) is very different: it originates from
the limit taken in deriving this equation and results purely
from the physics of carriers obeying Boltzmann statistics in a
Gaussian DOS, not from the transport properties.

We now turn to the carrier-concentration dependence of
the mobility. From Eq. (13) it follows that this dependence is
given by μ ∝ exp[EF(T ,c)/kBT ]/c and so does not contain
any parameters depending on the type of hopping, lattice, or
DOS. This was verified for uncorrelated Gaussian disorder in
Ref. 20. The concentration dependence for dipole-correlated
disorder is also found to be well described by Eq. (13), but is
slightly different from that obtained for uncorrelated Gaussian
disorder, because the DOS is now not exactly Gaussian. This
leads to a slightly different dependence of EF on c. We
use Eq. (A3) to describe the DOS [note that this is itself
an approximation of Eq. (A1)]. In Fig. 3(a) we show that
the mobility obtained in this way describes the ME results
very well. For comparison, the results found using a perfectly
Gaussian DOS are also shown (dashed curves). We note that for
the case of correlated disorder Eq. (13) is accurate for c � 0.01,
compared to c � 0.03 for uncorrelated disorder.20 For larger
values of c the assumption of low Fermi energy, which was
used to derive Eq. (6b), no longer holds. Since the critical
energy Ecrit for the case of correlated disorder is lower than
for uncorrelated disorder, the assumption of low Fermi energy
breaks down at a lower concentration than for uncorrelated
disorder. Our results for the concentration dependence of the
mobility are again consistent with those in Ref. 15, where the

concentration dependence for dipole-correlated disorder was
found to be slightly weaker than for uncorrelated disorder.

Finally, we investigate the dependence of μ on the reorgani-
zation energy Er for Marcus hopping and correlated disorder.
For the case of uncorrelated disorder, this dependence was
studied in Ref. 20. It was found that for uncorrelated disorder
the parameter values of A and λ could be taken constant (see
Table I). However, for correlated disorder we cannot apply
the same approach, because we do not know the value of
A. Instead, we keep λ constant and fit B and Ecrit to ME
calculations, using Eq. (13). The results are listed in Table II.
Interestingly, no dependence of Ecrit on Er is found, contrary
to the case of uncorrelated disorder (compare with Table I). In
other words, the dependence of μ on Er occurs only via the
prefactor B. This can be understood by considering the effect
of Er on the hopping rates, as given by Eq. (3): a large value
reduces the hopping rate when the energy difference between
the sites involved is large. This energy difference is diminished
by the correlation of the energy levels, thus reducing the effect
of the reorganization energy. The validity of these results is
demonstrated in Fig. 3(b), which shows the dependence of the
mobility on the reorganization energy for dipole-correlated
disorder. We must keep in mind here that there is an additional
dependence on Er through the prefactor ω0; see Eq. (4). If this
prefactor is taken into account, the expected decrease of the
mobility with increasing Er is found.

V. CONCLUSIONS AND OUTLOOK ON APPLICATIONS

We have developed a very general scaling theory for per-
colative charge transport in disordered molecular semiconduc-
tors, describing the dependence of the charge-carrier mobility
on temperature and carrier concentration. The theory is valid
in a scaling regime corresponding to a wide temperature range
that includes most relevant cases. We have studied, in partic-
ular, the differences between uncorrelated Gaussian energetic
disorder and correlated energetic disorder caused by randomly
oriented dipoles. The topology of the percolating network
for correlated disorder is quite different than for uncorrelated
disorder, which is reflected in a different value of the critical
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exponent λ in the theory. The temperature dependence of the
mobility for correlated disorder is significantly weaker than
for uncorrelated disorder, due to the significantly lower value
of the critical site energy Ecrit of the percolating network.
The carrier-concentration dependence for correlated disorder
is slightly weaker, due to the fact that the density of states is
not perfectly Gaussian.

The theory can be applied to many different situations.
We have demonstrated how it can be applied to uncorrelated
and dipole-correlated energetic disorder, Miller-Abrahams and
Marcus hopping, and simple cubic and face-centered-cubic
lattices. The mobility can be obtained for all these cases by
applying Eq. (13) and simply looking up the appropriate values
of the parameters λ, Ecrit, and B in Table I or II. In the case
of dipole-correlated disorder one should keep in mind that the
DOS is not perfectly Gaussian, which affects the dependence
of the Fermi energy EF on the carrier concentration, and
thereby the carrier-concentration dependence of the mobility.
A parametrization of the exact DOS for this case is given
by Eq. (A3). For uncorrelated disorder and Miller-Abrahams
hopping it is even possible to obtain the mobility for any shape
of the DOS using Eq. (12), with values of A and λ as found
in Table I. Ecrit can be easily calculated from Eq. (9), with
the value of pbond found in Table I. No such straightforward
formula is known for Marcus hopping in a non-Gaussian
DOS; Eq. (13) applies to this case, but the parameters λ,
Ecrit, and B have to be determined specifically for each
DOS.

To determine which model correctly describes the un-
derlying physics, it is important to develop methods to use
experimental data to distinguish between Miller-Abrahams
and Marcus hopping, and between correlated and uncorrelated
disorder. We note that the concentration dependence is nearly
identical for all cases and so cannot be used for this purpose.
The temperature dependence is different for every case and
so can, in principle, be used to distinguish between models.
However, typically experiments take place in the range 2 �
σ/kBT � 6, in which for all cases the temperature dependence
is well described by μ0(T ) ∝ exp[−C(σ/kBT )2] for some C.
The value of C alone is not enough to tell apart all cases
(see Tables I and II). We expect that the field dependence of
the mobility, which has been determined for Miller-Abrahams
hopping14,15 but has yet to be determined for Marcus hopping,
may make it possible to fully distinguish between the different
models.

Another possibility to distinguish between models is to
consider the time- or frequency-dependent ac mobility as
probed in transient experiments. In such experiments charge-
carrier relaxation effects give rise to a time-dependent current
density, which reflects the finite time needed for the carriers
to relax to the dynamic thermal equilibrium distribution.
Recently, Germs et al. found that the energy Ecrit as obtained
from the present scaling theory in Ref. 20 for the case of MA
hopping in an SC lattice is close to the effective “conduction”
energy level that may be used in a multiple-trapping model
describing charge-carrier relaxation in a hole-transporting
polyfluorene-based polymer.27 The differential capacitance of
the sandwich-type metal/polymer/metal devices was found
to be very sensitive to the value of Ecrit. This suggests
that it will be possible to validate the predicted values of

Ecrit as obtained in this paper from analyses of ac current
density in, e.g., admittance, dark-injection, or time-of-flight
experiments. The finding that Ecrit is much lower for systems
with correlated disorder than for systems with uncorrelated
Gaussian disorder suggests that the ac response of systems
with correlated disorder is less strongly affected by relaxation
effects. Quantitative analyses of the ac response are thus
expected to provide a method for probing the presence of
spatial correlation between the energy levels in disordered
organic semiconductors.
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APPENDIX: DENSITY OF STATES FOR
DIPOLE-CORRELATED DISORDER

We consider the DOS g(E) for a lattice site in a dipole-
induced correlated energy landscape. For convenience we put
this site at the origin. In Ref. 28, Novikov and Vannikov derived
that

g(E) = 1

2π

∫ ∞

−∞
dy exp[iyE + S(y)],

(A1)

S(y) ≡
∑

j

ln

[
sin(yzj )

yzj

]
, zj ≡ ed

εR2
j

,

where i = √−1 and the summation runs over all other lattice
sites j . Note that this yields different densities of states for SC
and fcc lattices, though the differences are minor.

Since the main contribution to the integral is from small
values of y, it is useful to replace S(y) by its Taylor expansion
around y = 0:28

S(y) = −A

6

(
edyN

2/3
t

ε

)2

+ O(y4), A ≡
∑

j

(
RjN

1/3
t

)−4
.

(A2)

For the SC lattice we have A ≈ 16.532 and for the fcc lattice
A ≈ 15.962. Using only this term in Eq. (A1) and setting
d = (

√
3/A)σε/eN

2/3
t yields a Gaussian DOS with standard

deviation σ . It is possible to refine this approximation by
continuing the expansion and parametrizing the resulting DOS,
yielding

g(E) ≈ 0.383

σ
exp(−0.44|E/σ |2.11), (A3)

which is accurate to within 10% for −4σ � E � 4σ for both
SC and fcc lattices.

Finally, we determine the limit necessary to describe the
carrier mobility at low concentration c → 0 in Eq. (17):

lim
c→0

exp[EF(T ,c)/kBT ]

c
=

[∫ ∞

−∞
dEg(E) exp(−E/kBT )

]−1

= exp[−S(i/kBT )], (A4)

where g(E) is given by Eq. (A1) and the resulting double
integral is solved using contour integration. Note that using
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only the first term in the Taylor expansion as given by Eq. (A2)
yields the usual exp(−σ̂ 2/2) dependence for the Gaussian
DOS. Unfortunately, continuing this expansion is not fruitful
because it diverges for large values of y. For this reason we
choose to parametrize the result of evaluating S explicitly using

Eq. (A1), leading to

lim
c→0

exp[EF(T ,c)/kBT ]

c
≈ exp(−0.56σ̂ 1.9), (A5)

which is accurate to within 20% for σ̂ � 7 for both SC and fcc
lattices. This result has been used in Eq. (17).
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