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We present a symmetry-projected configuration mixing scheme to describe ground and excited states, with
well defined quantum numbers, of the two-dimensional Hubbard model with nearest-neighbor hopping and
periodic boundary conditions. Results for the half-filled 2 × 4, 4 × 4, and 6 × 6 lattices as well as doped 4 × 4
systems, compare well with available results, both exact and from other state-of-the-art approximations. We
report spectral functions and density of states obtained from a well-controlled ansatz for the (Ne ± 1)-electron
system. Symmetry projected methods have been widely used for the many-body nuclear physics problem but
have received little attention in the solid state community. Given their relatively low (mean-field) computational
cost and the high quality of results here reported, we believe that they deserve further scrutiny.
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I. INTRODUCTION

Since the discovery of high-Tc superconductivity,1 there has
been a growing interest in the properties of correlated two-
dimensional (2D) electronic systems.2 Within this context,
the Hubbard model3 has received a lot of attention since
it is considered one of the simplest models still containing
the relevant physics.4 Renewed interest in the Hubbard
Hamiltonian also comes from recent experiments5,6 with cold
fermionic atoms in optical lattices which open the possibility
for direct simulations of the model with lattice emulators.7

Hubbard-like models are also relevant to describe electronic
properties within the active research field of graphene.8

The repulsive Hubbard Hamiltonian is a very interesting
model in theoretical physics. On the one hand, neither its
hopping (one-body) nor its on-site interaction (two-body)
terms favor any interesting magnetic ordering. On the other
hand, when both of them combine into the full Hamilto-
nian, a rich variety of interesting phenomena is displayed,
for example, correlation-driven metal-insulator transitions,9

ferromagnetism,10 deviations from the standard Fermi-liquid
results,11 long-wavelength collective modes,12 and spatially in-
homogeneous phases.13 The dimensionality of the model also
challenges the theoretical tools at our disposal. Exact analytical
solutions exist in the one-dimensional (1D) case,14 whereas
the present knowledge of the basic quantum-mechanical
properties of the 2D Hubbard Hamiltonian relies, to a large
extent, on numerical techniques applied to the Hamiltonian
itself or to its strong coupling approximations, i.e., the t-J,
t-J∗, and Heisenberg models.2,15,16 In particular, for the case
of the full 2D Hubbard Hamiltonian, a very efficient Lanczos
algorithm,17 based on the classification of all the irreducible
representations of the space group, has allowed systematic
studies in the 4 × 4 lattice.

Going beyond the present limits of exact diagonalization
(ED) techniques requires a truncation strategy. A key issue
is then how to truncate the model space while still being
able to retain the most important degrees of freedom relevant
for the description of a particular ground and/or excited
state. Nowadays there are several methods at our disposal,

some of them already heavily used to study 1D and 2D
Hubbard models with variable degree of success. One that
has been used with great success is the quantum Monte
Carlo18–20 (QMC) approach. Another is the density matrix
renormalization group21–23 (DMRG) scheme that represents a
very powerful and general decimation prescription. Currently,
the DMRG algorithm is understood as an energy minimization
within a class of low entanglement wave functions known as
matrix product states24,25 (MPS) establishing an exciting link
with quantum information perspectives.26 A very flexible en-
tanglement encoding is also provided by the rapidly expanding
research area of tensor network states27–29 (TNS).

Variational principles also offer very powerful methods
to study Hubbard-like models. For example, the dynami-
cal variational principle,30,31 expressed in the language of
Green’s functions and self-energies,32 provides us with the
variational cluster approximation33 (VCA), the dynamical
impurity approximation34 (DIA), and the dynamical mean
field theory35 (DMFT). Within this context, the self-energy-
functional theory36 (SFT) has emerged as a conceptual
framework in which the VCA, DIA, and DMFT as well as
several extensions of them can be specified by the choice of a
reference system. In particular, the cluster extensions to DMFT
have provided important insights into the physics of the 2D
Hubbard model in aspects such as the Mott-Hubbard transition,
the pseudogap in doped systems, and the phase diagram
itself.37,38 DMFT and its cluster extensions are particularly
valuable as they have been shown to be complementary to
finite size simulations,37,39–41 including ours. Here, we also
refer the interested reader to recent work42 where a hierarchy
of truncated configuration interaction (CI) expansions has
been considered as a solver for quantum impurity models and
DMFT.

In the present work, we explore an alternative avenue not
only to describe ground-state properties of the 2D Hubbard
model but also to access excitation spectra that represent
a basic fingerprint of quantum mechanical correlations in
the considered lattices. A first step in this direction, based
on symmetry-projected configuration mixing ideas originally
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employed in microscopic nuclear structure theory,43 was
undertaken for the 1D Hubbard model44 and is extended in the
present work to the 2D Hubbard Hamiltonian with periodic
boundary conditions (PBC).

For a given single-electron space, we construct the most
general unitary Hartree-Fock (HF) transformation.45,46 Since
this HF-transformation mixes, all the spin and linear mo-
mentum quantum numbers of the single-electron basis states,
the corresponding Slater determinant deliberately breaks the
original spin and translational symmetries of the 2D Hubbard
Hamiltonian. Therefore, as such, our symmetry-broken Slater
determinant can be considered as a convenient mean-field
starting point enlarging the space of trial wave functions.45,46

We restore the broken translational and spin symmetries
with the help of linear and angular momentum projection
operators. This symmetry restoration recovers the multide-
terminantal character in our trial state keeping good spin
and linear momentum quantum numbers. The Ritz variational
principle45,46 is then applied to the projected energy, i.e., ours
is a variation-after-projection (VAP) scheme. This procedure
provides us with the optimal (variational) representation of
a ground state, with well defined spin and linear momentum
quantum numbers, via a single symmetry-projected config-
uration. Our VAP scheme is also very close in spirit to
projected quasiparticle theory47,48 (PQT) and is related to other
variational approaches.49,50

In order to describe excited states with well defined quan-
tum numbers, we construct a truncated basis consisting of a
few (orthonormalized) symmetry-projected states throughout
a chain of VAP calculations. This can be easily done, still with
low computational cost, due to the simple structure of our
projected wave functions. Finally, a further diagonalization of
the 2D Hubbard Hamiltonian is performed within such a basis.
With this configuration mixing procedure we may account, in
a similar fashion, for additional correlations in both ground
and excited states. In addition, our theoretical framework can
be used to study important dynamical properties of the 2D
Hubbard Hamiltonian like spectral functions.2,15,32

In this paper, we have three main goals. First, we present
the methodology of a VAP configuration mixing scheme,
originally devised for the nuclear many-body problem, but not
yet explored for the 2D Hubbard model. Therefore, in Sec. II,
we introduce our theoretical formalism. Symmetry restoration
is described in Sec. II A, while our configuration mixing
scheme is outlined in Sec. II B. For the reader convenience,
the key ingredients of our approximations are stressed in these
two sections, while to make our presentation self-contained,
more technical details can be found in Appendices A and B,
respectively. Our second goal is to show how our theoretical
framework can be used to access the spectral weight of states
with different linear momentum quantum numbers. To this
end, the computation of hole and particle spectral functions
is briefly described in Sec. II C and more details are given
in Appendix C. Our third goal is to test the performance of
our approximation for a selected set of illustrative examples.
The results of our calculations for the half-filled 2 × 4, 4 × 4,
and 6 × 6 lattices are discussed in Sec. III. There, we pay
attention to the properties of ground and excited states but
also discuss hole and particle spectral functions as well as
the corresponding density of states (DOS). In addition, in the

case of the 4 × 4 lattice, we consider doped systems with 14
and 15 electrons. Finally, Sec. IV is devoted to the concluding
remarks and work perspectives.

II. THEORETICAL FRAMEWORK

In what follows, we describe the theoretical framework
used in the present study. First, symmetry restoration and
configuration mixing are presented in Secs. II A and II B.
The computation of spectral functions is briefly described in
Sec. II C.

A. Symmetry restoration for the 2D Hubbard model

We consider the following one-band version of the 2D
Hubbard Hamiltonian:3

ĤHub = −t
∑

jσ

(ĉ†j+xσ ĉjσ + ĉ
†
j+yσ ĉjσ + H.c.)

+U
∑

j

ĉ
†
j↑ĉ

†
j↓ĉj↓ĉj↑, (1)

where the first term represents the nearest-neighbor hopping
(t > 0), with unit hopping vectors x = (1,0) and y = (0,1),
and the second is the repulsive on-site interaction (U > 0).
The operators ĉ

†
jσ and ĉjσ create and destroy a particle with

spin projection σ = ±1/2 (also denoted as σ = ↑ ,↓) along an
arbitrary chosen quantization axis on a lattice site j = (jx,jy).
They satisfy the usual anticommutation relations for fermion
operators.46 Here and in what follows, the lattice indices run
as jx = 1, . . . ,Nx and jy = 1, . . . ,Ny with Nx and Ny being
the number of sites along the x and y directions, respectively.
The total number of sites is given by Nsites = Nx × Ny . We
assume PBC, i.e., the sites Ni + 1 and 1, with i = x,y, are
identical. Furthermore, we assume a lattice spacing � = 1.

Next, we apply the 2D Fourier transform

ĉ†ασ = 1√
Nsites

∑
j

e−ikα jĉ
†
jσ (2)

to obtain operators with momentum kα = (kαx
,kαy

) =
( 2παx

Nx
,

2παy

Ny
). The Hamiltonian (1) can be easily written in

terms of these new operators. The quantum numbers αi , with
i = x,y, take the allowed values

αi = −Ni

2
+ 1, . . . ,

Ni

2
(3)

inside the Brillouin zone (BZ).51 Equivalently, they can take
all integer values between 0 and Ni − 1.

In the HF approximation, the ground state of an Ne-
electron system is represented by a Slater determinant |D〉 =∏Ne

i=1 b̂+
h |0〉 in which the energetically lowest Ne single-

electron states (hole states h, h′, . . .) are occupied while the
remaining 2Nsites − Ne states (particle states p, p′, . . .) are
empty. The HF-quasiparticle operators are given by

b̂†a =
∑
ασ

D∗
ασ,a ĉ

†
ασ , (4)

where D is a general 2Nsites × 2Nsites unitary
transformation.45,46 In Eq. (4), a is a shorthand notation
for the set (ax,ay,σa). The transformation (4) mixes all
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the linear momentum quantum numbers as well as the spin
projection of the states (2). As a consequence, |D〉 deliberately
breaks rotational (in spin space) and translational invariances.
To restore the spin quantum numbers, we explicitly use the
projection operator

P̂ S
��′ = 2S + 1

8π2

∫
d�DS∗

��′ (�)RS(�), (5)

where RS(�) = e−iαŜz e−iβŜy e−iγ Ŝz is the rotation operator in
spin space, � = (α,β,γ ) stands for the set of Euler angles,
and DS

��′(�) are Wigner functions.52 The form (5) has been
frequently used for total angular momentum projection in
nuclear physics.43,45 This form has also been adopted in the
study of the 1D Hubbard model44 and more recently within
PQT in quantum chemistry.47,48

The linear momenta, kξx
and kξy

, are restored with the
projector

Ĉ(ξ ) = 1

Nsites

∑
j

ei(jx+jy )P̂ e−ikξ j, (6)

where P̂ = ∑
ασ (kαx

+ kαy
)ĉ†ασ ĉασ is the generator of the con-

sidered lattice translations. Note that this operator neither has
vector character nor corresponds to the true linear momentum
operator. It is associated with the quasimomentum resulting
from translational invariance of the lattice. We will refer to
it, however, as linear momentum for simplicity. The projector
(6) represents the 2D limit of the general operator restoring
Galilei invariance.43,53,54 Note that at variance with atomic
nuclei, lattice systems can have solutions with linear momenta
different from zero.

In what follows, we introduce the shorthand notation � =
(S,ξ ) for the set of (symmetry) quantum numbers (S,ξx,ξy),
i.e., P̂ S

��′Ĉ(ξ ) = P̂ �
��′ . We then use the following symmetry-

projected wave function:

|D; �; �〉 =
S∑

�′=−S

f �
�′ P̂

�
��′ |D〉, (7)

where f �
�′ are variational parameters. Note that through the

action of the projection operator P̂ �
��′ , the multideterminantal

character of the state characterized by the quantum numbers
� and �′ is recovered and written in terms of the quantum
numbers � and �.45 In practice, the integration over the set
of Euler angles in Eq. (5) is discretized. For the integrals in
α and γ , we have used eight grid points, whereas for the β

integration, we have used 16 points. Therefore the total number
of grid points to be used for the projection operator P̂ �

��′ is
1024 × Nsites.

For a given symmetry �, the energy (independent of �)
associated with the state (7),

E� = f �†H�f �

f �†N�f �
, (8)

is given in terms of the (2S + 1) × (2S + 1) Hamiltonian
H�

��′ = 〈D|ĤHubP̂
�
��′ |D〉 and norm N�

��′ = 〈D|P̂ �
��′ |D〉

matrices (see Appendix A). It has to be minimized with respect
to the coefficients f � and the HF transformation D. The
variation with respect to the mixing coefficients yields the

following generalized eigenvalue equation:

(H� − E�N�)f � = 0 (9)

with the constraint f �†N�f � = 12S+1 ensuring the orthog-
onality of the solutions. The unrestricted minimization of the
energy (8) with respect to the underlying HF transformation
D can be carried out via the Thouless theorem.43,45 The
corresponding variational equations assume the form

M
−1†
� G�L� = 0 (10)

with

G�
ph = [f �†(K� − E�R�)f �]ph. (11)

Here, the Ne × Ne and (2Nsites − Ne) × (2Nsites − Ne) ma-
trices L� and M� are obtained via the Cholesky
decompositions.43,53 The particle-hole kernels K�;ph

��′ =
〈D|ĤHubP̂

�
��′ b̂

†
pb̂h|D〉 and R�;ph

��′ = 〈D|P̂ �
��′ b̂

†
pb̂h|D〉 are

given in Appendix B. It should be stressed that, for a given sym-
metry �, we only retain the energetically lowest solution of
Eqs. (9) and (10). Both the HF transformationD and the mixing
coefficients f � are essentially complex, therefore, one needs
to minimize nvar = 2(2Nsites − Ne) × Ne + 4S real variables.
We use a quasi-Newton method for such a minimization.55,56

The variational procedure already described is known in
nuclear structure physics as the VAMPIR (i.e., variation after
mean-field projection in realistic model spaces).43 Note that
particle number projection45 is not carried out in the present
study since the considered Slater determinants conserve the
number of electrons.

B. Symmetry-projected configuration mixing for the 2D
Hubbard model

An accurate description of excited states in a many-
fermion system is much more difficult even when one is
usually interested in just a small fraction of the low-lying
spectrum. Here, the main difficulty in the optimization of
excited states is ensuring orthogonality among them and
with respect to the ground state. For this, we simply use a
Gram-Schmidt orthogonalization. Our goal in this section is
to construct, throughout a chain of VAP calculations, a basis
of a few (orthonormalized) states with well defined quantum
numbers �.

Suppose we have generated a ground-state solution |φ1〉 =
|D; �; �〉 out of Eqs. (9) and (10) in Sec. II A. Then, we write
the first excited state wave function as

|ϕ2〉 = β2
1 |φ1〉 + β2

2 |φ2〉, (12)

where |φ2〉 has a form similar to Eq. (7) but with different
coefficients f 2� and underlying HF transformation D2. The
label 2 distinguishes them from the ones (i.e., f 1� and D1)
corresponding to the reference ground state we already have.
Both β2

1 and β2
2 can be obtained by requiring that 〈φ1|ϕ2〉 = 0

and 〈ϕ2|ϕ2〉 = 1. They are given in terms of the projector (i.e.,
Ŝ1 = Ŝ2

1 )

Ŝ1 = |φ1〉〈φ1|
〈φ1|φ1〉 (13)
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as follows

β2
2 = 〈φ2|(1 − Ŝ1)|φ2〉−1/2, β2

1 = −〈φ1|φ2〉
〈φ1|φ1〉β

2
2 . (14)

The first excited state is obtained varying the energy
functional for Eq. (12) with respect to f 2� and D2. For the
second excited state, we introduce a new state |φ3〉, again with
the same form as in Eq. (7), and write

|ϕ3〉 = β3
1 |φ1〉 + β3

2 |φ2〉 + β3
3 |φ3〉 (15)

with coefficients β3
1 , β3

2 , and β3
3 such that |ϕ3〉 is orthogonal

to the previous solutions |ϕ1〉 = |φ1〉 [see Eq. (7)] and |ϕ2〉
[see Eq. (12)] as well as 〈ϕ3|ϕ3〉 = 1. The second excited
state is obtained varying the energy functional for Eq. (15)
with respect to f 3� and D3. Let us have a more general
situation in which, by successive variation, i = 1, . . . ,m − 1
orthonormalized solutions (for example, |ϕ1〉 and |ϕ2〉),

|ϕi〉 =
i∑

j=1

|φj 〉βi
j , (16)

are already at our disposal. Each of the states |φj 〉 in Eq. (16)
has the same form as Eq. (7). One then writes the ansatz for
the mth state wave function (for example, |ϕ3〉) as

|ϕm〉 =
m−1∑
j=1

|φj 〉βm
j + |φm〉βm

m (17)

with |φm〉 having again the form (7). Requiring orthonormal-
ization with respect to all the previous m − 1 solutions (16),
the coefficients βm

m and βm
j in Eq. (17) read

βm
m = 〈φm|(1 − Ŝm−1)|φm〉−1/2, βm

j = −
m−1∑
k=1

〈φk|φm〉
〈φj |φk〉 βm

m

(18)

in terms of the projector (i.e., Ŝm−1 = Ŝ2
m−1)

Ŝm−1 =
m−1∑
j,k=1

|φj 〉〈φk|
〈φj |φk〉 . (19)

The energy for the state (17) takes the form

Em� = f m�†Hm�f m�

f m�†Nm�f m�
(20)

with kernels Hm�
��′ and Nm�

��′ accounting for the fact that
m − 1 linearly independent solutions have been removed
from the variational space. Their expressions are slightly
more involved43 than the ones required in Eq. (8) but still
straightforward. They require the knowledge of the symmetry-
projected matrix elements between two different Slater deter-
minants |Di〉 and |Dk〉 (see Appendix A). The variation of the
energy (20) with respect to f m� yields an equation similar
to Eq. (9) with the constraint f m�†Nm�f m� = 12S+1. The
unrestricted minimization of the energy (20) with respect to
Dm, via the Thouless theorem, leads to variational equations
similar to Eq. (10) but with kernels Km�;ph

��′ and Rm�;ph
��′

that require symmetry-projected particle-hole matrix elements

between two different Slater determinants |Di〉 and |Dk〉 (see
Appendix B).

The procedure outlined in this section is known in nuclear
structure physics as EXCITED VAMPIR.43 It provides a (trun-
cated) basis of m (orthonormalized) states |ϕj 〉, with a well
defined symmetry �, still keeping low computational cost.
This is doable due to the simple structure of the projected states
defining such a basis in combination with a fast minimization
scheme.55,56 Our method can also be extended to use gen-
eral Hartree-Fock-Bogoliubov (HFB) transformations.43,45,47

However, this requires an additional projection of the particle
number, which increases the numerical effort by about one
order of magnitude and has hence not been used in the present
paper.

It should be noticed that the ground state |ϕ1〉 [see Eq. (7)] is
written as a projection operator acting on a single determinant,
the first excited state |ϕ2〉 [see Eq. (12)] as a projection operator
acting on two determinants, and so on. Because this allows
excited state wave functions to be described at a higher level
of quality than is the ground-state wave function, our final step
is to diagonalize the 2D Hubbard Hamiltonian in the basis of
the states |ϕj 〉:

m∑
j=1

[〈ϕi |ĤHub|ϕj 〉 − ε�
α δij ]C�

jα = 0. (21)

For ground and excited states, the resulting wave functions

|��
α 〉 =

∑
α

C�
jα|ϕj 〉 (22)

may account for more correlations than the description based
on a single symmetry-projected configuration discussed in
Sec. II A. In the present work, as a first step, we have restricted
ourselves to test the performance of our approximation with
m = 5 (orthonormalized) states. As we will see, this turns
out to be a reasonable starting point for, at least, a qualitative
description of the considered lattices.

An interesting issue is the evolution of the energy of each
state with the number m of transformations included in the
prescription described in this section. We observe that, for
the lattices considered in the present study, the energy of the
ground and the first couple of excited states remains unchanged
when m goes from 1 to 5 (the changes in the energy per site are
of the order 10−4). This is partly because the main correlations
have already been accounted for with a single symmetry-
projected determinant. Therefore the excited configurations
obtained constitute reasonably good approximations to the
true excited states of the considered system. We produce
m = 5 symmetry-projected determinants in order to obtain
the low-lying spectrum. For the systems considered in this
work, these states turn out to be weakly coupled through the
Hamiltonian. However, this cannot be anticipated a priori and
the diagonalization Eq. (21) should always be carried out.
Preliminary results for larger square lattices (i.e., 8 × 8 and
10 × 10) as well as for other Hamiltonians (i.e., the t − t ′ − U

and t − t ′ − t ′′ − U Hubbard models) indicate that there are
cases in which the diagonalization Eq. (21) brings a sizable
amount of additional correlations.
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C. Hole and particle spectral functions

Let us assume that for an even number Ne of electrons we
already have the ground-state wave function |D1; �0; � = 0〉,
out of the calculations described in Sec. II A. Since for all
the considered lattices with an even number of electrons
the ground state has spin S = 0, but not necessarily linear
momenta zero, we write its quantum numbers as �0 = (0,ξ 0).
Usually, spectral functions are computed within a Green’s
function perspective.32 The key point is then to approximate
the ground states of the (Ne ± 1)-electron systems by a
suitable ansatz. In the present study, we approximate44 the
ground state of the (Ne-1)-electron system, with the symmetry
�− = (S = 1/2,ξ−), by

|h1; �−; σ 〉 =
∑
ihσ ′

f �−
ihσ ′,h1

P̂ �−
σσ ′ b̂h(Di)|Di〉, (23)

where the index i runs as i = 1, . . . ,nT , the hole index h as
h = 1, . . . ,Ne, and σ ′ = ±1/2. In Eq. (23), we write b̂h(Di)
to explicitly indicate that holes are made on nT different Slater
determinants. The determinants |D1〉 and |Di〉 correspond to
the ground and lowest energy (i = 2, . . . ,nT ) states obtained
for the Ne-electron system out of the calculations described in
Sec. II A. In the present study, we have restricted ourselves to
a maximum of nT = 5 HF transformations. The coefficients
f �−

in Eq. (23) are obtained by solving the equation

(H�− − E�−
h1

N�−
)f �− = 0 (24)

that yields 2nT Ne hole solutions h1 with energies E�−
h1

. With all
the previous ingredients, one can compute52–54 the hole spec-
tral function as Sh1 (ξ−,δεh1 ) = |〈h1; �−||ĉξ 0−ξ−||D1; �0〉|2 in
terms of the reduced matrix element:

〈h1; �−||ĉξ 0−ξ−||D1; �0〉

= − 1

8π2Nsites

√
2

〈D1|P̂ �0

00 |D1〉
∑

ihh′σσ ′
f �−∗

ihσ,h1

∑
j

e−ikξ j

×
∫

d�D
1/2∗
σσ ′ (�)(−1)1/2−σ ′D1∗

ξ 0−ξ−−σ ′,h′

× [
X i1

h′h(�, j )
]−1

ni1(�, j ) (25)

where kξ = (kξ−
x
,kξ−

y
) = ( 2πξ−

x

Nx
,

2πξ−
y

Ny
). The indices i, h,h′, and

σ,σ ′ run as in Eq. (23), ξ−
x and ξ−

y run as in Eq. (3) and δεh1 =
E�0 − E�−

h1
. Details for the computation of the kernels H�−

and N�−
in Eq. (24) as well as [X i1

h′h(�, j )]−1 and ni1(�, j ) in
Eq. (25) can be found in Appendices C and A, respectively. The
occupation number n(ξ−) of a basis state (2) in the Ne-electron
ground state can be computed as

2nT Ne∑
h1=1

Sh1

(
ξ−,δεh1

) = n(ξ−). (26)

The (Ne + 1)-electron system, with the symmetry �+ =
(S = 1/2,ξ+), is approximated by44

|p1; �+; σ 〉 =
∑
ipσ ′

g�+
ipσ ′,p1

P̂ �+
σσ ′ b̂

†
p(Di)|Di〉, (27)

where the index i runs again as in Eq. (23). The particle index
p takes the values p = Ne + 1, . . . ,2Nsites and σ ′ = ±1/2.

In this case, the coefficients g�+
are obtained by solving the

equation

(H�+ − E�+
p1

N�+
)g�+ = 0, (28)

which yields 2nT (2Nsites − Ne) particle solutions p1 with
energies E�+

p1
. The particle spectral function is then written

as Sp1 (ξ+,δεp1 ) = |〈p1; �+||ĉξ+−ξ 0 ||D1; �0〉|2 in terms of the
reduced matrix element

〈p1; �+||ĉξ+−ξ 0 ||D1; �0〉

= − 1

8π2Nsites

√
2

〈D1|P̂ �0

00 |D1〉
∑

ipp′σσ ′
g�+∗

ipσ,p1

∑
j

e−ikξ j

×
∫

d�D
1/2∗
σσ ′ (�)ni1

pp′(�, j )D1∗
ξ+−ξ 0σ ′,p′n

i1(�, j ) (29)

where, in this case, kξ = (kξ+
x
,kξ+

y
) = ( 2πξ+

x

Nx
,

2πξ+
y

Ny
). The indices

i, p,p′, and σ , σ ′ run as in Eq. (27), ξ+
x and ξ+

y run as in

Eq. (3) and δεp1 = E�+
p1

− E�0
. Details for the computation

of the kernels H�+
and N�+

as well as ni1
pp′ (�, j ) in Eq. (29)

can be found in Appendix C.
Finally, the DOS can be computed as

N (ω) =
∑

ξ

[
S(h1)(ξ ,ω) + S(p1)(ξ ,ω)

]
, (30)

where the indices h1 and p1 are absorbed into the continuous
variable ω. Due to the finite size of the system, the spectral
functions consist of a finite number of δ functions with
different weights. Therefore we introduce an artificial width
� for each state using a Lorentzian. In all cases, our DOS is
normalized to 2 × Nsites.

III. DISCUSSION OF RESULTS

In this section, we discuss the results of our study. We
have considered the 2 × 4 half-filled lattice as a prototypical
system where one can obtain the full spectrum by means of
ED. This allows us to calibrate our approximation not only
for ground-state properties but also for excited states. Next,
we have considered the well-studied half-filled 4 × 4 lattice,
which constitutes the largest square lattice for which exact
ground-state energies are available in the literature. Other
approximation schemes have also been tested for this lattice
in previous works. Results have already been published for
doped systems with 14 and 15 electrons in this lattice, which
motivated us to also perform calculations for them in the
present study. Last, we consider the half-filled 6 × 6 lattice
as a prototype of a system where ED is no longer feasible.
Many of the results to be discussed in what follows correspond
to U = 4t taken as a representative on-site repulsion for
which studies are available. Nevertheless, let us stress that
our formalism can be used for any 2D Hubbard Hamiltonian
of the form (1) with arbitrary U and/or t values.

A. The square 2 × 4 lattice

Let us start by considering the rectangular 2 × 4 lattice.
The first five solutions obtained at half-filling via Eq. (21), for
each of the linear momentum quantum numbers (0,0), (0,1),
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FIG. 1. (Color online) The energy spectrum, obtained via Eq. (21)
for the half-filled 2 × 4 lattice at U = 4t is shown in (a). This
spectrum can be hardly distinguished from the one obtained using
an exact diagonalization (ED). Therefore, in (b), the absolute errors
are plotted for each of the predicted 120 solutions. For more details,
see the main text.

(0,2), (0,3), (1,0), (1,1), (1,2), and (1,3) and the spins S = 0,
1, and 2, are plotted in Fig. 1(a) for U = 4t . The first excited
state corresponds to a � = (1,1,2) configuration [with linear
momenta (π,π )]. The energies ε�

α of the 120 solutions shown
in the figure, have been compared to the ones obtained using
an ED.58 The comparison reveals that both spectra follow the
same qualitative trend and can hardly be distinguished. There-
fore in panel b) of the same figure, we have plotted the absolute
errors eabsol = Eexact − E for each of the predicted 120 states.
Our approximation fairly reproduces the exact ground-state
energy −10.2529t for this system. For all the 40 S = 0
and S = 1 solutions considered, the absolute errors remain
very small, the largest deviation being 0.047t for the second
state with the symmetry � = (1,0,0). The previous results
are encouraging if one takes into account that, even for this
relatively small lattice, the number of variational parameters
in our approximation nvar(S = 0,ξx,ξy) = 128 and nvar(S =
1,ξx,ξy) = 132 is about half of the dimensions nRH(S =
0,ξx,ξy) = 221 and nRH(S = 1,ξx,ξy) = 294 of the restricted
Hilbert spaces. On the other hand, nvar(S = 2,ξx,ξy) = 136 is
larger than nRH(S = 2,ξx,ξy) = 90 and therefore our solutions
reproduce the ED ones for S = 2 states.

In Fig. 2(a), we have plotted the DOS N (ω) [see Eq. (30)]
for the half-filled 2 × 4 lattice at U = 4t . The calculations
have been carried out by approximating the (Ne ± 1)-electron
systems [see Eqs. (23) and (27)] with nT = 1 (red curve)
and nT = 5 (blue curve) HF transformations along the lines
described in Sec. II C. We have introduced a shift equal to the
chemical potential at half-filling (μ0 = U/2) so that the DOS
in Fig. 2 appears to be symmetric around ω − U/2 = 0. This
convention, i.e., to plot DOS and spectral functions versus
ω − U/2 will be adopted in the rest of the paper. The DOS
shows the Hubbard gap, �H = U/2 = 2t , characteristic of
finite size lattices. We note, however, that previous studies
within the framework of the dynamical cluster approximation
(DCA) have shown that the gap is preserved at sufficiently
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FIG. 2. (Color online) The DOS N (ω) [see Eq. (30)] for the half-
filled 2 × 4 lattice at U = 4t is plotted in (a) as a function of the shifted
excitation energy ω − U/2 (in t units). Results have been obtained
by approximating the (Ne ± 1)-electron systems [see Eqs. (23) and
(27)] with nT = 1 (red) and nT = 5 (blue) Slater determinants
out of Sec. II A. As can be observed from (b) the DOS obtained
with exact diagonalization (ED) and the one obtained using nT =
5 HF transformations can hardly be distinguished. The hole (blue)
and particle (black) spectral functions, computed with nT = 5 HF
transformations, are plotted in (c). A Lorentzian folding of width
� = 0.05t has been used.

low temperatures even in the thermodynamic limit (TDL).39–41

On the other hand, the nonperturbative study of Ref. 59 has
concluded that for the half-filled Hubbard model the gap
persists for any finite value of the on-site repulsion U , the
only singular point being U = 0t .

From Fig. 2(a) one realizes that, even for this small lattice,
the fine details of the energy distribution of N (ω) can only be
obtained using a larger number nT = 5 of HF-transformations
to describe the (Ne ± 1)-electron systems. Using nT = 5
transformations, Eqs. (24) and (28) provide us with 80 hole
and particle solutions while only 16 solutions are obtained
with nT = 1. Therefore contributions to N (ω) with a more
collective nature can be better accounted for in the former
case (i.e., nT = 5). This is further corroborated by comparing
our DOS, computed with nT = 5 transformations, with the
one obtained using an ED, performed with an in-house code,
shown in Fig. 2(b). Note that we have intentionally used a small
broadening � = 0.05t to retain as much structure as possible
in our DOS as well as to emphasize the differences with the
ED one. As can be observed there is excellent agreement in
the position and relative heights of all the prominent peaks. The
hole (blue) and particle (black) spectral functions, computed
with nT = 5 HF-transformations, are displayed in panel (c)
of the same figure. We have not included the ones provided
by the ED since they are quite similar to ours. Their structure
is dominated by a main peak but less prominent ones are
also visible in the figure. The momenta (0,π ) and (π,0), at
the noninteracting Fermi surface ε(kα) = 0 [see, Eq. (A6) of
Appendix A], have the largest spectral weight near ω − U/2 =
0. On the other hand, the momenta (0,0) and (0, ±π/2)
[(π, ±π/2) and (π,π )] inside (outside) the noninteracting
Fermi surface contribute mostly to hole (particle) states.

In Fig. 3, we display the occupation numbers of the
basis states [see Eq. (2)] in the �0 = (0,0,0) ground state
of the half-filled 2 × 4 lattice. Results are shown for the
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FIG. 3. (Color online) Occupation numbers [see Eq. (26)] of the
basis states in the ground state of the half-filled 2 × 4 lattice are
plotted for various U strengths.

on-site repulsions U = 0t,4t , 20t , 40t , 64t , 80t, and 120t . The
calculations were performed using 80 hole solutions h (i.e.,
nT = 5 HF transformations) in Eq. (26). The evolution of the
occupations clearly depict the transition to the strong coupling
regime where the Hubbard Hamiltonian3 can be mapped into
the AF Heisenberg model.14 In fact, for U � 64t , the results
look very similar to the uniform distribution, with occupations
n(ξ−) = 1, expected in the limit U → ∞.

B. The square 4 × 4 lattice

In Fig. 4(a), we show the energies ε�
α obtained, via

Eq. (21), for the half-filled 4 × 4 lattice at U = 4t . Results
are only shown for the six essentially different pairs of linear
momentum quantum numbers (0,0), (1,0), (1,1), (2,0), (2,1),
and (2,2). For each of them we have plotted the energies
of the first five solutions with spins S = 0, 1, and 2. In
this case, the number of variational parameters in our ap-
proximation is nvar(S = 0,ξx,ξy) = 512, nvar(S = 1,ξx,ξy) =
516, and nvar(S = 2,ξx,ξy) = 520, while the dimensions of
the restricted Hilbert spaces are nRH(S = 0,ξx,ξy) ≈ 2 ×
106, nRH(S = 1,ξx,ξy) ≈ 4 × 106, and nRH(S = 2,ξx,ξy) ≈
3 × 106, respectively.
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FIG. 4. (Color online) The energy spectrum, obtained via Eq. (21)
for the half-filled 4 × 4 lattice at U = 4t is shown in (a). In (b), the
excitation energies from the ground state to the lowest-lying S = 1
and S = 2 states from (a) are plotted as functions of the linear
momentum quantum numbers � = (0,0), R1 = (1,0), P = (2,0),
R2 = (2,1), Q = (2,2), and R3 = (1,1), respectively. In addition to
U = 4t (blue boxes), results for U = 0t (red diamonds) are also
included for comparison.

The energy −13.5898t of our �0 = (0,0,0) ground-state
accounts for 99.76% of the exact one,17,60 −13.6219t . In order
to put our result in perspective, the relative error 0.24% in
our ground-state energy per site ε�0

1 /16 at U = 4t should
be compared, for example, with the value 0.70% recently
reported60 within the framework of the variational MC (VMC)
approximation using an ansatz, consisting of the product of a
correlator product state tensor network and a Pfaffian wave
function, with 524,784 variational parameters. Note that the
DMRG formalism in momentum space61 (kDMRG) predicts a
relative error of 0.37%. We have also studied our ground-state
energy per site ε�0

1 /16 as a function of the interaction strength
U = 2t , 6t , 8t , 10t , 12t , and 16t and found relative errors
always smaller than 0.4%.

Coming back to the spectrum shown in Fig. 4(a), we
note that the first excited state corresponds to a � = (1,2,2)
configuration [with linear momenta (π,π )]. In fact, similar
to the half-filled 2 × 4 lattice, the first excited state for
each combination (ξx,ξy) has spin S = 1, exception made of
(0,0). The 2 × 4 lattice displays a low-lying S = 0 singlet
(see Fig. 1), while an S = 2 quintet appears in the 4 × 4
lattice. The excitation energies, referred to the �0 = (0,0,0)
configuration, of these low-lying S = 1 and S = 2 states are
shown in Fig. 4(b) as functions of the linear momentum
quantum numbers. The shape of the curve does not fully
agree with the one obtained with the spin-density wave (SDW)
approximation62 mainly due to the absence of degeneracy
between the � = (0,0) and Q = (2,2) as well as the two
peaks for the R1 = (1,0) and R2 = (2,1) points. Much of this
discrepancy could, however, be due to finite-size effects.17

Note that the two peaks at R1 and R2, resulting from a
kinetic energy gap of 2t , are already visible for the Fermi
gas (U = 0t).

The DOSN (ω) [see Eq. (30)] for the half-filled 4 × 4 lattice
at U = 4t is shown in Fig. 5(a). The calculations have been
performed using nT = 5 HF transformations along the lines
described in Sec. II C. In this case, Eqs. (24) and (28) provide
us with 160 hole and particle solutions. A Lorentzian folding
of width � = 0.2t has been used. Similar to the case of the
half-filled 2 × 4 lattice, the Hubbard gap, �H = U/2 = 2t ,
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FIG. 5. (Color online) The DOS N (ω) [see Eq. (30)] for the half-
filled 4 × 4 lattice at U = 4t is plotted in (a) as a function of the shifted
excitation energy ω − U/2 (in t units). Results have been obtained
by approximating the (Ne ± 1)-electron systems [see Eqs. (23) and
(27)] with nT = 5 HF determinants. Hole (blue) and particle (black)
spectral functions are displayed in (b). A Lorentzian folding of width
� = 0.2t has been used.
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FIG. 6. (Color online) The same as Fig. 5 but for U = 8t . The
shapes of the DOS as well as the spectral functions for momenta (π,0),
(π/2,0), and (0,0) are qualitatively similar to the ones obtained using
Lanczos calculations.57

remains present in this larger system. The hole (blue) and
particle (black) spectral functions shown in Fig. 5(b) show
that the momenta (±π/2, ±π/2), (0,π ), and (π,0) at the
noninteracting Fermi surface have the largest spectral weight
near ω − U/2 = 0. Moreover, the spectral weight due to these
momenta at the Fermi surface is particle-hole symmetric.

In Fig. 6(a), we have plotted the DOS N (ω) [see Eq. (30)]
for the half-filled 4 × 4 lattice at U = 8t (i.e., an on-site
repulsion equal to the noninteracting bandwidth W = 8t)
computed with nT = 5 HF transformations. A Lorentzian
folding of width � = 0.2t has been used. The corresponding
hole (blue) and particle (black) spectral functions are also
displayed in Fig. 6(b). Our DOS and spectral functions [in
particular, the ones corresponding to the linear momenta (π,0),
(π/2,0), and (0,0)] can be compared with the ones, obtained
using the Lanczos method, shown in Fig. 2 of Ref. 57.
As can be observed, the main qualitative features of the
particle-hole symmetric DOS are well reproduced, namely,
the two prominent peaks at ω − U/2 ≈ 2t and 3t (−2t and
−3t) a lump peaked around ω − U/2 ≈ 5t (−5t) and a smaller
satellite peak in the neighborhood of ω − U/2 ≈ 8t (−8t). In
agreement with the results of Ref. 57, the upper and lower
bands as well as the Hubbard gap are also clearly visible in
Fig. 6.

We have also studied the evolution of the DOS for the
half-filled 4 × 4 lattice as a function of U . To this end, in
addition to the cases U = 4t and 8t shown in Figs. 5 and
6, calculations have also been performed for U = 2t , 12t ,
and 20t . In good agreement with previous studies,39–41,57,59

we observe that the Hubbard gap persists for increasing
values of U . In our calculations, a pronounced suppression
in the DOS around ω − U/2 = 0 is observed with the DOS
fully vanishing around U = 8t (i.e., around the noninteracting
bandwidth W = 8t), which is precisely the region where a
sizable Hubbard gap is developed.42,57,59

Let us now consider two examples of a doped 4 × 4
lattice. In Fig. 7, we show the spectrum in the case of
15 electrons at U = 4t . For each of the linear momentum
quantum numbers (0,0), (1,0), (1,1), (2,0), (2,1), and (2,2),
we plot the energies of the first five solutions of Eq. (21)
for the spins S = 1/2 and 3/2. The number of variational
parameters in our approximation nvar(S = 1/2,ξx,ξy) = 512
and nvar(S = 3/2,ξx,ξy) = 516 should be compared with
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FIG. 7. (Color online) Energy spectrum, obtained via Eq. (21),
for the 4 × 4 lattice with Ne = 15 electrons at U = 4t .

the dimensions nRH(S = 1/2,ξx,ξy) ≈ 2 × 106 and nRH(S =
3/2,ξx,ξy) ≈ 2 × 106 of the restricted Hilbert spaces. The first
noticeable feature in Fig. 7 is that the four-fold degenerate
�− = (1/2,1,1) ground state has nonzero linear momenta
(π/2,π/2). A finite linear momentum for the one-hole ground
state has also been predicted in previous studies2 using a
variety of approximations for lattices of different sizes. Our
numerical calculations also predict a two-fold degenerate
(1/2,2,0) configuration whose energy is almost the same as
the ground state one. For the noninteracting system (U = 0t),
the lowest-lying S = 1/2 and S = 3/2 states with linear
momentum quantum numbers � = (0,0), P = (2,0), Q =
(2,2), and R3 = (1,1) are degenerate and the same is also true
for the configurations R1 = (1,0), and R2 = (2,1). Therefore
the huge degeneracy observed in the noninteracting case is
already partially lifted at U = 4t .
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FIG. 8. Ground-state energy of the 4 × 4 lattice with Ne = 15
electrons at U = 4t computed with various approaches. The different
columns refer to the unprojected Hartree-Fock (HF) calculation, HF
with linear momentum projection (LM), HF with projection of linear
momentum and only the z component of the total spin (LM + Sz)
and HF with projection of linear momentum and full spin projection
before the variation (LM + S). For all these methods, we have used
the approximation discussed in Sec. II B with five transformations.
Note that the LM + S method corresponds to the symmetry-projected
configuration mixing approach used throughout the paper. The
predicted energies are compared with the exact (EXACT) one.17 For
details, see the main text.
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In Fig. 8, we compare the ground-state energy of the 4 × 4
lattice with 15 electrons with the exact one17 for U = 4t . The
energy −14.5469t predicted within our symmetry-projected
configuration mixing approach, via Eq. (21), accounts for
99.19% of the exact result. It is interesting to note that linear
momentum plus Ŝz projection already accounts for 98.41%
of the exact solution. Nevertheless, full spin projection, while
also recovering the total spin quantum number, still brings a
sizeable amount of correlations.

The (shifted) differences ε�0

1 − ε
(1/2,ξx ,ξy )
1 − U/2, where

ε�0

1 is the ground-state energy of the half-filled lattice (see

Fig. 4) and ε
(1/2,ξx ,ξy )
1 represents the energy of each of the

lowest-lying S = 1/2 states in Fig. 7, compare very well with
the position of the first prominent peak in the hole spectral
functions shown in Fig. 5(b). For example, the variational ap-
proach predicts ε�0

1 − ε
(1/2,1,1)
1 − U/2 = −1.044t , while the

corresponding peak in the hole spectral function is predicted
to be at ω − U/2 = −1.010t . The same is also true for the
configuration with linear momenta (π ,0) for which the vari-
ational approach predicts ε�0

1 − ε
(1/2,2,0)
1 − U/2 = −1.052t ,

whereas the position of the corresponding peak in the hole
spectral function is predicted to be at ω − U/2 = −1.012t .
This leads to the conclusion that the lowest-lying S = 1/2
states in the spectrum of Fig. 7 are reasonably well described
by a wave function of the form (23). This is remarkable, since
no orbital relaxation is accounted for in this wave function,
i.e., the determinants |D(i)〉 in Eq. (23) correspond to the ones
obtained at half-filling.

The spectrum obtained, via Eq. (21), for 14 electrons at
U = 4t is displayed in Fig. 9. The number of variational
parameters in our approximation nvar(S = 0,ξx,ξy) = 504,
nvar(S = 1,ξx,ξy) = 508, and nvar(S = 2,ξx,ξy) = 512 should
be compared with the dimensions nRH(S = 0,ξx,ξy) ≈ 106,
nRH(S = 1,ξx,ξy) ≈ 2 × 106, and nRH(S = 2,ξx,ξy) ≈ 106 of
the restricted Hilbert spaces. The ground state corresponds to
the �0 = (0,2,2) configuration [linear momenta (π,π )] with
energy −15.5872t , while the exact one is −15.7446t .17 On the
other hand, the VMC approximation63 predicts a ground state
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FIG. 9. (Color online) The energy spectrum, obtained via Eq. (21)
for the 4 × 4 lattice with Ne = 14 electrons at U = 4t is shown in
(a). In (b), the excitation energies from the ground state to the lowest-
lying S = 0, 1, and S = 2 states from (a) are plotted as functions
of the linear momentum quantum numbers � = (0,0), R1 = (1,0),
P = (2,0), R2 = (2,1), Q = (2,2), and R3 = (1,1), respectively. In
addition to U = 4t (blue boxes), results for U = 0t (red diamonds)
are also included for comparison.
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FIG. 10. (Color online) The same as Fig. 5 but for the 4 × 4 lattice
with Ne = 14 electrons at U = 4t .

energy of −15.5936t . Thus both methods, ours and VMC,
yield essentially the same relative error of around 1% in the
ground-state energy per site. On the other hand, a relative error
in the ground-state energy per site of 0.45% is obtained within
the kDMRG approximation.61

Our calculations also predict two other close-lying (0,2,2)
solutions (with energies −15.5747t and −15.5777t) that
cannot be distinguished in Fig. 9 and therefore appear, together
with the ground state, as a single thick black line. The energy
−15.5743t of the � = (0,0,0) configuration is also close to
the actual ground state. As a result, the symmetry of the � and
Q points is almost recovered in Fig. 9(b) where the energies of
the lowest-lying S = 0, 1, 2 states for each linear momentum
combination are shown, referred to the �0 = (0,2,2) ground
state for this system. Note that the configurations (0,1,1) and
(0,2,0) [i.e., the points R3 and P in Fig. 9(b)] have very small
excitation energies, 0.0552t and 0.1242t , respectively. The two
peaks at the points R1 and R2 are also present in the system
with Ne = 14 electrons at U = 0t . The spectrum in Fig. 9(a)
exhibits an increase in the density of energy levels, compared
to the one at half-filling, pointing to its very correlated
nature.

The DOS N (ω) [see Eq. (30)] for 14 electrons at U = 4t

is shown in Fig. 10(a). The calculations have been carried out
by approximating the (Ne ± 1)-electron systems with nT = 5
HF transformations along the lines described in Sec. II C. A
Lorentzian folding of width � = 0.2t has been used. The hole
(blue) and particle (black) spectral functions are displayed in
Fig. 10(b). In this case, Eqs. (24) and (28) provide us with
140 hole and 180 particle solutions. The chemical potential
is now located around ω − U/2 = −1.2t . The comparison
with Fig. 5(b) reveals that the structure of the hole states for
ω − U/2 < −2t [i.e., those with linear momenta (±π/2,0),
(0, ±π/2), and (0,0)] remains to a large extent intact. On
the other hand, a large fraction of the particle spectral weight
observed at half-filling for 1t < ω − U/2 < 3t is removed.
This depletion occurs in favor of new states near ω − U/2 = 0.
The spectral decomposition of the DOS clearly shows that it is
states around the Fermi surface that suffer the most pronounced
changes with respect to half-filling. As a result, the particle-
hole symmetry in the DOS, observed in Fig. 5, is suppressed
for this doped lattice and the original gap dissapears.

In Fig. 11(a), we have plotted the DOS N (ω) [see Eq. (30)]
for the 4 × 4 lattice with 14 electrons at U = 8t . The
calculations were performed with nT = 5 HF transformations
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FIG. 11. (Color online) The same as Fig. 5 but for the 4 × 4 lattice
with Ne = 14 electrons at U = 8t . The shapes of the DOS as well as
the spectral functions are qualitatively similar to the ones obtained
using Lanczos calculations.57

and a folding � = 0.2t has been used. The hole (blue) and
particle (black) spectral functions are displayed in Fig. 11(b).
Our DOS and spectral functions can be compared with the
ones, obtained using the Lanczos method, shown in Figs. 3
and 4 of Ref. 57. The main qualitative features of the DOS
are well reproduced, namely, the prominent peaks around
ω − U/2 = −4t , −3t , −2t , and 4t . As can be noted from
Fig. 11(b), the chemical potential is now located around
ω − U/2 = −2.4t . One of the main features of the DOS
is that it displays a pronounced pseudogap which, as can
be seen from Figs. 6 and 11, results mainly from pulling
particle strengths into the (half-filling) gap combined with
sizable contributions of particle states around ω − U/2 = 4t .
We note that the pseudogap problem in the doped 2D Hubbard
model has also received attention within the framework of
quantum cluster approaches.37

We have also performed calculations for the 4 × 4 lattice
with 14 electrons at U = 2t , 12t , and 20t . From these calcu-
lations, and the results already discussed above for the cases
U = 4t and 8t , we conclude that upon doping with two holes
the original gap observed at half-filling disappears for U = 2t

and 4t , a pseudogap is developed around the noninteracting
bandwidth W = 8t , while for the larger interaction strengths
U = 12t and 20t , the gap is not filled. Similar conclusions
have been obtained within the Lanczos framework.57

C. The square 6 × 6 lattice

Finally, let us turn our attention to the half-filled 6 × 6
lattice at U = 4t . The dimensions nRH(S = 0,ξx,ξy) ≈ 2 ×
1017, nRH(S = 1,ξx,ξy) ≈ 6 × 1017, and nRH(S = 2,ξx,ξy) ≈
6 × 1017 of the corresponding restricted Hilbert spaces are far
too large for a brute force diagonalization to be feasible. Other
approximate methods are then called for not only to describe
ground-state properties but also to access the excitation
spectrum in this relatively large lattice for which information
is rather scarce. In this case, the number of variational
parameters in our approximation is nvar(S = 0,ξx,ξy) = 2592,
nvar(S = 1,ξx,ξy) = 2596, and nvar(S = 2,ξx,ξy) = 2600, re-
spectively. Therefore the half-filled 6 × 6 lattice represents a
very challenging testing ground for our symmetry-projected
configuration mixing approximation.
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FIG. 12. (Color online) The same as Fig. 4 but for the half-filled
6 × 6 lattice at U = 4t .

In Fig. 12, we show the energies ε�
α obtained, via Eq. (21),

for the ten essentially different pairs of linear momentum
quantum numbers (0,0), (0,1), (0,2), (0,3), (1,1), (1,2), (1,3),
(2,2), (2,3), and (3,3). For each of them, we have plotted
the first five solutions with spins S = 0, 1, and 2. The
ground state corresponds to the �0 = (0,0,0) configuration
with energy ε�0

1 = −30.5766t . This can be compared with
the energy obtained using state-of-the-art auxiliary-field MC,
−30.89(1)t .64

From Fig. 12, we realize that the first excited state
corresponds to a � = (1,3,3) configuration [with linear
momenta (π,π )]. The energy difference 0.1331t between this
(π,π ) configuration and the ground state is smaller than the
corresponding value 0.1651t for the half-filled 4 × 4 system.
On the other hand, similar to the half-filled 2 × 4 and 4 × 4
lattices, most of the first excited states for each combination
(ξx,ξy) have spin S = 1, exception made of (0,0) and (2,3)
for which an S = 2 quintet appears. Note that our calculations
predict the lowest-lying (1,0,1), (1,1,1), and (1,2,3) solutions
to be quite close in energy. As with the other half-filled lattices
studied, we find only a handful of excited states within an
energy window of t from the ground state.

The DOS N (ω) [see Eq. (30)] for the half-filled 6 × 6
lattice at U = 4t is shown in Fig. 13(a). The calculations have
been carried out with nT = 5 HF transformations along the
lines described in Sec. II C. In this case, Eqs. (24) and (28)
provide us with 360 hole and particle solutions. A Lorentzian
folding of width � = 0.2t has been used. The DOS for this
large lattice shows a clear Hubbard gap �H = U/2 = 2t . The
fact that the gap remains intact in going, at half-filling, from
the 4 × 4 to the 6 × 6 lattice is consistent with previous studies
within the DCA which show that it is preserved even in the
TDL.39–41 We note, that the DMFT (i.e., Nc = 1) does not
predict a gap for U = 4t . It is only for a larger number Nc

of clusters that the gap starts to develop in these studies at
the TDL.37 Back to our DOS, we see again from the spectral
decomposition, shown in panel b) of Fig. 13, that it is states at
[i.e., (±2π/3, ±π/3), (±π/3, ±2π/3), (π,0), and (0,π )] or
close to the noninteracting Fermi surface that contribute the
largest spectral weight to the prominent hole and particle peaks
around ω − U/2 = −t and ω − U/2 = t . In general, the DOS
for this finite size lattice is still highly peaked, though features
should smooth out as one approaches the TDL. Systematic
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FIG. 13. (Color online) The same as Fig. 5 but for the half-filled 6 × 6 lattice at U = 4t .

studies for the 8 × 8 and 10 × 10 lattices are in progress and
will be presented elsewhere.

IV. CONCLUSIONS

How to accurately describe many-fermion systems with
approximate methods, which truncate the complete expansion
of the wave functions to a numerically feasible number of
configurations, is a central question in nuclear structure theory,
quantum chemistry, and condensed matter physics. To this
end, in the present study we have explored an alternative
avenue for the 2D Hubbard model. The main accomplishment
of the present study is the fact that (i) we have presented a
powerful methodology of a VAP configuration mixing scheme,
originally devised for the nuclear many-body problem, but
not yet used to study ground and excited states, with well
defined quantum numbers, of the 2D Hubbard model with
nearest-neighbor hopping and PBC.

Our scheme relies on the Ritz variational principle to
construct, throughout a chain of VAP calculations, a trun-
cated basis consisting of a few (orthonormalized) symmetry-
projected HF states. The simple structure of the projected
wave functions employed, combined with a fast minimization
algorithm, allows to keep low computational cost in building
our basis. A further diagonalization of the Hamiltonian within
such a basis allows to account, in a similar fashion, for residual
correlations in the ground and excited states.

(ii) Due to the simple structure of the wave functions in our
approximation, we can construct an ansatz [see Eqs. (23) and
(27)], whose flexibility is well-controlled by the number of HF-
transformations included, to approximate the ground state of
the (Ne ± 1)-electron system. This allows us to determine one-
electron affinities and ionization potentials as well as to access
the spectral weight of states with different linear momentum
quantum numbers in the calculation of spectral functions and
the corresponding density of states.

(iii) We have shown that our approximation gives accurate
results, as compared with exact energies, for the 2 × 4 and
4 × 4 lattices. We have also provided the low-lying spectrum
of the 6 × 6 lattice which, to the best of our knowledge, has
not been reported in the literature. Our ground state energy
for this lattice compares well with results from state-of-the-art
auxiliary-field Monte Carlo calculations.

Regarding the physics of the 2D Hubbard model, we have
discussed the trends, in going from the 2 × 4 to the 4 × 4
and 6 × 6 half-filled lattices, of both the low-lying spectra and
the spectral functions as well as the corresponding density
of states. We have found that the ground states correspond
to configurations with spin zero and linear momenta (0,0).
We have also found that most of the lowest-lying excited
states display spin S = 1. The doped systems with 14 and 15
electrons in the 4 × 4 lattice have also been considered. The
ground states of such systems correspond to configurations
with linear momenta different from zero.

Special attention has been paid to the spectral weight of
states with different linear momentum quantum numbers. We
have compared the DOS predicted within our approximation
with the one obtained using an exact diagonalization for the
half-filled 2 × 4 lattice and found an excellent agreement
between the two. Our results for the half-filled 4 × 4 lattice,
at different on-site repulsions, agree qualitatively well with
the ones obtained using the Lanczos method.57 For all the
considered half-filled lattices, a Hubbard gap is predicted
within our approximation. In particular, the fact that this
gap persists in going from the 4 × 4 to the 6 × 6 system is
consistent with previous studies within cluster extensions to
dynamical mean field theory which show that it is preserved
even in the thermodynamic limit. As opposed to the half-filled
case, the particle-hole symmetry in the DOS is removed
when doping is present in the system. From the calculations
for 14 electrons in the 4 × 4 lattice we conclude that for
on-site repulsions smaller than the noninteracting bandwidth
the (half-filling) gap dissapears, a pseudogap develops around
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U = 8t while the gap is not filled for larger U values. These
results agree well with similar conclusions extracted from
Lanczos calculations.57 We have also found the remarkable
result that all the lowest-lying S = 1/2 states in the spectrum
of the 4 × 4 lattice with 15 electrons can be reasonably well
described by a wave function of the form (23) in which no
orbital relaxation is accounted for.

One important feature of the scheme presented in this study
is that it leaves ample space for further improvements and
research. First, the number of symmetry-projected configu-
rations in our basis set can be easily increased. Second, we
could still incorporate particle number symmetry breaking
and restoration in our configuration mixing scheme to access
even more correlations. Our methods could be useful even
for more complicated lattices like the honeycomb one. An
extension of the considered 2D t-U Hubbard Hamiltonian
to the t − t ′ − t ′′ − U case is also straightforward, allowing
the study of several interesting issues like indications of
spin-charge separation in 2D systems (see, for example,
Ref. 65 and references therein). Last but not least, not only the
configuration mixing scheme applied in the present work but
also the full hierarchy of approximations discussed in Ref. 43
can be implemented for the molecular Hamiltonian in the realm
of quantum chemistry, within the already successful PQT.47,48

Work along these avenues is in progress.
We would like to stress that the cost of the symmetry-

projected calculations described in this work has the same
scaling as mean-field methods.47,48 This statement is true as
long as the number of grid points required in the symmetry
restoration remains relatively constant (this is usually the
case for spin and number projection). Note, however, that the
restoration of translational symmetry in Hubbard lattices with
PBC requires a number of grid points equal to Nsites. This
makes the cost of our calculations O(Nsites) more expensive
than the Hartree-Fock method, which is still a very reasonable
scaling. The computational effort is mainly concentrated in
looping over grid points for the evaluation of matrix elements.
This task is trivially parallelizable and one can thus easily
reach clusters larger than the ones considered in this study.
Preliminary calculations for the half-filled and doped 8 × 8
and 10 × 10 lattices are in progress.

A discussion of the limitations of our method is also in
order here. Evidently, our method relies on the Hamiltonian
having good symmetries. The lower the number of symmetries
of a given Hamiltonian, the lower the correlations that can
be accounted for by means of symmetry restoration. On the
other hand, the most interesting quantum behavior is found in
systems where symmetries are present. Second, it is known that
the correlation energy per particle obtained with approaches
based on a single symmetry-projected determinant47,48 decays
as the lattice size increases. We observe that the error in the
energy per site is larger in the case of the half-filled 6 × 6
lattice than in the 4 × 4 one, although in both cases we have
restricted the present study to m = 5 transformations. One can,
however, increase the number of transformations to maintain
the quality of our wave functions. In principle, if the number
of transformations is equal to the size of the restricted Hilbert
subspace the method becomes exact. In practice, one can only
hope that the number of transformations needed to access

the relevant physics of the considered lattices is relatively
low.

Finally, we believe that the finite size calculations discussed
in the present work are complementary to other approaches
where impurity solvers play an important role. However, the
symmetries to be broken and restored in the impurity bath,
and bath Hamiltonians will depend on the details of the case
considered.42
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APPENDIX A: SYMMETRY-PROJECTED MATRIX
ELEMENTS BETWEEN TWO SLATER DETERMINANTS

|D i〉 AND |Dk〉
In this Appendix, we present the expressions for the

matrix elements Hik�
��′ = 〈Di |ĤHubP̂

�
��′ |Dk〉 and N ik�

��′ =
〈Di |P̂ �

��′ |Dk〉 required to compute the kernelsHm�
��′ andNm�

��′

in Eq. (20) of Sec. II B. Note that the matrix elements required
in Eq. (8) of Sec. II A are just a particular case where both
Slater determinants are the same. Here and in what follows,
we keep our notation as close as possible to the one already
used for the 1D Hubbard model.44 Both Hik�

��′ and N ik�
��′ read

Hik�
��′ = 2S + 1

8π2Nsites

∑
j

e−ikξ j
∫

d�DS∗
��′ (�)hik(�,j),nik(�,j)

(A1)

N ik�
��′ = 2S + 1

8π2Nsites

∑
j

e−ikξ j
∫

d�DS∗
��′ (�)nik(�,j),

where, kξ = (kξx
,kξy

) = ( 2πξx

Nx
,

2πξy

Ny
) and j = (jx,jy), respec-

tively. For the gauge-rotated norm,

nik(�,j) = detNe
X ik(�,j), (A2)

the determinant has to be taken over the Ne × Ne-dimensional
occupied part of the matrix

X ik
ab(�,j) = (DiT S(�,j)Dk∗)ab (A3)

with

Sασσ ′(�,j) = D1/2
σσ ′(�)eikα j. (A4)

The gauge-rotated Hamiltonian takes the form

hik(�,j) = 1
2 t ik(�,j) + 1

2 Tr
(
�ik(�,j)ρki(�,j)

)
(A5)
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with

t ik(�,j) =
∑
ασ

ε(kα)ρki
ασ,ασ (�,j),

ε(kα) = −2t
(
cos kαx

+ cos kαy

)
,

ρki
γσ ′,ασ (�,j) =

∑
σ ′′hh′

Sγσ ′σ ′′(�,j)Dk∗
γσ ′′,h

[
X ik

hh′(�,j)
]−1Di

ασ,h′ ,

�ik
ασ,γ σ ′(�,j) = δσσ ′δαxγx

δαyγy
ε(kα)

+ U

Nsites

∑
βδ

δ
0,±Nx

αx+βx−γx−δx
δ

0,±Ny

αy+βy−γy−δy

× [
δσσ ′ρki

δ−σ,β−σ (�,j) − (1 − δσσ ′)

× ρki
δσ,β−σ (�,j)

]
, (A6)

where the product of generalized Kronecker deltas in �ik(�,j)
results from the transformation of the on-site interaction term
in Eq. (1) to the momentum representation. As a consequence
of the PBC, δ

0;±Ni

αi+βi−γi−δi
is 1 if αi + βi − γi − δi is either 0 or

±Ni and 0 otherwise.

APPENDIX B: SYMMETRY-PROJECTED PARTICLE-HOLE
MATRIX ELEMENTS BETWEEN TWO SLATER

DETERMINANTS |D i〉 AND |Dk〉
In this Appendix, we present the expressions for the

matrix elements Hik�;ph
��′ = 〈Di |ĤHubP̂

�
��′ b̂

†
p(Dk)b̂h(Dk)|Dk〉

and N ik�;ph
��′ = 〈Di |P̂ �

��′ b̂
†
p(Dk)b̂h(Dk)|Dk〉 required to com-

pute the kernels Km�;ph
��′ and Rm�;ph

��′ defining the variational
equations discussed in Sec. II B. Note that the matrix elements
required in Eq. (10) of Sec. II A are just a particular case where
both Slater determinants are the same. We obtain

Hik�;ph
��′ = 2S + 1

8π2Nsites

∑
j

e−ikξ j

×
∫

d�DS∗
��′ (�)nik(�,j)hik

ph(�,j),

N ik�;ph
��′ = 2S + 1

8π2Nsites

∑
j

e−ikξ j

×
∫

d�DS∗
��′ (�)nik(�,j)nik

ph(�,j), (B1)

where, as in Appendix A, kξ = (kξx
,kξy

) = ( 2πξx

Nx
,

2πξy

Ny
) and

j = (jx,jy), respectively. On the other hand,

nik
ph(�,j) =

∑
h′∈D(i)

[
X ik

hh′(�,j)
]−1X ik

h′p(�,j) (B2)

with the indices h (p) running over all the occupied (unoccu-
pied) states in |Dk〉. The inverse [X ik

hh′(�,j)]−1 is taken over
the occupied part of the matrix (A3). Finally,

hik
ph(�,j) = nik

ph(�,j)hik(�,j)

+ [Yki(�,j)�ik(�,j)Wki
(�,j)]hp (B3)

with the functions Y(�,j) and Wki
(�,j) defined, for all the

occupied h and unoccupied p states in |Dk〉, as

Yki
h,ασ (�,j) =

∑
h′

[
X ik

hh′(�,j)
]−1Di

ασ,h′ ,

Wki

γσ ′,p(�,j) =
∑

δσ ′′σ ′′′
[1 − ρki(�,j)]γσ ′,δσ ′′Sδσ ′′σ ′′′ (�,j)Dk∗

δσ ′′′,p.

(B4)

APPENDIX C: SYMMETRY-PROJECTED MATRIX
ELEMENTS BETWEEN TWO SLATER DETERMINANTS

|D i〉 AND |Dk〉 FOR SPECTRAL FUNCTIONS

In this Appendix, we present the computation of the kernels
H�−

and N�−
required in Eq. (24) as well as of the kernels

H�+
and N�+

in Eq. (28). Both H�−
and N�−

read

N�−
ihσ ;kh′σ ′ = 2

8π2Nsites

∑
j

e−ikξ j

×
∫

d�D
1/2∗
σσ ′ (�)nik(�,j)nik

hh′(�,j),

H�−
ihσ ;kh′σ ′ = 2

8π2Nsites

∑
j

e−ikξ j

×
∫

d�D
1/2∗
σσ ′ (�)nik(�,j)hik

hh′(�,j) (C1)

with the vector kξ = (kξ−
x
,kξ−

y
) = ( 2πξ−

x

Nx
,

2πξ−
y

Ny
), while i,k = 1,

. . . nT , h,h′ = 1, . . . Ne, and σ,σ ′ = ±1/2. On the other
hand,

nik
hh′(�,j) = [

X ik
h′h(�,j)

]−1
(C2)

and

hik
hh′(�,j) = [

X ik
h′h(�,j)

]−1
hik(�,j)

− [Yki(�,j)�ik(�,j)Zki(�,j)]h′h, (C3)

respectively. The function Zki
γ σ ′,h(�,j) reads

Zki
γ σ ′,h(�,j) =

∑
h′′σ ′′

Sγ σ ′σ ′′(�,j)Dk∗
γσ ′′,h′′

[
X ik

h′′h(�,j)
]−1

,

(C4)

while Yki
h′,ασ (�,j) is given in Eq. (B4).

The norm and Hamiltonian overlaps in Eq. (28) read

N�+
ipσ,kp′σ ′ = 2

8π2Nsites

∑
j

e−ikξ j

×
∫

d�D
1/2∗
σσ ′ (�)nik(�,j)nik

pp′(�,j),

H�+
ipσ,kp′σ ′ = 2

8π2Nsites

∑
j

e−ikξ j

×
∫

d�D
1/2∗
σσ ′ (�)nik(�,j)hik

pp′(�,j) (C5)
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with the vector kξ = (kξ+
x
,kξ+

y
) = ( 2πξ+

x

Nx
,

2πξ+
y

Ny
), while i,k = 1,

. . . nT , p,p′ = Ne + 1, . . . 2Nsites, and σ,σ ′ = ±1/2. On the
other hand,

nik
pp′ (�,j) = X ik

pp′(�,j) −
∑
hh′

X ik
ph(�,j)

× [
X ik

hh′(�,j)
]−1X ik

h′p′ (�,j) (C6)

and

hik
pp′(�,j) = nik

pp′ (�,j)hik(�,j)

+ [W ik(�,j)�ik(�,j)Wki
(�,j)]pp′ , (C7)

respectively. The function W ik
p,ασ (�,j) is given by

W ik
p,ασ (�,j) =

∑
βσ ′

Di
βσ ′,p[1 − ρki(�,j)]βσ ′,ασ (C8)

while Wki

γσ ′,p′ (�,j) is defined in Eq. (B4).
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B 72, 085116 (2005).
45P. Ring and P. Schuck, The Nuclear Many-Body Problem (Springer,

Berlin, 1980).
46J.-P. Blaizot and G. Ripka, Quantum Theory of Finite Fermi Systems

(The MIT Press, Cambridge, MA, 1985).
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