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We discuss (2 + 1)-dimensional topological superconductors with Nf left- and right-moving Majorana edge
modes and a Z2 × Z2 symmetry. In the absence of interactions, these phases are distinguished by an integral
topological invariant Nf . With interactions, the edge state in the case of Nf = 8 is unstable against interactions,
and a Z2 × Z2 invariant mass gap can be generated dynamically. We show that this phenomenon is closely
related to the modular invariance of type II superstring theory. More generally, we show that the global
gravitational anomaly of the nonchiral Majorana edge states is the physical manifestation of the bulk topological
superconductors classified by Z8.
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I. INTRODUCTION

Topological insulators and superconductors are a gapped
phase of matter with a stable gapless mode at their boundary.
A classic example is the integer quantum Hall effect (IQHE),
which exists for two spatial dimensions in the presence of
a strong time-reversal symmetry breaking magnetic field.1

A flurry of recent excitement came with the discovery of
topological insulators in two and three dimensions in systems
in the presence of strong spin-orbit coupling.2–11 Unlike
the IQHE, the topological character of these topological
insulators (i.e., the stable gapless edge or surface modes) is
protected by time-reversal symmetry (TRS). With a wider set
of discrete symmetries in addition to TRS, such as particle-
hole symmetries of various kinds realized in insulating and
superconducting systems, one can ask if there is a topological
distinction among gapped phases in the presence of such
symmetries. The answer to this question is summarized in
the systematic classification of topological insulators and
superconductors.11–14

While these noninteracting topological phases are stable
against arbitrary deformation of the Hamiltonian at the
quadratic level, they could be fragile against fermion interac-
tions. In the case of three-dimensional topological insulators,
the topological invariant can be physically defined in terms
of the topological magneto-electric effect with a quantized
coefficient,11 which can be evaluated for a generally interact-
ing system in terms of the many-body Green’s function.15

For this reason, we can expect topological insulators to
be stable against a general class of interactions. However,
Refs. 16–18 also provided counter examples in the case
of topological superconductors. It was demonstrated that in
(1 + 1)-dimensional lattice Majorana fermion models, with a
suitable choice of interactions, one can find an adiabatic path
that connects what appears to be a topological phase at the
quadratic level and a topologically trivial phase.

In this paper, we discuss a (2 + 1)-dimensional topological
superconductor with Nf left- and right-moving Majorana
edge modes, and a Z2 × Z2 symmetry between them (see
Sec. II). The similar/same models were studied independently
in Refs. 19–22. In the absence of interactions, these phases are
distinguished by an integral topological invariant, since they
support an integral number of nonchiral edge modes (=Nf ).

With interactions, the edge state of the phase with Nf = 8
is unstable to interactions. Therefore the interacting phases
of this model are classified by the Z8 topological class (see
Sec. II). We argue that this phenomenon is closely related to
the modular invariance of type II superstring (see Sec. IV).
More generally, we show that the global gravitational anomaly
or the modular noninvariance of the nonchiral Majorana
edge states is the physical manifestation of the (2 + 1) bulk
topological superconductor (see Sec. III).

II. Z2 × Z2 SYMMETRIC TOPOLOGICAL PHASES

A. Description of the model

The topological phases of our interest are in (2 + 1)
dimensions, and have Z2 × Z2 symmetry with two conserved
Z2 quantum numbers. A convenient way to describe these
quantum numbers is to first consider systems with two
conserved U(1) charges, and then later break the U(1) × U(1)
symmetry down to Z2 × Z2. The two charges can be thought
of as the total fermion number and the total Sz (the z component
of spin-1/2 operator) quantum number, denoted by N↑ + N↓,
and N↑ − N↓, respectively. We break the particle number
conservation by introducing superconducting pair potential,
so the system belongs to the Bogoliubov-de Genne (BdG)
symmetry class (class D) of Altland Zirnbauer. Here, we
deal with the pairing potential at the mean-field level, and
regard it simply as a background. In effect, we are considering
quadratic Hamiltonians of real fermions (BdG quasiparticles)
instead of complex fermions. The pair potential breaks the
electromagnetic U(1) symmetry, and the total fermion number
N↑ + N↓ is now conserved only modulo 2, i.e., the total
fermion number parity (−1)N↑+N↓ is conserved.

When the total Sz is conserved, the BdG Hamiltonians can
be block diagonalized in the basis where Sz is diagonal (each
block in the BdG Hamiltonians is a member of symmetry
class A). We now relax the conservation of total Sz, and demand
only the parity (−1)N↑ [or (−1)N↓] to be conserved; combined
with the total fermion number parity conservation, the systems
of our interest conserve two Z2 quantum numbers, (−1)N↑ and
(−1)N↓ . Even without strict conservation of Sz, at the quadratic
level, the BdG Hamiltonians still remain block-diagonal since
the Z2 × Z2 symmetry does not allow any spin flip, i.e., any
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bilinear connecting spin-up and spin-down sectors. (So far,
relaxing the Sz conservation down to the conservation of the
two Z2 quantum numbers does not change the story much at
the quadratic level, but it will make a big difference when we
talk about interactions.)

These sub-blocks in the BdG Hamiltonians belong to the
symmetry class A (the same symmetry class as IQHE) and their
topological character is specified by the Chern number, Ch↑
and Ch↓, respectively; the topological classes of the system is
characterized by a Z × Z topological number.

When Ch↑ + Ch↓ �= 0, time-reversal symmetry (TRS) is
necessarily broken, and a time-reversal symmetry breaking
topological superconductor (in symmetry class D) is realized.
This phase has nonzero thermal Hall conductance κxy , and
when there is an edge, it supports an integer number (=Ch↑ +
Ch↓) of chiral Majorana fermions. This phase is robust against
interactions as well as disorder.

The phase of our interest in this paper corresponds to the
case with the vanishing total Chern number, Ch↑ + Ch↓ = 0
(this is guaranteed when there is time-reversal symmetry),
but with the nonzero spin Chern number, Chs := (Ch↑ −
Ch↓)/2 �= 0. A lattice model that realizes this situation can
easily be constructed, by combining two copies of lattice chiral
p-wave superconductors with opposite chiralities. (See, for
example, Ref. 21.) Similarly to the case of Ch↑ + Ch↓ �= 0,
the phase with Chs �= 0 supports edge modes but unlike the
case of Ch↑ + Ch↓ �= 0, edge modes are nonchiral. Below, we
will have a closer look at the edge modes.

Let us begin with the case of Chs = 1. The edge of the
system consists of a single copy of Majorana fermion with both
left- and right-moving chiralities, described by the following
Euclidean Lagrangian:

L = 1

4π
[ψL(∂τ + iv∂x)ψL + ψR(∂τ − iv∂x)ψR], (1)

where τ is the imaginary time and x is the spatial coordinate
parameterizing the edge; ψL (ψR) is the left- (right-) moving
(1 + 1) Majorana fermion, and v is the Fermi velocity. Here,
one could think of the left-mover to carry “spin-up” and
the right-mover to carry “spin-down” quantum numbers,
respectively (or vice versa, depending on the sign of Chs).
As emphasized before, however, we do not require the Sz

quantum number to be conserved [N↑ (or N↓) is conserved
only up to modulo 2]. This means, in particular, we do not have
well-defined spin Hall conductance σ s

xy . More generically,
when Chs = Nf , the edge is described by Nf flavor of
Majorana fermions with both left- and right-moving chiralities:

L = 1

4π

Nf∑
a=1

[
ψa

L(∂τ + iv∂x)ψa
L + ψa

R(∂τ − iv∂x)ψa
R

]
. (2)

Since they are nonchiral, the gapless nature of the edge
modes are not stable in the absence of any symmetry; one can
find a suitable mass term that opens a gap. Since the bulk of
the system respects Z2 × Z2 symmetry, this is inherited by the
edge theory; we define two fermion parities in the edge theory,

GL = (−)NL and GR = (−)NR , (3)

where NL(=N↑) [NR(=N↓)] is the total left-moving (right-
moving) fermion numbers at the edge. With the Z2 × Z2

symmetry, at the quadratic level, all mass terms ψa
Lψb

R are
prohibited as they are odd under the left- or right-Z2 parity (GL

or GR)—bulk topological phase is characterized by an integer,
which is simply the number of branches of the (nonchiral)
modes, Nf .

B. Effects of interactions

Beyond the quadratic level, we can write down interactions
ψa

Lψb
Lψc

Rψd
R that preserve Z2 × Z2 symmetry. The presence

of such interactions can potentially destabilize the edge.23

However, one would expect that the resulting gapped phase
would spontaneously break Z2 × Z2; at the mean-field level,
such interactions generate the expectation value 〈ψa

Lψb
R〉 �= 0

for some pair of flavor indices (a,b), and if so Z2 × Z2

conservation is violated.
When Nf = 8 (more precisely, when Nf ≡ 0 mod 8),

there is another type of interaction channel available that
can potentially destabilize the edge—interactions in terms
of “spin” or “disorder” operators. Let us first recall the
case of Nf = 1, the Ising conformal field theory (CFT). In
the quantum Ising model, we have two relevant operators;
the transverse field, and the Zeeman field. The former, in the
language of the two-dimensional classical Ising model, corre-
sponds to the deviation from the critical temperature (T − Tc)
and is given by the fermion mass term ψLψR . The latter, the
Zeeman field, while it is a natural and local perturbation in
terms of the Ising spin variable, is a nonlocal term when the
model is viewed as a fermion model. This is so because of the
Jordan-Wigner string. In fact, the operator product expansion
between the Majorana fermion ψL,R and the spin operator σL,R

has a branch cut, signaling they are not a local object in terms
of fermions. In fact, the spin operator is a twist operator for
the fermion field ψL,R; when σ is inserted, say, at the origin,
when ψ makes a round trip around the origin, it picks up a
minus sign.

When Nf = 8, from spin and disorder operators, we can
form 28 = 256 possible products of σa(z,z̄) and μa(z,z̄) (a =
1, . . . ,Nf ). These have conformal weight (1/16,1/16) × 8 =
(1/2,1/2), which is the conformal weight of free fermions.
These fermions, which are different from the original fermions
ψa

L,R , can be used to form a perturbation to the edge theory,
which are local with respect to ψa

L,R . This is rooted in the
triality symmetry of SO(8).24 Assuming, for simplicity, that all
eight Majorana fermions ψa

L,R have the same Fermi velocity,
the kinetic term of the edge theory enjoys SO(8) symmetry. The
Majorana fermions ψa

L/R belong to the vector representation of
SO(8), 8v . For SO(8), by “accident,” spinor (ξ ) and conjugate
spinor (η) are also eight dimensional (denoted by 8s and
8c, respectively), the triality symmetry permutes these three
representations. The 28 = 256 possible products of σa(z,z̄)
and μa(z,z̄) are precisely the (linear combination of) 64 × 4
primary fields ξa

Rξb
L, ξa

Rηb
L, ηa

Rξb
L, ηa

Rηb
L.25 These SO(8) spinors

can be described in terms of Abelian bosonization as follows:
we pair up the vector fermions, and bosonize as

ψ
2j−1
L ± iψ

2j

L � exp
( ± iϕ

j

L

)
,

(4)
ψ

2j−1
R ± iψ

2j

R � exp
( ± iϕ

j

R

)
,
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(j = 1, . . . ,4). The 16 = 8 + 8 fields

exp
i

2

(±ϕ1
L ± ϕ2

L ± ϕ3
L ± ϕ4

L

)
(5)

are the spinor ξa
L and ηa

L, with Z2 parity determined by the
parity of the number of minus signs in the exponential. ξa

L is
even underZ2 parity, while ηa

L and ψa
L are odd underZ2 parity.

Since ξa
L and ξa

R are even under the Z2 × Z2 parity, it is
now possible to construct quadratic terms ξa

Lξb
R that could gap

the edge states without violating the Z2 × Z2 symmetry. We
use the interaction term constructed in Ref. 16, which is given
by the Euclidean Lagrangian

Lint = −A

(
7∑

a=1

ξa
Lξa

R

)2

− B

(
7∑

a=1

ξa
Lξa

R

)
ξ 8
Lξ 8

R, (6)

where A and B are some constant. This interaction can, in
fact, also be expressed in terms of the vector fermions ψa

L/R

because of triality, and hence be a local interaction. The SO(8)
symmetry is broken down to SO(7) which leaves the spinor
ξ 8
L/R invariant.

This interaction, when B < 0 and B < 2A, gives rise to a
unique ground state as we can see as follows: when B 	 A,
because of the dominant SO(7) Gross-Neveu interaction term
−A(

∑7
a=1 ξa

Lξa
R)2, the bilinear

∑7
a=1 ξa

Lξa
R develops an ex-

pectation value 〈∑7
a=1 ξa

Lξa
R〉 = iM . The interaction can then

behave effectively as a mass term for ξ 8
L/R ,Lint � −iBMξ 8

Lξ 8
R .

Thus, when B 	 A, the model behaves essentially as a single
copy of the Ising model. Depending on the sign of the
induced mass −BM , it can be either in the low-temperature
(symmetry broken) or the higher-temperature (paramagnetic)
phase . To determine which phase is realized, we first note that
when B = 2A, the interaction term is the SO(8) Gross-Neveu
interaction. This then leads to a gapped phase with two-fold
degenerate ground states because of chiral symmetry breaking.
We would then conclude that when B 	 A and B > 0 (and in
fact, for the entire region of B > 0 and B > −2A), the model
is in the low-temperature phase of the effective Ising model,
with two-fold degenerate ground states. Next, we note that the
sign of B can be flipped in the interaction (6) by ξa

R → −ξa
R , the

Kramers-Wannier duality transformation. Thus, we conclude,
when B 	 A and B < 0 (and in fact, for the entire region
of B < 0 and B < 2A), the effective Ising model is in the
high-temperature phase (paramagnetic phase) with unique
ground state. It can be checked that the ground state does
not violate the Z2 × Z2 symmetry.

The discussion above can be formulated in a language more
familiar in the context of correlated electron systems. When
Nf = 8, the eight Majorana fermions can be mapped onto
four complex fermions of a lwo-leg ladder (see, for example,
Refs. 26–33, and references therein) or the spin-3/2 Hubbard
model,34 with a suitable choice of basis states. Interactions
of a two-leg ladder can be described by the on-site Hubbard
interaction U , the rung interaction V and the rung exchange
J . When J = 4(U + V ), the model is SO(5) symmetric at
half-filling.26 Furthermore, when V = 0 or J = 4U , the model
is also SO(7) symmetric, which in a suitable basis can also be
expressed as Eq. (6). This interaction can either lead to a unique
rung singlet ground state or a two-fold degenerate staggered
flux ground states.30 The quantum phase transition between

these states can be described by the transverse field Ising
model,30 or equivalently, by a single Majorana spinor, which is
nothing but our spinor ξ 8. In this sense, the high-temperature
or the paramagnetic phase of the ξ 8 spinor corresponds to the
rung singlet state of a two-leg ladder, with a gap generated by
interactions.35

Alternatively, one can postulate an interaction that is Z2 ×
Z2 symmetric and involves both spinors and conjugate spinors,

L′
int = −A

(
7∑

a=1

ξa
Lηa

R

)2

− B

(
7∑

a=1

ξa
Lηa

R

)
ξ 8
Lη8

R. (7)

Following the same reasoning, this interaction gives rise to,
when B < 0 and B < 2A, a unique ground state.

From these discussion, we conclude that the Z2 × Z2

symmetric topological phases, while it can support an inte-
ger number of nonchiral edge modes when noninteracting,
interactions make them unstable when Nf = 8. Therefore
interacting models falls into Z8 topological classes. In the
following sections, we will look more into the reasons behind
this stability/instability.

III. GLOBAL GRAVITATIONAL ANOMALY

A. Large gauge transformations in electromagnetism

Our analysis on the stability/instability of the topological
phases so far relies on an explicit construction of an interaction
term in terms of the twist (spin and disorder) operators. For the
QHE and for the quantum spin Hall effect (QSHE), however,
their stability (and also instability in the case of the QSHE)
against interactions can be understood from a wider (more
“topological”) point of view;1,36,37 it is the Laughlin’s thought
experiment (and its suitable extension to the QSHE), which
we will review briefly below for our later discussion. For our
situation, since the particle number and Sz quantum number
are not conserved (conserved only mod 2), we cannot rely on
the flux(es) of U(1) gauge field of charge or spin origin. We
will, instead, try to make use of gravitational field.

Let us consider the QHE on a finite cylinder (which is
topologically equivalent to an annulus). There are two edges,
which we call “edge I” and “edge II.” We thread a magnetic
flux � into the “hole” of the cylinder. Starting from zero
flux, let us gradually increase the flux. The Hamiltonian
H (�) of the system, when � is not an integer multiple of
the flux quantum �0, is not gauge equivalent to the original
Hamiltonian; the insertion of the flux is a physically effect, and
not a gauge transformation. When flux is an integer multiple
of flux quantum, however, the Hamiltonian goes back to itself,
H (�) = H (� + n�0) (n ∈ Z). This is an example of large
gauge transformations; the Hamiltonian with n extra flux
quanta n�0 cannot be generated from the original flux � by a
successive application of infinitesimal gauge transformation.
Unlike an infinitesimal gauge transformation, to achieve such
gauge transformation by an adiabatic process, one needs to
generate physical flux during the process.

The same is true for the total partition function Z of the
system as a function of flux �: it is invariant under a large
gauge transformation � → � + n�0,

Z(�) = Z(� + n�0). (8)
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However, in the QHE, a closer inspection tells us that in the
adiabatic process where we increase the flux from � to � +
�0, say, an integer multiple of charge is pumped from edge I
to edge II (or edge II to edge I). This means, if we focus on a
single edge (edge I or edge II), instead of the combined system
of the two edges, it looks as if the charge is not conserved.

Since the bulk is fully gapped, for adiabatic processes, it
is meaningful to focus on excitations at the edges, neglecting
gapped excitations in the bulk. The total partition function can
then be written as

Z(�) =
∑
a,b

Nabχ
I
a(�)χ II

b (�), (9)

where χ I,II
a (�) is a (chiral) partition function for edge I, II, and

Nab is some coefficient. Each χa(�) is not invariant under
� → � + n�0 (“spectral flow”), while the total partition
function should be invariant. This gauge argument by Laughlin
suggests the stability of the QHE against disorder and
interactions. In the case of the QSHE, flux insertion argument
can also be applied, and it was shown that a flux of �0/2 pumps
fermion number parity and lead to spin-charge separation.36

To summarize, for a chiral edge theory of the QHE, charge
is not conserved under an adiabatic process to achieve a large
gauge transformation, � → � + n�0, signaling pumping of
electric charge and thus detecting the bulk topological insu-
lator. For later purpose, this observation can be equivalently
rephrased as follows: if we “force” a chiral edge theory to
conserve NI and NII separately, where NI (NII) is the fermion
number at edge I (edge II), then, the edge partition function
Z(�) cannot be made invariant under � → � + �0.

B. Large coordinate transformations in gravity

1. Perturbative and global gravitational anomalies

For systems where electrical charge is not conserved, we
cannot rely on U(1) gauge (non-) invariance of the edge theory
to diagnose the stability of the topological phase. A natural
tool to address the stability/instability is, then, (non)invariance
under diffeomorphism transformations (coordinate transfor-
mations). (See, for example, Refs. 38 and 39 and references
therein).

Similar to the electromagnetic U(1) gauge field in nonsim-
ply connected geometry, there are infinitesimal as well as large
coordinate transformations when the spacetime manifold has
nontrivial topology. That is, coordinate transformations that
can be reached by successive infinitesimal transformations
from the identity, and those that are not continuously connected
to the identity, respectively.

The noninvariance of the system under infinitesimal coor-
dinate transformations (“perturbative gravitational anomaly”)
means the violation of energy-momentum conservation,
〈DμTμν〉 �= 0, where Tμν is the energy-momentum tensor
and Dμ is the covariant derivative. When this happens at
the boundary of some bulk system, the fact that energy-
momentum cannot be made conserved within the boundary
theory necessitates the presence of the bulk theory; energy-
momentum at the boundary should be “leaking” into the bulk,
and, in fact, this bulk is what we call a topological phase. (See,
for example, Refs. 38 and 39, and also Ref. 40). For example,
the chiral edge theory of a (fractional) quantum Hall fluid is

anomalous under infinitesimal coordinate transformations.41

This signals the topological property of the bulk with nonzero
thermal Hall conductance κxy .42–44

Even when there is no perturbative gravitational anomaly,
e.g., when the edge theory in question is nonchiral as in our
example of the topological phases with Z2 × Z2 symmetry,
the system may not be invariant under large diffeomor-
phism transformations (“global gravitational anomaly”45).
Similarly to perturbative gravitational anomaly, we will argue
below that the noninvariance of the edge theory under large
coordinate transformations can also be used as a diagnose of
the stability/instability of the topological phase.

2. Modular transformations on a torus

More specifically, we again assume the bulk is defined on
a finite cylinder with two edges. The edges may support a
chiral or nonchiral edge mode, which we assume is a chiral
or nonchiral CFT. The CFT on one edge is defined on a
torus T 2 = S1 × S1 with the periodically identified spatial
coordinate (parameterizing the edge), and the periodically
identified (imaginary) time.

There are a set of large coordinate transformations on a
two-dimensional torus, modular transformations, which form
a group �.46 The geometry of a flat torus is specified by two
real parameters (“moduli”), or a single complex parameter
τ = ω2/ω1, the ratio of the two periods of the torus (Im τ > 0).
Two different modular parameters τ and τ ′ can describe the
same toroidal geometry if they are related by an integer linear
transformation with unit determinant,

τ ′ = aτ + b

cτ + d
, a,b,c,d ∈ Z, ad − bc = 1. (10)

(Here, τ should not be confused with the imaginary time).
Modular transformations belong to the infinite discrete group
PSL(2,Z) = SL(2,Z)/Z2. These transformation are generated
by two generators, T : τ → τ + 1 and S : τ → 1/τ , satisfying
the relations S2 = (ST )3 = C, where C is the charge conju-
gation matrix, satisfying C2 = 1.

For a CFT on a torus, we can ask if it is invariant
under modular transformations. Any CFT that is derived from
the continuum limit of a two-dimensional lattice statistical-
mechanical system (or equivalently a one-dimensional lattice
quantum system) is expected to be anomaly free (modular
invariant).49 On the contrary, if a CFT in question is not
modular invariant, it may not be realized, on its own, as
a continuum limit of a local lattice system, and must be
accompanied by some (topological) bulk theory.

Based on these observations, we are lead to claim that
the global gravitational anomaly implies the presence of a
topological bulk theory, in a way quite analogous to the
previous illustration of the charge response; basically, we
simply replace � by τ , and the large gauge transforma-
tion � → � + �0 by modular transformations, τ → τ + 1
and τ → −1/τ . The partition function now depends on a
complex parameter τ (the moduli parameter of the torus),
Z(τ,τ̄ ). The modular noninvariance of the partition function
of a given edge signals the presence of a topological bulk
theory. Note, however, that when the two edges (edge I and
edge II) are combined, we should be able to achieve the
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modular invariance;50–52 they can be gapped pairwise. Sim-
ilarly to Eq. (9), we can write the total partition function in
terms of a liner combination:

Z(τ,τ̄ ) =
∑
a,b

Nabχ
I
a(τ,τ̄ )χ II

b (τ,τ̄ ). (11)

Each block χ I,II
a (τ,τ̄ ) can be nonmodular invariant, but the

total partition function Z(τ,τ̄ ) should be modular invariant.
If the system is defined at the microscopic level, in terms

of fermions (electrons), the requirement that the total partition
function Z(τ,τ̄ ) to be modular invariant may be relaxed; In
the presence of fermions, the partition function may not be
invariant under T , but should still be invariant under T 2.50–52

The modular transformations generated by S and T 2 form a
subgroup [=�(2)] of the full modular group �.

3. Symmetry projection

When there is a set of symmetries, and when we talk
about symmetry-protected topological phases, it makes sense
to diagnose the system by an adiabatic process that does not
violate the symmetries. For a unitary symmetry, a convenient
way to enforce the symmetry in the adiabatic process is to
project the total Hilbert space into a given subsector specified
by a quantum number. We then ask if, for a given edge
separately, each sector can be made modular invariant (i.e.,
free of global gravitational anomaly).

Inability to achieve this would mean a quantum number of
some kind should be “pumped” from one edge to the other
along an adiabatic process to generate a modular transforma-
tion. When both edges are included, the total systems without
projection would be modular invariant. This would mean the
symmetry (conservation of a quantum number) should be
violated in the adiabatic process, and thus leads to pumping.

Let us have a further look at the projection procedure.
When projected, certain states (states which are not singlet
under a symmetry group in question) are removed from
the original Hilbert space of the edge theory. From the state-
operator correspondence in CFT, this means the corresponding
operators are not allowed in the theory after projection.
Such operators,O(z,z̄), say, in the original theory, can be added
to the action S0 describing the edge theory as a perturbation,
S0 → S0 + λ

∫
d2x O(z,z̄), where λ is a coupling constant,

and if O(z,z̄) is relevant in the renormalization group (RG)
sense, it can destabilize the edge. As its corresponding state,
the operator is not singlet under the symmetry group, and hence
when added to the action, it explicitly breaks the symmetry. In
the projected theory, such perturbations are prohibited.

C. Free complex fermion

To illustrate the spectral flow (noninvariance under large
gauge transformations) and the modular noninvariance (global
gravitational anomaly), and also for our later use, let us
consider a single copy of left-moving complex fermion as
an example. (We follow Refs. 46–48.) It is described by the
Lagrangian

LL = 1

2π
�

†
L (∂τ + v∂x) �L. (12)

The path integral for a single copy of complex fermion can
be considered with boundary conditions in space and time
directions:

�L(τ,x + �) = (−1)e2πiλ�L(τ,x),
(13)

�L(τ + T −1,x) = (−1)e−2πiμ�L(τ,x),

where T −1 is the inverse temperature, and the system is
defined on a spatial circle of circumference �; μ and λ specify
the boundary condition for the space and time directions,
respectively. In particular, if the chiral Lagrangian (12) is
interpreted as the edge theory of the IQHE, λ is related to the
flux � in Sec. III A as �/�0 = λ. The corresponding partition
function is denoted as

Zλ
μ(τ ). (14)

Here, τ is the modular parameter, and the upper script indicates
the boundary condition in space direction whereas the lower
script indicates the boundary condition in time direction.
Later, when we consider real (Majorana) fermions, rather than
complex fermions, we also use notation “0 (1/2)” = “A (P)”
= antiperiodic (periodic) boundary condition.

The fermionic path integral (fermionic determinant) is
evaluated as

Zλ
μ(τ ) = e2πiλμq−1/24qλ2/2

×
∞∏

n=1

(1 + wqn−1/2)(1 + w−1qn−1/2), (15)

where w = e2πiμqλ. Here, the overall phase factor e2πiλμ

is purely conventional; since we have an independent path
integral for a given set of boundary conditions, there is no
unique way to determine the relative (Boltzmann) weight
between sectors with different boundary conditions. The factor
e2πiλμ in Eq. (15) is a common choice, but this will not affect
our discussion below.

1. Spectral flow

Let us derive Eq. (15) in the operator formalism, where the
partition function with given boundary conditions is given by

Zλ
μ(τ ) = Trλ[e−2πiμNLqHL ], q = e2πiτ , (16)

where Trλ is the trace over the Hilbert space defined with the
spatial boundary condition λ. Here,

NL :=
∫ �

0
dx �

†
L�L (17)

is the total left-moving fermion number. Observe that, in the
operator formalism, the periodic boundary condition in time
is realized here by an insertion of operator e−2πiμNL .

The partition function can be evaluated explicitly by making
use of the mode expansion

�L(x) =
√

2π

�

∑
s∈Z+1/2−λ

e−ix 2πs
� �s, (18)

where �s and �
†
s satisfy the commutation relation {�s,�

†
s ′ } =

δss ′ . In terms of the mode expansion, we define the ground
state |0〉λ for a given spatial boundary condition λ as a filled
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Dirac sea,

�n+1/2−λ|0〉λ =�
†
−n−1/2+λ|0〉λ =0 for n + 1/2 − λ > 0.

(19)

Let us further assign the fermion number to the ground state
as

eiφNL |0〉λ = eiφλ|0〉λ, φ ∈ Z. (20)

Similarly to discussion below Eq. (15), this assignment is
purely conventional. With this assignment, we obtain the
partition function (15).

The two boundary conditions λ1 and λ2 are in general
physically distinct, and correspondingly, the two ground states,
|0〉λ1 and |0〉λ2 , belong to different Hilbert spaces. However,
when λ1 − λ2 = integer, these two systems are related by a
large gauge transformation. Let us now consider an adiabatic
process interpolating two boundary conditions, λ = 0 → λ =
1, say. While these boundary conditions are large-gauge
equivalent, the ground state might not evolve into itself (the
ground state) under the adiabatic process (“spectral flow”): for
example, let us start from λ = 0 and define the ground state as

�n+1/2|0〉λ=0 = �
†
−n−1/2|0〉λ=0 = 0 for n � 0. (21)

As we change λ, we assume the ground state evolves
continuously: it is always annihilated by �n+1/2−λ with n � 0.
We define the state obtained by this adiabatic process as |0′〉λ.
On the other hand, by definition, the ground state at λ = 1 is
given by

�n−1/2|0〉λ=1 = �
†
−n+1/2|0〉λ=1 = 0 for n � 1, (22)

i.e., it is annihilated by �n+1/2−λ with n = 1. We conclude
|0′〉λ=1 = �

†
−1/2|0〉λ=1 �= |0〉λ=1. This spectral flow is reflected

in the noninvariance of the partition function under the
adiabatic process.

2. Modular transformation

Let us now examine the transformation properties of
the partition function under modular transformations. From
Eq. (15),

Z0
0(τ + 1) = e−iπ/12Z0

1/2(τ ),

Z0
1/2(τ + 1) = e−iπ/12Z0

0(τ ),
(23)

Z1/2
0(τ + 1) = eiπ/6Z1/2

0(τ ),

Z1/2
1/2(τ + 1) = eiπ/6Z1/2

1/2(τ ),

Z0
0(−1/τ ) = Z0

0(τ ),

Z0
1/2(−1/τ ) = Z1/2

0(τ ),
(24)

Z1/2
0(−1/τ ) = Z0

1/2(τ ),

Z1/2
1/2(−1/τ ) = e−πi/2Z1/2

1/2(τ ).

The partition function Z1/2
1/2(τ ) is actually zero identically,

because of the zero mode of the Dirac operator with periodic
boundary condition in both directions. Nevertheless, we have
assigned formal transformation rules to Z1/2

1/2(τ ).
The transformation law for τ → −1/τ is what we expect

classically (i.e., just exchanging space and time boundary
conditions), but the transformation law for τ → τ + 1 is

somewhat unexpected in the sense that the partition function
acquires a phase factor. The reason for this is that there is
no diff-invariant way to define the phase of the path integral
for purely left-moving fermions. For left- plus right-moving
fermions with matching boundary conditions, the path integral
can be defined by Pauli-Villars or other regulators. This is
the same as the absolute square of the left-moving path
integral, but leaves a potential phase ambiguity in that path
integral separately. The phase represents a global gravitational
anomaly, an inability to define the phase of the path integral
such that it is invariant under large coordinate transformations.
Of course, a single-left moving fermion has nonzero chiral
central charge and so has an anomaly even under infinitesimal
coordinate transformations, but the global anomaly remains
even when a left- and right-moving fermions are combined
(see below).

IV. EDGE THEORY OF Z2 × Z2 SYMMETRIC
TOPOLOGICAL PHASE

Let us now consider the edge theory of the Z2 × Z2

symmetric topological phase, Eq. (2). We focus on the
case of Nf = 2N and demonstrate that while when N �= 4
(mod 4), there is a global gravitational anomaly, the case
with N = 4 (mod 4) is anomaly free. In fact, this is deeply
related to the modular invariance and the consistency of type
II superstring theory.48 [While our presentation below uses, in
order to make use of our discussion in Sec. III C, the partition
function Zλ

μ(τ ) of a complex fermion, there is no fundamental
reason to do so. The entire discussion can be constructed
in terms of real (Majorana) fermions, without referring to
complex fermions.]

Since there are various boundary conditions allowed for the
fermionic edge theory, the partition function is given as a sum
of sectors with different boundary conditions. Let us discuss
this issue by using the operator formalism. By considering
contributions from different spatial boundary conditions, we
consider a sum ∑

α

Trα [qHα ], (25)

where the summation extends all possible spatial boundary
conditions, and Hα is the Hamiltonian with a boundary
condition specified by α. (Here in our problem, α = A,P).
Since the modular transformation exchanges the spatial and
time directions, Eq. (25) is not modular invariant; we have to
consider contributions from different boundary conditions in
the time direction as well. As we have seen, in the operator
formalism, a different kind of boundary in time direction
is achieved by an insertion of a unitary operator. Thus the
partition function is given by

Z =
∑
α,α′

Trα [Uα′qHα ], (26)

where Uα is some unitary operator. (In our case, Uα is the parity
of the fermion number operators.) The partition function can
also be written as

Z = N
∑

α

Trα [PqHα ], where P := 1

N
∑

α

Uα. (27)
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Under the assumption that the set of unitary operators
{Uα}α=1,...,N form a group, one verifies that

UαP = PUα = P 2 = P. (28)

Thus P is a projection operator.
As we have seen, for the fermionic edge theory, the unitary

operators that we need to change boundary conditions are the
fermion number parity operators,

Uα = 1, (−1)NL, (−1)NR , (−1)NL+NR , (29)

where NL = ∑N
i=1 Ni

L and NR = ∑N
i=1 Ni

R are the total left-
and right-moving fermion numbers, respectively. The sum (the
projection operator) is then

P = 1

4
[1 + (−1)NL + (−1)NR + (−1)NL+NR ]

= 1 + (−1)NL

2

1 + (−1)NR

2
=: PGSO. (30)

This operator projects, for each of the left- and right-moving
sectors, onto the space of a definite fermion number parity
[the Gliozzi-Scherk-Olive (GSO) projection]. Observe that this
projection acts on the left- and right-moving sectors separately.

For the left-moving sector with α = 0 = A spatial bound-
ary condition in Eq. (26),

ZA(τ ) = TrA [PGSOqHA ] = TrA
[
PGSOqH 1

A+···+HN
A
]

= 1
2 TrA

[
qH 1

A+···+HN
A
] + 1

2 TrA
[
eπiNLqH 1

A+···+HN
A
]

= 1
2

[
Z0

0(τ )N ± Z0
1/2(τ )N

]
. (31)

The sign ± in the last line indicates a possible ambiguity in
assigning the fermion number parity to the ground state |0〉A

in the α = A sector; see discussion around Eq. (15). While
we adopted a particular choice for the fermion number parity
in Eq. (15), here we leave other possibilities open in order
to illustrate such ambiguity does not affect our conclusion.
Similarly, for α = 1/2 = P spatial boundary condition,

ZP(τ ) = TrP
[
PGSOqHP

]
= 1

2

[
Z1/2

0(τ )N ± Z1/2
1/2(τ )N

]
. (32)

There is again a sign ambiguity ± here, regarding to the
fermion number parity of the ground state in the α = P sector.

The total partition function for the Nf = 2N left-moving
Majorana fermions ZL(τ ) is obtained by taking a linear
combination of ZA(τ ) and ZP(τ ). The requirement that the
total partition function is invariant under the S-modular
transformation motivates us to consider the following relative
weight between ZA(τ ) and ZP(τ ):

ZL(τ ) = 1
2

[
Z0

0(τ )N + sZ0
1/2(τ )N

+ sZ1/2
0(τ )N + ss ′Z1/2

1/2(τ )N
]
,

(33)

where the signs s,s ′ = ±1 are related to the ambiguity of the
fermion number parity of the ground states |0〉A,P, and to the

relative weight between ZA(τ ) and ZP(τ ) when taking a linear
combination.

Under T -modular transformation, the partition function is
transformed as

ZL(τ ) = sei πN
12 1

2

[(
Z0

0
)N + s

(
Z0

1/2
)N + e−i πN

4
(
Z1/2

0
)N

+ s ′e−i πN
4

(
Z1/2

1/2
)N ]

(τ + 1), (34)

whereas under T 2,

ZL(τ ) = ei πN
6 1

2

[
(Z0

0)N + s(Z0
1/2)N

+ se−i πN
2

(
Z1/2

0
)N + ss ′e−i πN

2
(
Z1/2

1/2
)N ]

(τ + 2).

(35)

Thus, when N = 4, we thus achieve the modular covariance,
ZL(τ ) → ZL(τ ) = ei2π/3ZL(τ + 2). Combined with the right-
moving part of the partition function, ZR(τ̄ ), the total partition
function Z(τ,τ̄ ) = ZR(τ̄ )ZL(τ ) = |ZL(τ )|2 is then invariant
under T 2,

Z(τ,τ̄ ) = Z(τ + 2,τ̄ + 2). (36)

Similarly, when N = 4, by choosing s = −1, we thus achieve
the modular covariance, ZL(τ ) → ZL(τ ) = (−1)eiπ/3ZL(τ +
1). Combined with the right-moving part of the partition
function, ZR(τ̄ ), the total partition function is then modular
invariant,53

Z(τ,τ̄ ) = Z(τ + 1,τ̄ + 1). (37)

In the Lagrangian (2), the fermions ψa
R,L are in the vector

representation of SO(8), 8v . In the context of superstring
theory, this is the Ramond-Neveu-Schwarz (RNS) model
of the superstring in the light-cone gauge. The Lagrangian
does not completely specify the spectrum, and we need to
impose the boundary conditions; the fermions ψa

R,L obey
either antiperiodic (NS) or periodic (R) boundary condition.
Furthermore, we have used the GSO projection (30), which
leads to type IIB and type IIA theories. Because of triality, one
can rewrite the ψa

R,L theory in terms of spinors ξa
R,L and ηa

R,L

as well. Technically, this means we first bosonize the RNS
fermions ψa

R,L and refermionize, to obtain ξa and ηa , spinor
(8s), and conjugate spinors (8c)—this is the Green-Schwarz
(GS) formalism of the superstring. The two spinors, ξa and
ηa , are distinguished by chirality operator of SO(8); spinor
ξa has positive chirality and conjugate spinor ηa has negative
chirality. When rewritten in terms of these spinors, in type IIB
theory, we have left-moving and right-moving spinors, and the
Lagrangian is given by

L = 1

4π

Nf =8∑
a=1

[
ξa
L(∂τ + iv∂x)ξa

L + ξa
R(∂τ − iv∂x)ξa

R

]
. (38)

Similarly, in type IIA theory, we have left-moving spinor and
right-moving conjugate spinors, and the Lagrangian is given
by

L = 1

4π

Nf =8∑
a=1

[
ξa
L(∂τ + iv∂x)ξa

L + ηa
R(∂τ − iv∂x)ηa

R

]
. (39)
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Unlike the vector fermions ψa
R,L, the spinors obey periodic

boundary condition only:

ξa
L(x + �) = ξa

L(x), ξ a
R(x + �) = ξa

R(x),
(40)

ηa
L(x + �) = ηa

L(x), ηa
R(x + �) = ηa

R(x),

where the system is defined on a spatial circle of circumference
�. Because of this, there is no need for projection. One can
compare the spectrum of the RNS theory with GSO projection,
and the GS theories; they match precisely.

We conclude this section with a discussion on the “Ising
projection.” As emphasized before, we have two separate
projections for the left- and right-moving sectors. This should
be contrasted to the projection with respect to the total fermion
parity (−1)NL+NR , which is described by the “diagonal”
projection operator

P0 = 1 + (−1)NL+NR

2
. (41)

For 2N flavor of Majorana fermions, the resulting total
partition function

1
2

[∣∣Z0
0(τ )

∣∣N + ∣∣Z0
1/2(τ )

∣∣N + ∣∣Z1/2
0(τ )

∣∣N ∓ ∣∣Z1/2
1/2(τ )

∣∣N ]
(42)

is invariant for any N because the phases cancel in the absolute
values. The Ising model can be viewed as an example of
the above partition function. (Only minor difference is that
we have been mainly using the complex fermions, instead
of Majorana fermions.) The Ising partition function is given
by

ZIsing = 1
2

[∣∣χ0
0

∣∣2 + ∣∣χ1/2
0

∣∣2 + ∣∣χ0
1/2

∣∣2 ± ∣∣χ1/2
1/2

∣∣2]
. (43)

Here, χλ
μ(τ ) is the partition function of a left-moving Majo-

rana (not complex) fermion with boundary conditions specified
by λ and μ. As illustrated above, this partition function
can be obtained by considering the following projection:
ZIsing = TrA⊕P [P0 qHLq̄HR ].54

V. DISCUSSION

The modular invariance plays a major role in CFT49,55,56 and
also in string theory. Its importance in chiral topological phases
such as the fractional QHE has also been emphasized.51,52

Partly motivated by recent discoveries of nonchiral topo-
logical phases,57 such as the QSHE, we studied in this paper
an implication of modular invariance in nonchiral topological
phases protected by discrete symmetries. Quite generically, a
nonchiral edge theory can be gapped by some perturbation
by “coupling” the left- and right-moving sectors. This is
implied from the fact that a nonchiral CFT, when its left-
and right-moving parts are properly combined, can be made
modular invariant. In the presence of a certain symmetry
condition, however, there is a constraint on perturbations which
are allowed to be added to the action. In an extreme case,
the symmetry constraint completely removes perturbations,
in which case the gapless nature of the edge theory can be
protected. This suggests that if the way we glue the left- and
right-moving sectors were to be consistent with the symmetry
condition, we would not be able to achieve modular invariance.
For the particular example, we investigated in this work, there

is Z2 × Z2 symmetry which allows us to decompose the
Hilbert space into different sectors with different quantum
numbers. After this decomposition, we studied if each sector
can be made modular invariant separately. Even though we
have looked at a particular example of the Z2 × Z2 symmetric
topological phase, we expect the proposal using the modular
invariance as a diagnostic tool for more general topological
phases without local (perturbative) anomalies.

We close with several comments. (i) For the bulk
of the paper, we have discussed mainly modular invari-
ance/noninvariance of nonchiral CFTs. A chiral CFT can
also be modular invariant/noninvariant on its own as well.
A well-known example is a collection of N copies of chiral
complex fermions or 2N copies of chiral Majorana fermions.
Let us consider the partition function given by the following
combination:

1
2

{[
Z0

0(τ )
]N + [

Z0
1/2(τ )

]N + [
Z1/2

0(τ )
]N}

= 1
2

{
eiNπ/12

[
Z0

1/2
]N + eiNπ/12

[
Z0

0
]N

+ e−iNπ/6
[
Z1/2

0
]N}

(τ + 1). (44)

The chiral central charge is cL = N . The partition function is
clearly S-modular invariant. In order to achieve invariance
under T transformation, we need, at least, N = 8k copies
of fermions, where k is a positive integer. If we consider
16k chiral Majorana fermions or 8k complex fermions, the
partition function is modular covariant. In particular, when
k = 1, the chiral central charge is cL = 8. (When bosonized,
this is the partition function of the compactifed bosons on
the root lattice E8). If we cube this partition function, we
achieve the true modular invariance with cL = 24. The chiral
topological phase with 2N copies of chiral Majorana fermions
at its edge was discussed in the context of the honeycomb
lattice Kitaev model.58 A similar kind of mod 16 periodicity
was observed in the bulk topological properties (non-Abelian
statistics of quasiparticles in the bulk depends on the bulk
Chern number mod 16).

(ii) We have used symmetry projection as a diagnostic tool
to study the stability of noninteracting, symmetry-protected,
topological phases. Instead, it is also possible to think of a
topological phase with gauge interactions in the bulk. In this
case, projections are performed dynamically in the bulk and in
the edge theories. One of such models in the bulk would look
like the two copies of the honeycomb lattice Kitaev model58

with opposite chiralities.
(iii) While robust in the presence of a certain set of

symmetries, nonchiral edges are in general susceptible to
symmetry breaking perturbations. In particular, one can study
the response of the edge theory to a local perturbation, such
as a single impurity, or to a topological defect at the edge,
which would reflect topological properties of the bulk. (See, for
example, Refs. 59 and 60 for the edge state of the QSHE.) For
the Z2 × Z2 symmetric topological phase, such local impurity
problems in the edge state, in the long-wave length limit, may
correspond to D branes.

(iv) Finally, there are topological phases that are not
accompanied by a gapless edge state. Whether or not these
topological phases can be understood in terms of quantum
anomalies of some kind is an open question.
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level of correlation functions (i.e., with insertions of operators), and
while the partition function is zero, the correlation functions are not
zero in general. In the situation at hand, the modular properties are
the same with or without insertion of operators.46
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