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Universal transport signatures of Majorana fermions in superconductor-Luttinger liquid junctions
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One of the most promising proposals for engineering topological superconductivity and Majorana fermions
employs a spin-orbit coupled nanowire subjected to a magnetic field and proximate to an s-wave superconductor.
When only part of the wire’s length contacts to the superconductor, the remaining conducting portion serves as
a natural lead that can be used to probe these Majorana modes via tunneling. The enhanced role of interactions
in one dimension dictates that this configuration should be viewed as a superconductor-Luttinger liquid junction.
We investigate such junctions between both helical and spinful Luttinger liquids, and topological as well as
nontopological superconductors. We determine the phase diagram for each case and show that universal low-
energy transport in these systems is governed by fixed points describing either perfect normal reflection or perfect
Andreev reflection. In addition to capturing (in some instances) the familiar Majorana-mediated “zero-bias
anomaly” in a new framework, we show that interactions yield dramatic consequences in certain regimes. Indeed,
we establish that strong repulsion removes this conductance anomaly altogether while strong attraction produces
dynamically generated effective Majorana modes even in a junction with a trivial superconductor. Interactions
further lead to striking signatures in the local density of states and the line shape of the conductance peak at finite
voltage, and also are essential for establishing smoking-gun transport signatures of Majorana fermions in spinful
Luttinger liquid junctions.
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I. INTRODUCTION

Topological phases display many “exact” features that are
remarkably robust to variations in microscopic realization and
imperfections. One of the most exotic is the possibility of
emergent excitations known as non-Abelian anyons that host
zero-energy “internal” degrees of freedom in an intrinsically
nonlocal way. Information encoded in such anyons is then
naturally protected from decoherence and can furthermore be
manipulated using braiding operations, forming the basis of
attractive quantum computing platforms.1 Recently, attention
has focused on the so-called Majorana fermion, which binds
to a specific kind of non-Abelian anyon originally predicted
to occur in the ν = 5/2 fractional quantum Hall state.2,3

Among the many current proposals for generating Majorana
fermions4–6 (see Refs. 7 and 8 for a review), one attractive
class involves spinless one-dimensional (1D) topological
superconductors whose hallmark is the existence of Majorana
zero modes localized at the ends of the system.9 This phase can
be engineered in a variety of settings, including 2D topolog-
ical insulator edges,10 spin-orbit-coupled nanowires,11,12 3D
topological insulator nanoribbons,13 and cold atomic gases.14

Numerous quantum computation protocols based on manipu-
lating Majoranas in 1D systems have now been proposed.15–25

The first step toward realizing such applications is of
course the conclusive experimental identification of Majorana
fermions. One appealing detection method involves transport.
In particular, several studies predict that tunneling electrons
onto a Majorana mode gives rise to a zero-bias conductance
anomaly.26–35 Here, we revisit this problem from a new
perspective based on renormalization group methods similar
to those of Refs. 36–38 and, especially, Ref. 39 (we would like

to thank Ian Affleck for making us aware of Ref. 39, where the
renormalization group approach was originally applied to the
case of a spinful wire). A major virtue of this approach is that
it allows one to extract universal tunneling signatures of these
modes even when strong interactions are present. Indeed, we
will (in some cases) recover in a very general way previous
results based on specific model calculations, and also identify
new regimes where interactions lead to dramatic and very
surprising consequences. Furthermore, our approach provides
an elegant means of addressing the fate of localized Majorana
zero modes when coupled to gapless degrees of freedom.

The theoretical technology developed here is widely ap-
plicable to superconducting Majorana platforms. We will,
however, mainly focus on spin-orbit-coupled 1D systems such
as a semiconducting nanowire subjected to a magnetic field,
in the experimentally accessible geometry where half of the
wire couples to an s-wave superconductor while the other half
remains gapless; see, for example, Fig. 1(a) and Ref. 35 and 40.
By gating one can independently tune the left and right halves
between a “helical” regime—with only one active channel
at low energies—and a “spinful” regime where two channels
play a role (multichannel regimes are also accessible34,41–43

but will not be considered here). Crucially, in either limit,
the gapless half generically forms a Luttinger liquid. The
nature of the superconducting state in the other half of
the wire depends strongly on the number of channels: in the
helical case a topological phase supporting Majorana zero-
modes emerges, while in the spinful regime, a trivial gapped
state appears instead.11,12 This system therefore admits four
natural superconductor/Luttinger liquid junction archetypes:
the gapless part of the wire (which we view as a lead) can
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FIG. 1. (Color online) (a) Topological superconductor forming a
junction with a helical Luttinger liquid. We assume that the helical
Luttinger liquid couples only to the Majorana γ1 at the interface,
while its partner γ2 remains a robust zero-energy mode. (b) Flow
diagram for the junction as a function of the interaction parameter g

for the Luttinger liquid. Provided g > 1/2, coupling to the Majorana
γ1 causes the Luttinger liquid to flow onto a fixed point where
perfect Andreev reflection occurs at the junction. Here, the zero-bias
conductance for the junction is quantized at 2e2/h. For Luttinger
liquids with strong repulsive interactions such that g < 1/2, however,
coupling to γ1 is irrelevant. Here, the system flows onto a fixed point
where the Luttinger liquid undergoes perfect normal reflection at the
junction, leading to a vanishing zero-bias conductance.

be either helical or spinful and likewise the superconducting
region can be topological or trivial. We stress that it is
essential to understand the transport properties of both the
topological and trivial junctions to establish unambiguous
transport signatures of Majorana modes. For instance, if
the conductance can behave similarly with or without the
presence of a Majorana, then clearly this would be less than a
smoking-gun detection scheme.

To introduce the basic philosophy underlying our approach
it is useful to first imagine physically cutting the wire such
that the Luttinger liquid and superconducting regions decouple
entirely. Transfer of electrons across the junction formed by
the two subsystems is then prohibited for trivial reasons.
In renormalization group language, the system’s low-energy
behavior here is described by a fixed point theory characterized
by a vanishing conductance. We refer to this as a “perfect
normal reflection” fixed point since in this case electrons
incident on the superconductor undergo normal reflection with
unit probability at the junction. Suppose now that the Luttinger
liquid and superconductor “reconnect,” and one incorporates
arbitrary symmetry-allowed couplings between the two. Our
objective is to then address questions such as the following:
what is the fate of the perfect normal reflection fixed point in
this case? If it is unstable, what couplings provide the leading
instability and to which fixed point do they ultimately drive the
system? What are the properties of such putative fixed points?
And what are the implications for transport experiments?

TABLE I. The four junction archetypes studied in this paper.
The columns denote the two possibilities for the one dimensional
leads, and the rows differentiate between superconductors with and
without Majorana zero-mode bound states. The Luttinger parameters
g and gρ describe the interactions in the lead; g < 1 and g > 1
correspond to repulsive and attractive interactions, respectively. Note
that for the regime of weak repulsive interactions expected in many
solid state implementations, a zero-bias conductance G = 2e2/h

is a robust signature of Majorana zero-mode bound states in the
superconductor.

Helical wire Spinful wire (gσ = 1)

Topological SC G =
{

0, g < 1
2

2e2

h
, g > 1

2

G =
{

0, gρ < 1
3

2e2

h
, gρ > 1

3

Nontopological SC G =
{

0, g < 2
2e2

h
, g > 2

G =
{

0, gρ < 1
2e2

h
, gρ > 1

0 � G � 4e2

h
, gρ = 1

Let us now highlight our main results (partially summarized
in Table I) for the four cases that we analyze, beginning
with the topological superconductor/helical Luttinger liquid
junction. In this case, the gapless region is characterized by a
Luttinger parameter g where g = 1 represents the free-fermion
limit, while g < 1 and g > 1, respectively, correspond to
repulsive and attractive interactions. When the wire is cut,
as described above, the topological superconductor supports
a single localized Majorana zero mode at the junction.61

Provided the Luttinger parameter falls in the range g > 1/2
tunneling electrons onto this mode constitutes a relevant
perturbation that destabilizes the perfect normal reflection
fixed point. We demonstrate that the Majorana zero mode then
delocalizes completely into the Luttinger liquid and drives the
system to a fixed point describing perfect Andreev reflection
at the junction. This perfect Andreev reflection fixed point is
characterized by the familiar quantized zero-bias conductance
G = 2e2/h at zero temperature T = 0 that has been captured
by numerous studies in the free-fermion limit.26–30,32,33,35 In
addition to the universal value of 2e2/h for the conductance
at zero bias, the topological superconductor/helical Luttinger
liquid junction also exhibits a universal form for the finite bias
conductance curve. The form of this curve can be computed
in perturbation theory in certain voltage regimes, allowing
one to extract the value of the Luttinger parameter g. For
g < 1/2, however, (which is potentially applicable to carbon
nanotube-based Majorana proposals)44–46 coupling to the zero
mode at the junction is irrelevant at the perfect normal
reflection fixed point, which is then stable. Consequently,
the zero-bias conductance vanishes at T = 0. This does not,
however, imply that the Majorana mode remains localized; we
show using scaling that in this limit the probability density
associated with the Majorana mode decays into the Luttinger
liquid as a power law.

When a helical Luttinger liquid impinges instead on a
trivial superconductor, the perfect normal reflection fixed
point is stable, resulting in a vanishing zero-bias conductance,
for any g < 2. Taken together, the above results imply that
electron transport from a helical wire (with not-too-strong
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repulsive interactions) onto a superconductor is unmistakably
different in the topological and trivial cases and thus indeed
provides an unambiguous way of identifying Majorana zero
modes. The g > 2 regime may be realizable in cold atoms
experiments14 and exhibits fascinating properties even from
a purely theoretical perspective. Here, Cooper-pair tunneling
from the Luttinger liquid to the superconductor is relevant,
generating a flow to the perfect Andreev reflection fixed point
with quantized conductance. We show that this results from
the dynamical generation of a pair of asymptotically decou-
pled Majorana modes, which mediate the perfect Andreev
reflection. It is remarkable that any trace of Majorana physics
appears in a junction with an ordinary superconductor; this
would certainly be interesting to explore further in numerical
simulations.

Perhaps more than any other case, superconductor/spinful
Luttinger liquid junctions highlight the limitations of model-
specific microscopic calculations and the utility of our ap-
proach based on universal low-energy physics. When a spinful
Luttinger liquid couples to a topological superconductor, the
leading perturbation at the perfect normal reflection fixed point
again involves electron tunneling onto the Majorana zero mode
at the junction. Its relevance follows from the charge- and
spin-sector Luttinger parameters gρ and gσ . With unbroken
SU(2) spin symmetry in the Luttinger liquid one has gσ = 1,
and in this case, coupling to the Majorana is relevant for all
gρ > 1/3. Because only one of the two spin channels can
hybridize with the Majorana mode, the junction flows to a
novel fixed point corresponding to perfect Andreev reflection
for one species and perfect normal reflection for the other. This
fixed point is in fact robust with respect to some perturbations
which break SU(2) in the bulk, i.e., correspond to gσ �= 1,
such as spin-orbit coupling and magnetic field. Thus, in the
topological case, a spinful Luttinger liquid junction again
exhibits robust G = 2e2/h conductance quantization down
to fairly strong repulsive interactions with gρ = 1/3.

An analysis of the nontopological superconductor/spinful
Luttinger liquid case in the free-fermion limit, however, yields
a nonuniversal zero-bias conductance ranging anywhere from
0 to 4e2/h depending on parameters, potentially making it
difficult to differentiate from the signal originating from the
Majorana in the topological junction. This apparent nonuniver-
sality originates from the fact that the leading perturbations to
the perfect normal reflection fixed point in the free fermion case
are exactly marginal. Fortunately, we find that arbitrarily weak
repulsive interactions are sufficient to stabilize the perfect
normal reflection fixed point. Since weak repulsive interactions
are generic in many physical realizations of such Luttinger
liquids, the nonuniversal zero-bias conductance calculated for
the free fermion limit will eventually renormalize to zero
at sufficiently long length scales and low energies. We thus
conclude that a quantited zero-bias G = 2e2/h conductance
indeed serves as a definitive fingerprint of a Majorana mode
at the junction, for both spinless and spinful Luttinger
liquids.

The remainder of the paper analyzes each of the four cases
in detail. We begin in Sec. II with the helical/topological
junction, which we first solve in the free fermion limit
g = 1 and then in the general case, using bosonization. In
particular, we extract the conductance from a boundary action

obtained by integrating out the bulk of the Luttinger liquid,
and use duality to gain insight into the nature of the two
fixed points. In Sec. III, we apply similar methods to analyze
the helical/nontopological junction. Sections IV and V treat
the spinful/nontopological and spinful/topological junctions.
In the discussion (see Sec. VI), we examine the physical
consequences of our work in more detail. In particular, we
show that the line shape of the finite bias conductance curve
contains information about the Luttinger parameter g and that
its generic asymptotics (g �= 1) differs from that of the finely
tuned free-fermion case g = 1. Also, Appendixes A and B
provide details on the derivation of the bosonized boundary
theories, while Appendixes C and D solve for the delocalized
Majorana mode at the junction in the noninteracting and
interacting helical/topological cases, respectively.

II. TOPOLOGICAL SUPERCONDUCTOR-HELICAL
LUTTINGER LIQUID JUNCTIONS

The first junction we will analyze is that formed by a helical
Luttinger liquid adjacent to a 1D topological superconductor
supporting a single localized Majorana mode at each end as
illustrated in Fig. 1(a). While ultimately we wish to understand
the universal properties of the junction at low energies in
the presence of (possibly strong) interactions in the Luttinger
liquid, here, we will begin by exploring the free fermion case,
which provides a useful point of reference.

A. Scattering problem for free fermions

Throughout this section we will assume that the super-
conductor is fully gapped save for the end-Majorana modes
γ1 and γ2 shown in Fig. 1(a). We further assume that
the superconductor is sufficiently long that these Majoranas
overlap negligibly,9,47 and that the helical wire couples only
to γ1. The only relevant low-energy degrees of freedom are
then γ1 and those of the gapless helical wire, taken here to
be noninteracting. At low energies, it suffices to linearize
the kinetic energy for the helical wire and incorporate the
effects of the superconductor through local perturbations to
the wire Hamiltonian acting at the interface. (Formally, the
latter perturbations can be derived by coupling the wire
and superconductor at the junction and then integrating out
the gapped superconductor degrees of freedom.) Taking a
semi-infinite wire at x > 0, we write the full Hamiltonian as
H = H0 + δH , where δH represents the boundary terms and
the kinetic energy H0 reads

H0 =
∫ ∞

0
dx(−ivF ψ

†
R∂xψR + ivF ψ

†
L∂xψL). (1)

Here, vF is the Fermi velocity and ψ
†
R/L creates right/left-

moving excitations near the Fermi energy. It is convenient to
rewrite H0 in terms of a single fermion field ψ(x) defined over
all x as follows:

ψ(x) =
{

ψR(x), x > 0,

ψL(−x), x < 0.
(2)
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In terms of ψ(x), H0 becomes simply

H0 =
∫ ∞

−∞
dx(−ivF ψ†∂xψ). (3)

The boundary Hamiltonian δH will encode various cou-
plings at the junction, including tunneling between the
Majorana mode γ1 and the wire, local chemical potential
modifications, and Cooper pairing induced locally in the
wire by the superconductor. Thus the full Hamiltonian will
take the form of a Bogoliubov-de Gennes equation. Before
turning to a specific form of δH it is useful to discuss the
problem in some generality. It is natural to expect that in
the low-energy limit the effect of these couplings will be to
impose certain boundary conditions on the wire, the precise
nature of which will depend on details of the Hamiltonian.
The set of possible boundary conditions corresponds, in
renormalization group language, to different fixed points
whose stability we would like to understand. For free fermions,
this issue can be exhaustively addressed using scattering
theory. Here, all information regarding these putative fixed
points as well as their stability is encoded in the S matrix
S(E), which at a given energy E relates the particle and hole
states incident on the superconductor with the reflected states.
Interestingly, using arguments similar to Refs. 48 and 49 one
can show very generally that the S matrix for an infinite
wire can take only one of two forms in the E → 0 limit,
corresponding to fixed points describing either perfect normal
reflection, or perfect Andreev reflection at the junction. In the
case of a finite wire of length L, the S matrix has been derived
in Refs. 27, 50, and 51, and one recovers the above answers
in the appropriate limit, i.e., L = ∞,E → 0.

1. General properties of the S matrix

The full Hamiltonian H including boundary couplings is
diagonalized with quasiparticle operators carrying energy E

of the form

	E = φEγ1 +
∫ ∞

−∞
dxe

−i Ex
vF [PE(x)ψ(x) + HE(x)ψ†(x)],

(4)

where φE is the component of the wave function at the
Majorana and PE(x),HE(x) respectively determine the
particle- and hole-like amplitudes of the wave functions.
Since PE(−∞) and HE(−∞) describe left-moving electrons
and holes incident on the superconductor, while PE(∞) and
HE(∞) capture the reflected right-moving states [see Eq. (2)],
the S matrix is defined by[

PE(∞)
HE(∞)

]
= S(E)

[
PE(−∞)
HE(−∞)

]

≡
[

SPP(E) SPH(E)
SHP(E) SHH(E)

] [
PE(−∞)
HE(−∞)

]
. (5)

To restrict the form of S(E), we first note that 	E = 	
†
−E ,

which follows from particle-hole symmetry exhibited by any
Bogoliubov-de Gennes equation, combined with the fact
that the helical wire has only a single fermionic species.
This relation connects the particle and hole wave-function
amplitudes via P ∗

−E(x) = HE(x), which in turn implies that

the S matrix must obey S(E) = σxS∗(−E)σx , where σx is a
Pauli matrix. Thus it suffices to determine (say) SPP(E) and
SPH(E), since the other matrix elements follow from

SHH(E) = S∗
PP(−E),

(6)
SHP(E) = S∗

PH(−E).

At zero energy, Eq. (6) allow one to restrict the S matrix
further still. Imposing SPP(0) = S∗

HH(0) and SPH(0) = S∗
HP(0)

along with unitarity of the S matrix as required by current
conservation, one finds that S(E = 0) can take only two
possible forms:

S(0) =
(

eiα 0
0 e−iα

)
(perfect normal reflection) (7)

or

S(0) =
(

0 eiβ

e−iβ 0

)
(perfect Andreev reflection), (8)

for some phases α and β. The diagonal form in Eq. (7)
corresponds to the situation where particles incident on the
superconductor undergo perfect normal reflection at the inter-
face: an electron reflects as an electron with unit probability
and similarly for holes. Conversely, the purely off-diagonal
form in Eq. (8) describes perfect Andreev reflection at the
junction; here electrons scatter perfectly into holes and vice
versa, transmitting a Cooper pair into the superconductor
in the process. In renormalization group terms, these lim-
its correspond to two different fixed points at which the
topological superconductor imposes either perfect normal
reflecting or perfect Andreev reflecting boundary conditions
on the helical wire. Given our assumptions fixed points with
intermediate boundary conditions are not possible (at least for
free fermions).

Following Ref. 29, these two possible fixed points can be
distinguished by the conductance across the junction. At a bias
voltage V , the current transmitted into the superconductor is
given by

I = 2e

h

∫ eV

0
dE|SPH(E)|2, (9)

where |SPH(E)|2 is the probability that an incident electron at
energy E Andreev reflects into a hole at the junction, trans-
mitting charge 2e into the superconductor. The differential
conductance G = dI/dV at T = 0 is then

G = 2e2

h
|SPH(eV )|2, (10)

which in the zero-bias limit becomes

G(V → 0) =
{

0 (perfect normal reflection),
2e2

h
(perfect Andreev reflection).

(11)

While it is intuitively clear that perfect normal reflection
ought to give rise to a vanishing zero-bias conductance, it
is interesting that in the Andreev limit one necessarily obtains
conductance quantization. We will return to this issue below
when we obtain the S matrix for a specific form of δH .
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2. Accessing the perfect normal and Andreev reflection fixed
points with free fermions

We would like to now understand the conditions required
for our noninteracting helical wire to flow onto each of the
two possible fixed points identified above. With this objective
in mind, we will now consider the following boundary
Hamiltonian:

δH =
∫ ∞

−∞
dx

[
t√
2
γ1(ψ† − ψ) + 2uψ†ψ

+ (i
ψ∂xψ + H.c.)

]
δ(x). (12)

Here, t allows electron tunneling between the Majorana γ1

and the helical wire at the junction, u is a local potential
that favors normal reflection, and the 
 term (which must
involve a derivative by Fermi statistics) encodes processes
wherein a Cooper pair hops between the helical wire and the
superconductor. Additional couplings are, in principle, present
but necessarily carry higher derivatives than those already
displayed and can thus be safely neglected at low energies.
Given this form of δH , a straightforward solution of the S

matrix yields,

SPP = − Ẽ[(ũ + i)2 + 
̃(t̃2 + Ẽ2
̃)]

it̃2 + Ẽ[1 + ũ2 + 
̃(t̃2 + Ẽ2
̃)]
,

SPH = i(t̃2 + 2Ẽ2
̃)

it̃2 + Ẽ[1 + ũ2 + 
̃(t̃2 + Ẽ2
̃)]
, (13)

where the tildes denote quantities expressed in units of vF ,
e.g., ũ = u/vF . [Recall that the other two matrix elements
follow from Eq. (6).] For generic values of the couplings, one
clearly sees that the S matrix becomes purely off-diagonal
in the E → 0 limit, corresponding to the onset of perfect
Andreev reflection at the boundary and a quantized zero-bias
conductance of 2e2/h for the junction. Avoiding this outcome
requires fine-tuning, indicating that the Andreev fixed point is
stable in the noninteracting case.

Closer inspection of Eq. (13) reveals that the flow toward
perfect Andreev boundary conditions originates exclusively
from the coupling to the Majorana γ1 located at the junction.
Indeed, in the E → 0 limit the S matrix becomes purely
diagonal upon fine tuning t = 0, so that without coupling to the
Majorana the system flows instead onto the (unstable) perfect
normal reflection fixed point. (One might naively expect that
the pairing term 
 alone would be sufficient to drive the
system to the Andreev fixed point, but this is not the case. In
the helical wire, Pauli exclusion, which is responsible for the
derivative in this term, renders this an irrelevant perturbation
at the perfect normal reflection fixed point. This can be
understood by noting that when E → 0, 
 drops out entirely
from the S matrix.) It follows that here the quantized 2e2/h

conductance for the junction at the Andreev fixed point reflects
the familiar zero-bias anomaly associated with tunneling onto a
Majorana mode.26–30,32,33,35 The scattering approach adopted
here, in fact, follows closely the treatment of Ref. 29 who
showed that resonantly coupling a noninteracting system to a
Majorana mode generically induces perfect Andreev reflection
as recovered here. One can intuitively understand this by
observing that for any nonzero t , the Majorana zero-mode

originally described by γ1 gets absorbed into the helical
wire, where it becomes a delocalized plane-wave state (see
Appendix C). The Majorana character of this plane-wave
must be preserved, however, which in turn guarantees perfect
Andreev reflection.

Next, we explore the stability of the fixed points captured
here for free fermions when interactions are present. Interest-
ingly, we will show that strong repulsive interactions modify
the physics of the junction qualitatively. We will first treat
the perfect normal reflection fixed point and then turn to the
Andreev fixed point.

B. Stability of the perfect normal reflection
fixed point with interactions

In the noninteracting limit, accessing the perfect normal
reflection fixed point required fine-tuning to zero the coupling
between the helical wire and the Majorana γ1 at the junction.
Guided by this case, we will initially neglect the presence
of γ1 and derive a fixed-point action describing perfect
normal reflection for the Luttinger liquid. This is conveniently
achieved using bosonization, where the right/left-moving
fermionic modes in the wire are expressed in terms of dual
bosonic fields φ,θ via

ψR ∼ ei(φ+θ), (14)

ψL ∼ ei(φ−θ). (15)

Physically, θ relates to the fermion density n in the Luttinger
liquid according to n = ∂xθ/π , while φ and n are canonically
conjugate variables. It will be useful below to observe
that since one can write θ (x) − θ (0) = −π

∫ x

0 dx ′n(x ′), the
fermion parity in the helical Luttinger liquid is given by
PLL = cos[θ (x = L) − θ (x = 0)], where x = L corresponds
to the right endpoint of the wire.

To ensure perfect normal reflection at the junction, the
fermionic fields are constrained to satisfy

ψR(x = 0) = eiαψL(x = 0) (16)

for some unimportant phase α which we will simply set to
zero. This in turn implies pinning of the field θ at the junction:

θ (x = 0) = 0 mod π. (17)

Similar constraints of course apply to the right end of the wire
at x = L, so for concreteness we will henceforth set θ (x =
L) = 0 (except in Appendix D, where a different convention
is specified). The fermion parity in the Luttinger liquid then
reduces to

PLL = cos[θ (x = 0)]. (18)

Thus the two pinning values in Eq. (17) correspond to the
cases where the Luttinger liquid accommodates an even and
odd number of electrons.

Let us now arbitrarily select a particular pinning value
for θ (x = 0). One can obtain an effective action for the
remaining fluctuating phase field at the boundary, φ(x = 0),
in the following manner. First, the kinetic energy in Eq. (1)
supplemented by interactions in the helical wire bosonizes to

H0 =
∫ ∞

0
dx

vF

2π
[g(∂xφ)2 + g−1(∂xθ )2], (19)
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where vF is the Fermi velocity and g is the Luttinger
parameter specifying the interaction strength (again, g = 1
is the free-fermion limit, while g < 1 and g > 1, respectively,
correspond to repulsive and attractive interactions). Obtaining
the Euclidean action corresponding to Eq. (19) and integrating
out all fields away from x = 0 (see Appendix A for details)
then leads to the following action,

Snormal = g

2π

∫
dω

2π
|ω||�|2, (20)

where � ≡ φ(x = 0). This action describes the perfect normal
reflection fixed point, whose stability we can now assess.

The most relevant perturbation to Snormal originates from
coupling to the neglected Majorana mode γ1,

δSt = t√
2

∫
dτγ1[ψR(x = 0)† − ψR(x = 0)], (21)

that promotes Andreev processes at the junction. [The use
of ψR as opposed to ψL here is immaterial because of the
boundary condition of Eq. (16).] Bosonizing δSt requires
some care, as the usual procedure of naively replacing ψR ∼
ei� in Eq. (21) leaves one with a non-Hermitian operator
(among other technical problems stemming from the Majorana
operator). Indeed, since Eq. (21) contains γ1 our bosonization
must include the topological superconductor as well in order
to obtain consistent results. We will now show how this can be
done by considering a lattice model that includes the relevant
low-energy operators for both subsystems.

Because the only low-lying degrees of freedom in the
superconductor are γ1 and γ2, we can distill this part down
to a single fermionic lattice site taken to lie at position 0:

γ1 = c
†
0 + c0,

(22)
γ2 = i(c†0 − c0).

Even though we formally model γ1 and γ2 as deriving from
the same site, physically these operators are spatially well
separated. For our purposes, the only consequence of this is
that the Luttinger liquid, which we now define on a lattice
indexed by sites j > 0, couples only to the linear combination
c
†
0 + c0 on site 0. We therefore consider the following tunneling

Hamiltonian that hybridizes this site and the Luttinger liquid,

δHt = tγ1(c†1 − c1) = t(c†0 + c0)(c†1 − c1). (23)

The full Hamiltonian is then

H = HLL + Ht, (24)

with the Luttinger liquid Hamiltonian

HLL = −J
∑
j>0

(c†j cj+1 + H.c.) + Hint, (25)

where Hint encodes density-density interactions.
Next, we implement a Jordan-Wigner transformation to

write the Hamiltonian in terms of hard-core bosons bj via

cj = exp

⎛
⎝iπ

∑
j ′<j

nj ′

⎞
⎠ bj , (26)

with nj = b
†
j bj = c

†
j cj . Furthermore, we rewrite the bosons at

site 0 in terms of Pauli spin matrices via b0 = (σx + iσ y)/2,
and those on the remaining sites j > 0 in terms of a phase field
φj : bj ∼ ieiφj . Using exp (iπn0) = σ z, the tunneling term Ht

in Eq. (23) then becomes

δHt = tσ x cos �, (27)

where � ≡ φ1. The Euclidean action corresponding to
Eq. (27) is

δSt = 2t

∫
dτσ x cos �, (28)

which upon trivially rescaling t is the correctly bosonized form
of the Majorana tunneling term in Eq. (21).

For concreteness, it is useful to relate the wave functions
for the superconductor in the fermionic and “spin” languages.
When t = 0 the superconductor admits two degenerate ground
states with well defined but opposite fermion parity, |0〉 and
|1〉, due to the Majorana zero-modes γ1 and γ2. These states are
connected by the Majorana operators: γi |0〉 ∝ |1〉. In the spin
language, |0〉 and |1〉 are eigenstates of σ z, but the natural pair
of degenerate ground states is formed by eigenstates |+〉 and
|−〉 of σx . The distinction between the two can be sharpened
by considering a more realistic model for the superconductor,
consisting of a Kitaev model9 with many sites intervening
between γ1 and γ2. The ground states of given fermion
parity, natural in the original fermionic representation, are then
Schrodinger cat states for the spins, i.e., linear combinations
of the two phase eigenstates, in which all spins point along
the plus or minus x direction.62 (Incidentally this is essentially
why a 1D spinless p-wave superconductor is a widely sought
topological phase of matter, while the Ising spin chain is not,
despite the fact that these models are superficially related.)

We are now in position to analyze the stability of the perfect
normal reflection fixed point. The scaling dimension of cos �

is 1/(2g), while that of σx is zero at this fixed point, so under
renormalization t flows according to

dt

d�
= [1 − (2g)−1]t. (29)

Equation (29) determines the renormalized coupling strength
at a length scale l in terms of � = ln(l/ l0), with l0 a microscopic
length of order the Fermi wavelength. Remarkably, for
helical Luttinger liquids with g < 1/2 tunneling onto γ1 thus
constitutes an irrelevant perturbation; perfect normal reflection
is then stable despite the presence of a zero-energy Majorana
mode to which the system can couple. We will explore
the physical consequences of this result in the discussion.
This coupling is relevant, however, when g > 1/2, indicating
instability of the perfect normal reflection fixed point (con-
sistent with our scattering analysis for free fermions with
g = 1). Since this perturbation promotes Andreev reflection
at the junction it is natural to expect that at low energies
normal reflection then becomes entirely suppressed in favor
of Andreev processes, just as we found for free fermions. We
establish in the next subsection that this is indeed the case by
examining the stability of the perfect Andreev reflection fixed
point when interactions are present.
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C. Stability of the perfect Andreev reflection fixed
point with interactions

One illuminating method for extracting the fixed point
action describing perfect Andreev reflection at the junction
is to apply a duality transformation to the bosonized action
Snormal + δSt . In particular, this allows us to extract the most
relevant operator around this fixed point and analyze its
stability. Our starting point is the partition function for the
perfect normal reflection fixed point expressed as a path
integral; this is carefully derived in Appendix B and reads

Z =
∫

D�
∑

σx=±1

e−Snormale−2t
∫

dτσ x cos �. (30)

An important point here is that there is only a single sum
over σx = ±1 (rather than one at each imaginary time slice).
This arises from the fact that σx is a conserved quantity in the
Hamiltonian and therefore has no imaginary time dynamics.
Upon writing the cosine term in the Villain approximation, the
partition function then becomes

Z ≈
∫

D�
∑

σx=±1

∑
{n(τ )}∈Z

e−Snormale−t
∫

dτ [�+(1+σx )π/2−2πn]2
.

(31)

In Villainized form, the t term can be decoupled with a
Hubbard-Stratonovich field ρ, yielding

Z =
∫

D�Dρ
∑

σx=±1

∑
{n(τ )}∈Z

e−Snormal

×e− ∫ dτ { ρ2

t
+2iρ[�+(1+σx )π/2−2πn]}. (32)

At this point, it is convenient to introduce the variable �, which
is canonically conjugate to �/π by writing

ρ = ∂τ�

2π
. (33)

Performing the sum over integers n(τ ) in Eq. (32) restricts the
field � to elements of πZ, while the σx sum simply imposes
periodic boundary conditions on � along the imaginary time
direction [i.e., �(τ = β) = �(τ = 0) mod 2π ]. As usual the
former restriction is difficult to handle so we impose the
constraint “softly” by adding a potential to the action that
energetically favors integer values for �/π ; the partition
function then reads

Z ≈
∫

D�D�e−Snormale
− ∫ dτ [ (∂τ �)2

(2π)2 t
+ i

π
�∂τ �−v cos(2�)]

. (34)

One can then integrate out � to obtain the desired dual theory
for �:

Z =
∫

D�e−Sdual , (35)

Sdual =
∫

dω

2π

|ω|
2πg

|�|2 − v

∫
dτ cos(2�), (36)

where we dropped a term proportional to (∂τ�)2 since it is
irrelevant compared to the first term in the action above.

Since � and �/π are conjugate variables, the operator
e2i� shifts � by 2π . Thus the v term above represents an
instanton operator that tunnels between adjacent minima of

the σx cos � potential in Eq. (30). (One might naively expect
instanton operators that simultaneously change σx → −σx

and � → � + π to be important, but these are forbidden since
σx is a nonfluctuating classical degree of freedom.) Tunneling
events imposed by cos(2�) are qualitatively unimportant at
“large” t but must be retained otherwise. When t is relevant
and the perfect normal reflection fixed point is unstable, the
fixed point described by the dual theory with v = 0 should
therefore be stable and vice versa. This strongly suggests that
Sdual with v = 0 describes the perfect Andreev reflection fixed
point. We will now confirm this by rederiving Sdual beginning
from the fermionic theory.

To access the perfect Andreev reflection fixed point,
tunneling onto the Majorana γ1 (which as we saw in Sec. II A 2
underlies the flow to this fixed point) must be incorporated
nonperturbatively. The coupling to γ1 constrains the fermionic
fields at the junction such that at low energies

ψ
†
R(x = 0) = eiβψL(x = 0), (37)

which upon setting β = 0 for simplicity pins the bosonized
phase field φ to

� = φ(x = 0) = 0 or π. (38)

(See Appendix C for an explicit solution that derives these
boundary conditions in the noninteracting limit.) The appear-
ance of two possible pinning values for � can be understood
from our analysis of the perfect normal reflection fixed point
above. There we showed that, by bosonizing the low-energy
degrees of freedom for the Luttinger liquid and the topological
superconductor, the coupling to γ1 can be written as δHt ∝
tσ x cos �, where σx swaps between the two opposite-parity
degenerate ground states |0〉 and |1〉 for the superconductor.
Note that δHt commutes with the total fermion parity operator

Ptot = σ z cos θ (x = 0) (39)

with σ z = iγ1γ2, as expected since the hopping preserves the
global parity of the system. For g > 1/2, we showed that
tunneling onto γ1 constitutes a relevant perturbation at the
perfect normal reflection fixed point. The system then flows at
low energies onto a fixed point at which σx cos � is pinned to
−1 (assuming t > 0). This allows two possibilities:

σx = +1, cos � = −1,
(40)

σx = −1, cos � = +1,

corresponding to the two pinning values in Eq. (38).
It is instructive to examine the ground states corresponding

to the two sectors identified above. At the Andreev fixed point,
these may be written as

|↑〉 = |σx = 1〉 ⊗ |� = π〉,
(41)

|↓〉 = |σx = −1〉 ⊗ |� = 0〉,
where |σx = ±1〉 = |0〉 ± |1〉, and |� = 0,π〉 are the ground
states of the bosonized Hamiltonian in Eq. (19) with boundary
conditions φ(x = 0) = 0,π . Appropriate linear combinations
of the states in Eqs. (41) yield ground states with well-defined
parity Ptot,

|−〉 = |↑〉 − |↓〉,
(42)

|+〉 = |↑〉 + |↓〉,
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satisfying Ptot|±〉 = ±|±〉. While the overall parity Ptot is
a good quantum number, the individual parities of the
superconductor and the Luttinger liquid are entangled in the
two ground states |±〉. Explicitly, they can be written as

|−〉 = |0〉 ⊗ |PLL = −1〉 + |1〉 ⊗ |PLL = 1〉,
(43)

|+〉 = |0〉 ⊗ |PLL = 1〉 + |1〉 ⊗ |PLL = −1〉,
Here, |PLL = ±1〉 = |� = π〉 ± |� = 0〉 have well defined
parity in the Luttinger liquid. We note that the decomposition
(43) is only exact in the limit of a semi-infinite Luttinger liquid
and when the Andreev fixed point has been reached.

In fermionic langauge, the leading perturbation away from
the Andreev fixed point is the potential term

δSu = 2u

∫
dτ [ψ†

R(x = 0)ψL(x = 0) + H.c.], (44)

which promotes normal reflection at the junction. Because of
the Andreev boundary condition ψ

†
R(x = 0) = ψL(x = 0) the

definition of δSu above is somewhat subtle. When regularized
at length scale ε (for example, via point splitting) the operator
ψ

†
R(x = 0)ψL(x = 0) scales to zero linearly with ε, so a

divergent factor of 1/ε must be absorbed in u to obtain a
finite result. The bosonized form of this finite coupling is

δSu ∼ 4u

∫
dτ cos(2�), (45)

which is just the instanton operator in the dual action of
Eq. (36) obtained earlier by complementary means.

Since cos(2�) has scaling dimension 2g, to leading order
the coupling u flows according to

du

d�
= (1 − 2g)u. (46)

Provided g > 1/2, this perturbation is therefore irrelevant and
the Andreev fixed point is stable. Note that this regime includes
the noninteracting limit, g = 1, consistent with our scattering
analysis above. For g = 1/2, the perturbation turns out to be
exactly marginal: there exists a line of RG fixed points which
interpolate between normal and Andreev reflection.

For a strongly repulsive wire with g < 1/2, however, the
potential u is relevant. The Andreev fixed point is then unstable
toward the perfect normal reflection fixed point analyzed
previously (which we found is stable in this range of g). With
g < 1/2 the backscattering term in Eq. (45) pins cos(2�) to −1
at low energies (assuming u < 0 for concreteness), yielding
the two possible pinning values of θ (x = 0) identified at the
perfect normal reflection fixed point in Eq. (17). Because of
the boundary condition of fixed θ (x = L) these two pinning
values, corresponding to different fermionic parities on the
wire, are not degenerate, and in fact are split by an energy of
order 1/L.

It is interesting to ask about the fate of the Majorana
zero-mode at the junction in this strongly repulsive regime.
Although the tunneling t between γ1 and the Luttinger liquid is
irrelevant for g < 1/2, this term nevertheless has a quantitative
effect on the zero-mode operator since any finite t makes
the commutator [H,γ1] nonzero. Let γ new

1 be the operator for
the Majorana mode that arises when t �= 0. In principle, this
operator can be determined by requiring that [H,γ new

1 ] = 0.

We will alternatively deduce the asymptotic form of the
probability density P (x) associated with γ new

1 using scaling. [It
is tempting to view P (x) as deriving from the Majorana wave
function corresponding to γ new

1 , which is certainly legitimate
in the free-fermion limit but rather subtle in the interacting
case. In the regime of interest here with g < 1/2, γ new

1 does
not generally admit a single-body expansion in terms of
microscopic fermion operators. Reference 52 discusses this
issue and demonstrates that even for a strongly interacting
system a Majorana “wave function” yielding a probability
P (x) can be extracted from matrix elements of a fermion
operator at position x with respect to opposite-parity ground
states.

Dimensional analysis together with Eq. (29) lead to the
following scaling ansatz for P (x),

P (x) = 1

L
P
(
x/L; tL1−(2g)−1)

, (47)

where L is the length of the Luttinger liquid. Note that P
is a symmetric function of t that vanishes when t = 0. For
g < 1/2, it suffices to treat t perturbatively since this coupling
is irrelevant; at lowest nontrivial order one obtains

P (x) ∼ 1

L

[
tL1−(2g)−1]2P̃(x/L). (48)

In the perturbative regime, we expect the Majorana wave
function to be normalizable in the L → ∞ limit (as opposed
to plane-wave like as it is when t is relevant). Under this
assumption, the probability density P (x) must be independent
of L in the thermodynamic limit that requires the asymptotic
form

P̃(x/L) ∼
(

x

L

)1−1/g

. (49)

As an important self-consistency check, we note that for g =
1/2 (where t is marginal), Eq. (49) yields P (x) ∼ 1/x so that
the Majorana wave function is only quasinormalizable. For any
g below 1/2, however, one obtains a normalizable probability
distribution consistent with our ansatz. Thus we conclude that
in the g < 1/2 regime, the irrelevant tunneling between γ1

and the Luttinger liquid results in a Majorana zero mode that
bleeds into the wire but remains power-law localized to the
interface. It would be very interesting to test these predictions
in DMRG simulations by adapting the techniques of Ref. 52 to
see the Majorana wave function in this geometry in a numerical
experiment.

We also note as an aside that the critical value of g = 1/2
coincides with the critical Luttinger parameter below which
pairing induced by proximity in the bulk of a helical Luttinger
liquid is an irrelevant perturbation.53 Thus helical wires with
g < 1/2 not only resist Majorana modes imposed externally
by a topological superconductor as in the junction studied
here, but also reject pairing that would make the wire itself
topologically superconducting.

III. NONTOPOLOGICAL SUPERCONDUCTOR-HELICAL
LUTTINGER LIQUID JUNCTIONS

We turn next to junctions formed by ordinary supercon-
ductors adjacent to helical Luttinger liquids, as sketched in
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Helical LLOrdinary SC γ1γ2

g = 1g = 0

Perfect Andreev Reflection

Perfect Normal Reflection

(b)

(c)

g = 2

Helical LLOrdinary SC

(a)

f

FIG. 2. (Color online) (a) Ordinary superconductor forming a
junction with a helical Luttinger liquid. If the superconductor is fully
gapped throughout, then in the noninteracting limit the helical wire
necessarily flows to a fixed point at which perfect normal reflection
occurs at the junction. Accessing the perfect Andreev reflection fixed
point in the noninteracting limit requires the presence of a zero-energy
Andreev bound state f = (γ1 + iγ2)/2 at the junction as shown
schematically in (b), with fine tuning such that the wire couples
only to (say) γ1. (c) Flow diagram for the junction as a function of the
interaction parameter g for the Luttinger liquid. For helical Luttinger
liquids with g < 2, the perfect normal reflection fixed point is stable.
When g > 2, however, this fixed point is unstable toward the Andreev
fixed point. Remarkably, here, the Andreev bound state required to
achieve perfect Andreev reflection will be generated dynamically, and
with no fine tuning required.

Fig. 2(a). One may intuitively expect that here all traces
of Majorana physics captured in the previous section are
simply absent, since the superconductor no longer supports
protected Majorana zero modes. While this is indeed true in
the noninteracting limit, we will demonstrate that Majorana
modes can generically appear in the case of interacting helical
Luttinger liquids. To establish this counterintuitive result, we
first note that in our analysis of generic properties of the S

matrix for free fermions in Sec. II A1, the topological nature
of the superconductor we were considering there played an
irrelevant role. The same analysis [with the sole modification
of dropping the φEγ1 term in Eq. (4)] applied to present case
leads to identical conclusions; in the E → 0 limit, the S matrix
must again be either purely diagonal or purely off-diagonal.
Thus even in the case of a junction formed with an ordinary
superconductor, two physically allowed fixed points for free
fermions remain, corresponding to perfect normal reflection
and perfect Andreev reflection at the interface. We will adopt
a similar program to that followed in the previous section,
beginning by understanding how to access these two fixed
points for free fermions, and then addressing the stability

of these fixed points when interactions are present using
bosonization.

A. Perfect normal and Andreev reflection fixed
points for free fermions

Let us start by making the (physically reasonable) as-
sumption that the ordinary superconductor is fully gapped
throughout, so that the helical wire hosts the only low-energy
degrees of freedom. We again write the full Hamiltonian for
the problem as H = H0 + δH , where H0 is the kinetic energy
for the wire defined in Eq. (3) [or equivalently Eq. (1)] and δH

contains the terms acting at the boundary. Retaining only the
leading potential and pairing terms at the junction, one has

δH =
∫ ∞

−∞
dx[2uψ†ψ + (i
ψ∂xψ + H.c.)]δ(x), (50)

which simply corresponds to Eq. (12) considered previously
without the Majorana term. The S matrix for our Hamiltonian
can therefore be read off from Eqs. (13) by simply setting
t̃ = 0; this yields

SPP = − (ũ + i)2 + (Ẽ
̃)2

1 + ũ2 + (Ẽ
̃)2
,

(51)

SPH = 2iẼ
̃

1 + ũ2 + (Ẽ
̃)2
,

where again the tildes denote quantities normalized by vF .
Notice that when E → 0, 
 drops out and the S matrix

takes the form of Eq. (7) corresponding to perfect normal
reflection. No fine tuning of parameters in δH can alter this
conclusion, nor can additional local perturbations involving
only ψ,ψ† (which necessarily carry additional derivatives than
those already included above, and are thus unimportant at low
energies). Clearly then the perfect normal reflection fixed point
is stable in the noninteracting limit.

How, then, can one access the physically allowed condition
of perfect Andreev reflection? For free fermions, accessing
this fixed point requires the presence of an additional localized
Andreev bound state in the superconductor, with correspond-
ing operator f to which the helical wire can couple; see
Fig. 2(b) for a schematic illustration. (Our conclusions for the
general properties of the S matrix discussed in Sec. II A1 again
remain unaltered by the addition of this mode.) To see how
this transpires, let us write f in terms of Majorana operators
γ1,2 via f = (γ1 + iγ2)/2 and consider the following interface
Hamiltonian:

δH =
∫ ∞

−∞
dx

[
t√
2
γ1(ψ† − ψ) + i

t ′√
2
γ2(ψ† + ψ)

]
δ(x)

+ i
δ

2
γ1γ2. (52)

The t,t ′ terms encode the most general bilinear couplings
between ψ,ψ† and f,f † (after shifting these operators by
overall phases to make the couplings real), while δ sets the
energy for the Andreev bound state, which will generically be
nonzero. We have dropped the u and 
 terms considered above
for simplicity since these constitute qualitatively unimportant
perturbations here. With this form of δH the S matrix elements
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are now given by

SPP = − (t̃ t̃ ′ − iδ̃)2 + Ẽ2

(t̃ t̃ ′)2 + δ̃2 − i(t̃2 + t̃ ′2)Ẽ − Ẽ2
,

(53)

SPH = −i(t̃2 − t̃ ′2)Ẽ

(t̃ t̃ ′)2 + δ̃2 − i(t̃2 + t̃ ′2)Ẽ − Ẽ2
,

with t̃ = t/vF , etc. in our usual notation. As before, one
finds that in the limit E → 0, the off-diagonal elements still
generally vanish, reflecting stability of the perfect normal
reflection fixed point even in the presence of an additional
Andreev bound state at the junction. One can, however, now
fine-tune couplings in δH to obtain the desired perfect Andreev
reflection at zero energy by taking δ = 0 and either t = 0 or
t ′ = 0. For concreteness, let us choose t ′ = δ = 0, upon which
the S matrix components become simply

SPP = Ẽ

it̃2 + Ẽ
,

(54)

SPH = it̃2

it̃2 + Ẽ
.

Taking E → 0 in this fine-tuned limit produces an S matrix
of the form in Eq. (8), which indeed corresponds to perfect
Andreev reflection.

More physically, in the noninteracting limit perfect Andreev
reflection in the E → 0 limit can emerge in this type of
junction only when a pair of zero-energy Majorana modes
appears at the boundary, with the helical wire coupling
to only one of these. Thus precisely as in the topological
superconductor junction, the absorption of the Majorana
mode γ1 into the helical wire underlies the onset of perfect
Andreev reflection. One crucial difference of course is that this
Majorana’s partner, γ2, is spatially separated in the topological
case, which allows the Andreev fixed point to be stable for free
fermions. In the present context, the coupling t ′ to γ2 in Eq. (52)
is generically nonzero and constitutes a relevant perturbation
that drives the system back to the perfect normal reflection
fixed point.

A second, and intimately related, difference relative to the
topological case is that here γ1 and γ2 generally combine to
form an Andreev bound state with finite energy δ. Interestingly,
provided t ′ = 0 perfect Andreev reflection nevertheless sur-
vives when incident electrons in the helical wire are resonant
with this bound state. This can be understood from Eq. (53)
by noting that when t ′ = 0 the S matrix becomes purely
off-diagonal at energy E = δ. Similar behavior has been
captured previously by Law et al.29 in the context of tunneling
into discrete Majorana edge modes in a two-dimensional
p + ip superconductor. However, we believe this behavior is
special to the free Fermi case g = 1 and does not survive in
the interacting context.

Before turning to the interacting case it will prove beneficial
to discuss the t ′ and δ perturbations from a slightly different
perspective. At the perfect Andreev reflection fixed point,
the coupling t—which must be treated nonperturbatively—
strongly constrains the behavior of γ1 at low energies. More
precisely, at energies E � t , the dynamics of γ1 are “slaved” to
those of ψ and ψ† such that the system avoids paying a large
energy cost from the t term in Eq. (52). One can show this

explicitly by diagonalizing the Hamiltonian H = H0 + δH

with t ′ = δ = 0,

H =
∫

dx

[
−ivF ψ†∂xψ + t√

2
γ1(ψ† − ψ)δ(x)

]
, (55)

for a finite-size wire and then expanding ψ and γ1 in terms of
the resulting low-energy modes. This calculation is sketched
in Appendix C, and yields the familiar perfect Andreev
reflection boundary condition, ψ(x = 0+) = ψR(x = 0) =
ψ†(x = 0−) = ψ

†
L(x = 0), along with the following constraint

on γ1 at low energies:

γ1 = i
vF√

2t
[ψ†(0+) − ψ(0+) − ψ†(0−) + ψ(0−)]. (56)

One can understand this result more intuitively in the
following manner. Let us decompose ψ(x) in terms of two
Majorana modes by writing

ψ(x) = γr (x) + iγi(x)

2
; (57)

in this new basis the Hamiltonian reads

H = −i

∫
dx

[
vF

4
(γr∂xγr + γi∂xγi) + t√

2
γ1γiδ(x)

]
. (58)

While γr (x) is unaffected by γ1, the Majorana γi(x) exhibits a
sign change at x = 0 due to the coupling t . Ultimately this sign
change gives rise to the perfect Andreev reflection boundary
conditions. Since γi(x) behaves singularly at the interface it is
helpful to introduce a new Majorana operator γ̃i(x) which is
well behaved everywhere by defining

γi(x) = sgn(x)γ̃i(x). (59)

Differentiating the Euclidean action corresponding to Eq. (58)
with respect to γi yields the following equation of motion:

0 = (∂τ − ivF ∂x)γi + i
√

2tγ1δ(x). (60)

Rewriting this using Eq. (59) yields a second term proportional
to δ(x) due to the singular nature of the transformation at
x = 0:

0 = sgn(x)(∂τ γ̃i − ivF ∂xγ̃i) + i
√

2t

(
γ1 −

√
2vF

t
γ̃i

)
δ(x).

(61)

At energies E � t , the fields must conspire to eliminate the
boundary terms above so that t disappears entirely from the

equation of motion. This indeed occurs if we pin γ1 =
√

2vF

t
γ̃i ,

which agrees with Eq. (56) derived by completely different
means.

It follows from Eqs. (52) and (56) that the two leading
perturbations about the perfect Andreev reflection fixed point,
given by turning on t ′ and δ, project to the same operator at
low energies.

B. Stability of the perfect normal and Andreev reflection fixed
point with interactions

Having understood how to access the physically allowed
perfect normal and Andreev reflection fixed points for free
fermions, we proceed now to assess the stability of each when
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interactions are present, beginning with the former. Just as in
Sec. II B, bosonizing the Hamiltonian and imposing perfect
normal reflection boundary conditions pins θ (x = 0) to either
0 or π . Equation (20), repeated here for clarity,

Snormal = g

2π

∫
dω

2π
|ω||�|2, (62)

again describes the fixed point action for the fluctuating
field � ≡ φ(x = 0). Due to the generic absence of Majorana
modes at the junction, however, Eq. (21) no long provides the
leading perturbation away from this fixed point. Instead, the
most relevant perturbation which induces Andreev reflection
at the junction corresponds to processes in which a Cooper
pair hops from the helical Luttinger liquid into the ordinary
superconductor:

δS
 = 


∫
dτ [iψ†

R(x = 0)ψ†
L(x = 0) + H.c.]

∼ 2


∫
dτ sin(2�). (63)

Equation (63) can be obtained via point splitting in the
unfolded chiral fermion theory: exp(2i�) is the leading
operator appearing in the operator product expansion of two ψ†

fields. Since sin(2�) has scaling dimension 2/g, the coupling

 flows according to

d


d�
= (1 − 2g−1)
 (64)

and is therefore irrelevant for g < 2. Thus the perfect normal
reflection fixed point is stable not only for free fermions,
but also for helical Luttinger liquids with arbitrarily strong
repulsive interactions, or attractive interactions below a critical
strength. When attractive interactions exceed this critical
strength, resulting in g > 2, 
 then constitutes a relevant
perturbation which drives the system away from this fixed
point. Physically, superconductivity is induced at the endpoint
and spreads to the rest of the wire, resulting in a “topological”
superconductor, but without exponentially localized end states.
Rather, because the superconductivity was seeded at only
one endpoint, the Majorana modes both effectively live at
that endpoint, with a splitting that turns out to be power
law vanishing in the length of the wire. We will now argue
more precisely that the helical Luttinger liquid flows to perfect
Andreev reflection, and explain the physical consequences.

Duality once again provides an effective tool for identifying
the fate of the system when g > 2. Following the steps outlined
in Eqs. (30) through (36) to dualize Snormal + δS
, one obtains
the dual action

S ′
dual =

∫
dω

2π

|ω|
2πg

|�|2 − v′
∫

dτ cos �. (65)

Here, � and �/π are once again conjugate variables, so
that cos � represents an instanton operator which tunnels
between adjacent minima of the sin(2�) potential in Eq. (63).
Thus v′ is expected to be irrelevant when 
 is relevant (and
vice versa), suggesting that S ′

dual with v′ = 0 describes the
physically allowed perfect Andreev reflection fixed point that
we identified in the free fermion case. Furthermore, since
cos � represents the fermion parity in the helical Luttinger
liquid, the dual action above also suggests the following:

(1) at the fixed point with v′ = 0, there is a degeneracy
between states with even and odd fermion number, and (2)
the leading perturbations away from this fixed point split this
degeneracy. We will now put these statements on firmer footing
by explicitly constructing the fixed point action and leading
perturbations beginning from the fermionic theory.

As in Sec. II C, the perfect Andreev reflection boundary
condition pins φ(x = 0) = 0 or π , and the fixed point action
for � ≡ θ (x = 0) derived by bosonizing the Hamiltonian and
integrating out the fields away from x = 0 is given by

SAndreev =
∫

dω

2π

|ω|
2πg

|�|2, (66)

which indeed recovers S ′
dual in the v′ = 0 limit. One might

naively guess that the most relevant perturbation that induces
normal reflection is the u term in Eq. (44), but this is incorrect.
To properly capture the physics it is crucial to recall how we
accessed the Andreev fixed point in our scattering analysis
for free fermions above. Doing so required the presence of
two zero-energy Majorana modes at the junction, γ1 and γ2

in Fig. 2(b), along with fine-tuning such that the helical wire
absorbed γ1 (say) but decoupled completely from γ2. Without
interactions perfect Andreev reflection at zero energy emerges
only in this fine-tuned limit. One can then see that the leading
perturbations correspond to the δ term in Eq. (52) that lifts the
energy of γ1,2 and the coupling between the Luttinger liquid
and the Majorana mode γ2,

δSγ2 = i
δ

2
γ1γ2 + t ′√

2

∫
dτγ2[ψR(x = 0)† + ψR(x = 0)].

(67)

Both perturbations were tacitly neglected by asserting that the
system resided at the perfect Andreev reflection fixed point.
We have explicitly verified in Sec. III A that both of these
project to the same operator in the low-energy limit, which
corresponds to the one leading operator cos � that appears
upon performing the duality transformation.

Deducing the flow of v′ as discussed in Sec. II B, one finds

dv′

d�
= [1 − g/2]v′. (68)

For g < 2, this coupling is relevant and drives the system
back to the perfect normal reflection fixed point, which is
indeed stable in this regime. More interestingly, for a helical
Luttinger liquid with strong attractive interactions such that
g > 2, coupling to this second Majorana mode represents
an irrelevant perturbation, implying stability of the perfect
Andreev reflection fixed point. In other words, the fine tuning
required to access perfect Andreev reflection for free fermions
is no longer necessary with strong attractive interactions.
Figure 2(c) summarizes the renormalization group flows
found in this section for the ordinary superconductor/helical
Luttinger liquid junction. Similarly to the case of the heli-
cal/topological junction, when g > 2, we expect one of the
two dynamically generated Majorana modes to delocalize
completely into the Luttinger liquid, and the other one to be
power law localized at the junction.
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g = 1g = 0

Perfect Andreev Reflection

Perfect Normal Reflection

(b)

Spinful LLOrdinary SC

(a)

FIG. 3. (Color online) (a) Trivial superconductor forming a
junction with a spinful Luttinger liquid. (b) Flow diagram for the
junction as a function of the charge-sector interaction parameter
gρ for the Luttinger liquid, in the limit where the spin-sector
interaction parameter is gσ = 1. Note that the free-fermion limit is
very special; here, there are marginal boundary couplings which lead
to a nonuniversal zero-bias conductance ranging anywhere from 0
to 4e2/h depending on parameters. For any repulsive interaction
strength (gρ < 1), however, the junction flows to the perfect normal
reflection fixed point where the zero-bias conductance vanishes.

IV. NONTOPOLOGICAL SUPERCONDUCTOR: SPINFUL
LUTTINGER LIQUID JUNCTIONS

We now consider a junction between a nontopological su-
perconductor and a semi-infinite spinful Luttinger liquid [see
Fig. 3(a)]. In previous work on this problem,54,55 conductance
and local density of states were calculated at the Andreev
fixed point of such a junction. Here, we emphasize that for
weakly repulsive interactions such an Andreev fixed point is
ultimately unstable, and the system generically crosses over
to the normal reflecting fixed point. This instability of the
Andreev fixed point is in fact crucial for establishing sharp
transport signatures of Majorana modes in the topological case
considered in the next section.

We begin by bosonizing the problem. The two spin channels
α = ↑,↓ are bosonized according to

ψR/Lα = e(iφα±iθα ). (69)

Defining the charge and spin fields

φρ/σ = (φ↑ ± φ↓)/
√

2,
(70)

θρ/σ = (θ↑ ± θ↓)/
√

2,

we then consider the general quadratic bulk action

Sbulk = v

2π

∫ ∞

0
dx

∫
dτ

[
i

π
∂xθρ∂τ θρ + i

π
∂xφσ ∂xθσ

+ gρ

2π
(∂xφρ)2 + gσ

2π
(∂xφσ )2 + g−1

ρ

2π
(∂xθρ)2

+ g−1
σ

2π
(∂xθσ )2

]
. (71)

Here, gρ/σ are the Luttinger parameters characterizing interac-
tions in the charge/spin sectors, and v the velocity. To facilitate
a Luttinger liquid analysis, we first (implicitly) assume a single
velocity v and also gσ = 1, which corresponds to a spin-SU(2)
invariant system. We then discuss how the analysis is modified
in the experimentally relevant situation where SU(2) breaking
terms are present.

There are two natural fixed points: normal reflecting, with
θρ,θσ pinned at x = 0, and Andreev reflecting, with φρ and
φσ pinned. The boundary action for the normal fixed point is
obtained by integrating out all fields except for φρ/σ (x = 0),
resulting in

Snormal =
∫

dω

2π

|ω|
2π

[
(gρ + gσ )

2
(|�↑|2 + |�↓|2)

+ (gρ − gσ )�↑(ω)�↓(−ω)

]
, (72)

where �↑/↓ ≡ φ↑/↓(x = 0). The leading perturbation to this
boundary action is the Cooper-pair tunneling term cos(

√
2�ρ),

which has dimension g−1
ρ and is hence relevant for gρ > 1. In

this range of gρ , the resulting Andreev fixed point to which the
system then flows is simply the dual of Eq. (72):63

SAndreev =
∫

dω

2π

|ω|
2π

[(
g−1

ρ + g−1
σ

)
2

(|�↑|2 + |�↓|2)

+(g−1
ρ − g−1

σ

)
�↑(ω)�↓(−ω)

]
, (73)

with �↑/↓ ≡ θ↑/↓(x = 0). The leading perturbation is now
normal backscattering, described by cos(

√
2�ρ), with scaling

dimension gρ .
The key point is that in the physically relevant regime of

weak repulsive interactions, gρ < 1, this normal backscatter-
ing term is relevant, i.e., the Andreev fixed point is unstable.
Thus a junction between a spinful Luttinger liquid and an or-
dinary nontopological superconductor is described by a stable
normal reflecting fixed point. This stands in sharp contrast to
the free fermion situation gρ = 1, where these operators are
exactly marginal and allow any value of the zero-bias conduc-
tance between 0 and 4e2/h, as can be seen by explicitly solving
the free fermion scattering problem. (This is actually a special
case of the free fermion solution for the topological/spinful
junction presented in the next section; indeed, upon setting the
coupling to the Majorana to zero one obtains the nonuniversal
zero-bias conductance quoted here.) Arbitrarily weak repul-
sive interactions drive a crossover to the normal reflecting
fixed point, where the conductance goes to zero. Figure 3(b)
summarizes the renormalization group flows for this case.

Of course, in any proposed physical realization of a
Majorana wire, spin-SU(2) symmetry is broken by the Zeeman
and spin orbit couplings (but in a simple Rashba model with
density-density interactions and spin orbit coupling gσ = 1
because of a hidden SU(2) symmetry).52 At the level of free
fermions, the only modifications these force on the low energy
theory is differing Fermi momenta and velocities for the two
species. The former is simply a restriction on the types of
operators that can appear as perturbations (i.e., some operators
might not be allowed because of a kF mismatch), while the
latter appears directly in the low energy action. To include
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interactions we must bosonize, and it is easiest to do so in
a basis that diagonalizes the velocity; that is, we separately
bosonize the two spin modes with the differing velocities. The
kinetic term then becomes an arbitrary 2 × 2 symmetric matrix
which generalizes the two Luttinger parameters gρ and gσ . In
principle, we can integrate out the bulk to obtain a boundary
theory and analyze the relevance of Cooper pair tunneling
as above. Although the resulting phase diagram depends in
a complicated way on the three kinetic term coefficients and
the two different velocities, it is still the case that the free
fermion point is exactly marginal for any choice of velocities.
Hence there is a robust region of interaction parameter
space near the free fermion fixed point—roughly speaking,
the set of repulsive interactions—where we are driven to
the perfect normal reflecting fixed point. Thus, even in the case
of spin-SU(2) symmetry breaking, we generically expect no
zero-bias peak in the nontopological superconductor/spinful
Luttinger liquid junction.

V. TOPOLOGICAL SUPERCONDUCTOR-SPINFUL
LUTTINGER LIQUID JUNCTIONS

Finally, we analyze the junction sketched in Fig. 4(a)
between a topological superconductor and a semi-infinite
spinful Luttinger liquid. As in the helical case, we will first
attack the free-fermion limit and then treat the interacting case
using bosonization.

A. Scattering problem for free fermions

We start with the free fermion scattering problem and
compute the zero bias tunneling conductance when one

Spinful LLTopological SC

g = 1/3g = 0

Perfect Andreev/Normal Reflection

Perfect Normal Reflection

(a)

(b)

g = 1

γ1γ1‘

FIG. 4. (Color online) (a) Topological superconductor forming a
junction with a spinful Luttinger liquid. (b) Flow diagram for the
junction as a function of the charge-sector interaction parameter gρ

for the Luttinger liquid when the spin-sector interaction parameter is
gσ = 1. For gρ < 1/3, the system flows to a perfect normal reflection
fixed point characterized by a vanishing zero-bias conductance.
When gρ > 1/3, however, the junction flows to a novel fixed point
corresponding to perfect Andreev reflection for one species and
perfect normal reflection for the other, yielding a quantized 2e2/h

conductance.

allows for rather general boundary terms in the Hamiltonian.
Remarkably, we will show that this is robustly quantized at
2e2/h independent of parameters, so long as coupling to the
Majorana zero mode at the junction remains finite. Consider
first the case when the spinful Luttinger liquid exhibits SU(2)
spin rotation symmetry in the bulk. Coupling to the Majorana
mode γ at the junction can then always be gauge transformed
to the form29

δHλ = iλ

∫
dx γ (ψ1 + ψ

†
1) δ(x), (74)

where ψ1,2 can be obtained from ψ↑,↓ via a rotation and a
phase (we have replaced our previous label γ1 with γ for future
notational clarity). Neglecting terms involving derivatives, the
most general quadratic form of the boundary Hamiltonian at
x = 0 reads

δH =
∫

dx δ(x) [iλ γ (ψ1 + ψ
†
1) + (
12ψ1ψ2 + v12ψ

†
1ψ2

+ v11ψ
†
1ψ1 + v22ψ

†
2ψ2 + H.c.)]. (75)

Because 
12 and v12 are complex while v11 and v22 are
real, we have a total of six real parameters. The conductance
follows upon computing the S matrix as a function of these
six parameters and then summing up the probabilities of the
Andreev processes.

Let us now perform the calculation in detail. We first
decompose ψ1,2 in terms of Majorana fermion field operators
γμ as follows:

ψ1 = γ0 + iγ2,
(76)

ψ2 = γ1 + iγ3,

and rewrite Eq. (75) as

δH = i

∫
dx

[
λγ γ0(0) + 1

2

∑
μ,ν

gμνγμ(0)γν(0)

]
. (77)

Here, gμν is a real anti-symmetric matrix, encoding the six
free parameters introducted earlier. Let S0 be the free fermion
bulk action of the spinful wire and δS be the boundary action
corresponding to Eq. (77). The equations of motion that follow
from varying S0 + δS are

0 = δ(S0 + δS)

δγ
= iλγ0(0) − Eγ,

(78)

0 = δ(S0 + δS)

δγμ

= −i∂xγμ + i
∑

ν

gμνγν(0)δ(x)

−iλγ δμ0δ(x) − Eγμ.

Here, we have used time translation invariance to restrict to
a solution with energy E. To handle the derivatives and δ

functions at x = 0, we introduce the notation γi(0±) = γi(±ε).
At E = 0, the first equation of motion then gives γ0(0+) =
−γ0(0−), and thus the remaining ones become

γi(0
+) = γi(0

−) +
3∑

j=1

gij γj (0) (79)
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for j = 1,2,3. These can be summarized as

γμ(0+) =
∑

ν

Mμνγν(0−) (80)

where M00 = −1, M0i = Mi0 = 0, and Mij = A−1B, with
Aij = δij − gij , Bij = δij + gij . In fact, the 3 × 3 matrix Mij

is just a generic element of SO(3). Equation (80) gives the
scattering matrix in terms of Majorana fields. Changing basis
to complex Fermi fields and calculating the four Andreev trans-
mission probabilities ψ

†
i → ψj , we find that they generically

add up to 1; consequently the zero-bias conductance is indeed
quantized at 2e2/h.

What about the physically relevant SU(2) noninvariant
case? For gapless free fermions, the only way to break SU(2)
invariance is to introduce different velocities v1,2 so that

H0 =
∫ ∞

0
dx

∑
α=1,2

[−ivα(ψ†
Rα∂xψRα − iψ

†
Lα∂xψLα)].

(81)

Now we cannot rotate the fields in such a way that only ψ1

couples to the Majorana mode γ , and are forced to retain both
λ0γ γ0(0) and λ1γ γ1(0). Proceeding as in the SU(2)-invariant
case, we again derive Eq. (80), where now M = Ã−1B̃. The
matrices on the right side are given by Ã = V + G + L,B̃ =
V − G − L, with 4 × 4 matrices V,G,L defined as follows:
V = diag(v1,v2,v1,v2), Lμν = − i

E
λμλν (where λμ = 0 for

μ > 1), and Gμν a general antisymmetric E-independent
matrix containing the quadratic boundary couplings.

In the case of differing velocities, the matrix M defined
above is no longer equivalent to the scattering matrix, and in
particular is not unitary. Indeed, the unitarity of the S matrix
follows from the conservation of probability current, which is
proportional to V . The correct S matrix is then given by

S =
√

V M
1√
V

. (82)

Rewriting this equation as

S =
(

1√
V

A
1√
V

)−1 ( 1√
V

B
1√
V

)
(83)

and noting that

1√
V

A
1√
V

= δμν + 1√
V

(G + L)
1√
V

, (84)

and similarly for B, we can now perform the rotation along
μ,ν = 0,1 to eliminate λ1. Taking the limit E → 0, we recover
the same form of the S matrix as in the SU(2) noninvariant
case, and the same quantized conductance G = 2e2/h.

As remarked in the preceding section this result breaks
down only when the coupling to the Majorana is fine-tuned
to zero. In this special limit, one obtains a free fermion
nonuniversal zero-bias conductance ranging from 0 to 4e2/h

[in contrast to the helical case, Pauli blocking is absent here
so that the 
12 term in Eq. (75) can efficiently transmit
Cooper pairs into the superconductor]. From this perspective,
it is somewhat curious that when the Majorana coupling is
restored, 
12 is unable to enhance the zero-bias conductance
beyond 2e2/h. Evidently, one of the channels [ψ1 in the
SU(2)-invariant limit] hybridizes with the Majorana mode γ ,

leading to Andreev boundary conditions but also blocking
transport of ψ1ψ2 Cooper pairs. We should emphasize that
this result is specific to having only two conducting channels.

B. Phase diagram with interactions

We now analyze the interacting case. We first bosonize as
in the previous section, obtaining the bulk action in Eq. (71).
Though we write expressions with general gσ , in the stability
analysis we assume gσ = 1, i.e., unbroken SU(2) spin rotation
symmetry in the bulk of the Luttinger liquid. Then we proceed
to discuss the physically relevant SU(2) noninvariant case. As
for the helical/topological junction, we now need to include
an additional effective spin-1/2 degree of freedom for the
Majorana modes at the ends of the topological superconductor.
For simplicity, we assume that the Majorana mode at the
junction only couples to (say) the spin-up electron. Tunneling
onto the boundary Majorana mode bosonizes to

δSλ = λ

∫
dτσ x cos �↑. (85)

[As before we define �↑/↓ = φ↑/↓(x = 0) and �↑/↓ =
θ↑/↓(x = 0)]. Having already dealt with the subtleties of the
spin-1/2 degree of freedom in Sec. II, we now arbitrarily fix
the eigenvalue of σx to +1 and drop σx from the subsequent
analysis.

We begin with the normal reflecting fixed point realized
at λ = 0, where �α = 0. To determine its stability we have
to compute the scaling dimension of cos �↑, which using
Eq. (72) is (g−1

ρ + g−1
σ )/4. With gσ = 1, this term is relevant

for gρ > 1/3. In this case, the system flows to a novel
Andreev/normal (A ⊗ N ) fixed point where �↑ and �↓ are
simultaneously pinned. Here, the spin-up electrons exhibits
perfect Andreev reflection while the spin-down electrons
undergo perfect normal reflection. Deriving the boundary
field theory action for this new fixed point is somewhat
subtle. We again start with the bulk action (71), but this
time we integrate out φ↑ and θ↓, taking care to respect the
boundary conditions φ↑(x = 0) = θ↓(x = 0) = 0 (handling
these boundary conditions incorrectly results in a spurious
total derivative term for the bulk that nontrivially modifies the
boundary field theory, yielding the wrong scaling exponents).
This yields

S = 1

2π

∫
dxdτ

[
2

(gρ + gσ )
(∂μθ↑)2 + 2

g−1
ρ + g−1

σ

(∂μφ↓)2

]

+ i

π

∫
dxdτ

(
gρ − gσ

gρ + gσ

)
(∂τ θ↑∂xφ↓ − ∂xθ↑∂τφ↓).

(86)

Note that the second (Berry phase) term is a total derivative,
and can be integrated to give

SBerry = − i

π

∫
dτ

(
gρ − gσ

gρ + gσ

)
�↑∂τ�↓. (87)

Integrating out φ↓(x) and θ↑(x) for x > 0 from (86) and
combining the result with (87) finally yields the following
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fixed-point action

SA⊗N =
∫

dω

2π

|ω|
2π

[
2(

g−1
ρ + g−1

σ

) |�↓|2 + 2

(gρ + gσ )
|�↑|2

]

+ i

π

(
gρ − gσ

gρ + gσ

)∫
dτ �↓∂τ�↑. (88)

From Eq. (88), we can determine all of the scaling dimensions.
In particular, ψ↑∂xψ↑ ∼ e2i�↑ has scaling dimension 4/(g−1

ρ +
g−1

σ ) and is thus relevant precisely for gρ < 1/3. In that case,
the system flows back to the normal reflecting fixed point,
whereas for gρ > 1/3, it is the leading irrelevant operator
around the new A ⊗ N fixed point. These renormalization
group flows are summarized in Fig. 4(b).

We now perform a more general analysis, involving all
possible bulk perturbations, in particular, we include SU(2)
breaking terms. Such bulk perturbations are important to
analyze because they may qualitatively change the starting
point for the boundary RG from which the A ⊗ N fixed
point was derived. At the free fermion fixed point, the
leading physical perturbations are marginal: they involve
various combinations of bilinears in ∂φ

L/R
α and e±iφ

L/R
α , where

φ
L/R
α , α = 1,2 are the two left/right moving bosonic fields in

an appropriately normalized basis. Some of these operators
correspond to changes in Luttinger parameters as well as
perturbations away from the equal velocities case. In the
free fermion limit, this does not open any bulk gaps, and
we conjecture that this is the case even with interactions.
Hence they likely do not destabilize the boundary A ⊗ N

fixed point. There is also the operator cos(
√

2θσ ), which
corresponds physically to an attractive U Hubbard interaction
inducing power-law superconducting long range order and the
formation of a spin gap. At this bulk RG fixed point electron
tunneling onto the Majorana mode becomes highly irrelevant:
the electrons are bound up in Cooper pairs. Of course, the
entire lead has then already become superconducting, so there
is no meaningful way to discuss a zero bias anomaly due to
Majorana modes in this case. The remaining operators break
the SU(2) spin symmetry to a Z2 Ising symmetry which in
turn is spontaneously broken, resulting in a ferromagnetic
bulk. This situation is dual to the one in which cos(

√
2θσ )

condenses, so the A ⊗ N fixed point does not survive here
either. However, for all physical SU(2) breaking perturbations,
such as spin orbit coupling and magnetic field, the A ⊗ N fixed
point is stable.

VI. DISCUSSION

In light of the intense current effort to realize Majorana
fermions in condensed matter systems, it is important to
understand the experimental signatures of these topologically
protected zero modes. In this work, we focused on tunnel
junctions from normal Luttinger liquid leads to supercon-
ductors in order to probe the existence of Majorana zero
modes in the latter. Our approach was based on universality,
and the low-energy fixed points we found govern a wide
variety of experimental setups—not just junctions in the
limit of weak tunneling. In particular, from a low-energy
universality point of view, it makes sense to consider four

general junction archetypes, where in addition to the binary
choice of topological or trivial superconductor one can also
make the normal lead either helical (effectively spinless)
or spinful. We found that the transport signatures of such
junctions are radically different and allow a robust distinction
between topological and trivial superconductors.

Specifically, we found distinct low-energy fixed points
corresponding to perfect normal and perfect Andreev reflec-
tion, and determined their regimes of stability in the different
junction archetypes. Crucially, for the most physically relevant
case of weak repulsive interactions, we found that the
stability of the normal reflecting fixed point is equivalent
to the absence of a Majorana zero mode. Conversely, the
presence of a Majorana zero mode in this regime can be
uniquely detected through a quantized conductance G =
2e2/h characteristic of the Andreev fixed point. We showed
that such a quantized conductance is indeed a “smoking-gun”
signature of topological superconductivity. It should be again
stressed that this distinction is not necessarily captured in
the free fermion case: scattering theory in the noninteracting
limit allows for similar conductances in a spinful/topological
and spinful/nontopological junction. Fortunately, repulsive
interactions restore the sharp conductance dichotomy between
these setups. Let us summarize the physical consequences
of the renormalization group flows for each of the junction
archetypes.

A. Helical wire-topological superconductor junction

Let us first discuss the helical/topological junction, which
in the regime g > 1/2, should manifest a zero-bias anomaly
associated with tunneling onto a Majorana fermion. Typically
captured in terms of free fermions26–30,32,33,35 (but see Refs. 56
and 57), we found the zero-bias anomaly to be robust to
rather strong repulsive interactions and arbitrarily strong
attractive interactions. To calculate the value of the zero-bias
conductance, we compute the imaginary time current-current
correlation function

�(τ ) = 〈I (τ )I (0)〉, (89)

which determines the conductance through the Kubo formula

G = 1

h̄

�(iω → ω + iδ)

iω
. (90)

Since �/π gives the total charge on the Luttinger liquid, the
current is I = e�̇/π . Using the fixed-point boundary action
of Eq. (36) (with v = 0) it is straightforward to show that
�(iω) = e2g|ω|/π , which apparently yields G = g(2e2/h).
However, this result fails to take into account the finite extent of
the helical wire and the fact that it must ultimately be contacted
by Fermi liquid leads [see Eq. (36)]. This is a familiar problem
in Luttinger liquid theory, and can be resolved in various ways
by correctly modeling the wire together with the leads.58,59 A
particularly convenient scheme is to continuously interpolate
the Luttinger parameter between its interacting value of g

and its free fermion value of 1. [One can implement this
interpolation scheme with a spatially varying g(x) that takes
on a value of g close to the junction and 1 far away. In our
boundary theory for the junction, this produces a frequency
dependent g(ω) that goes to one at zero frequency and g at high
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FIG. 5. (Color online) Sample dI/dV curve as a function
of voltage V (in arbitrary units) for g = 0.95 in a helical
nanowire/topological superconductor junction. The blue and red
portions are the perturbative results around the normal and Andreev
fixed points respectively, calculated according to Eq. (91).

frequency.] This simple model already exhibits a crossover of
the frequency dependent conductance G(ω) from g(2e2/h)
for ω > vF /L to 2e2/h for ω < vF /L (assuming this energy
scale is smaller than the other relevant scales in the problem).
Hence, even in interacting junctions, the zero-bias conductance
is expected to be quantized at G = 2e2/h.

Universality also gives the line shape of the finite bias
conductance curve dI/dV as a function of V . The RG flow
from the unstable normal reflecting fixed point to the stable
Andreev one defines a crossover voltage V ∗, which is roughly
the width of the zero-bias anomaly. The entire dI/dV curve
can in principle be determined from universality. Although the
general calculation is involved, it is easy to calculate dI/dV

for V � V ∗ and V � V ∗ by performing perturbation theory
around the normal and Andreev fixed points, respectively. We
obtain

G ∼
{

(V/V ∗)−2(1−1/(2g)), V � V ∗,
2e2/h − (V/V ∗)2(2g−1), V � V ∗, (91)

with the corresponding conductance line shape illustrated in
Fig. 5. Equation (91) is valid down to voltage h̄vF /(eL), which
we assume to be much smaller than V ∗. Extracting the same
value of g from fitting experimental results to Eq. (91) for
both high and low V would provide a nontrivial check of our
results.

In fact, there is some subtlety involved in the derivation
of (91). Indeed, for V � V ∗, general scaling arguments show
only that

G(V,t) = G̃

[
t/t0

(V/V0)1−1/(2g)

]
, (92)

where G̃ is a scaling function and t0 is defined at the cutoff
scale V0. G̃(x) is an even function of x, so generically we
expect G̃(x) ∼ x2. However, for free fermions, Eqs. (13) and
(10) show that G̃(x) ∼ x4, i.e., the coefficient of the quadratic
term in G̃ vanishes. We believe this to be highly nongeneric and
expect that as soon as interactions are turned on the coefficient
becomes nonzero. We can also consider finite temperature in
which case, we have a two-parameter scaling function

G(V,T ,t) = ˜̃G(t/V 1/2,t/T 1/2). (93)

Again, while in the free fermion case, G̃(x) has a nongeneric
vanishing of the quadratic term in x, the linear response
conductance at high T has a nonvanishing quadratic term. That
is, ˜̃G with the first argument set at infinity has nonzero second
derivative with respect to the second term. This qualitative
distinction between zero temperature free Fermi and generic
results again underscores the power of universality and the
utility of our approach.

Apart from the conductance, the fixed points studied here
can be further distinguished by the behavior of the local density
of states at the junction. Following Ref. 55, the junction’s local
density states at frequency ω evaluated at each fixed point is
given by

ρLDOS(ω) ∼
{

ω1/g−1 (perfect normal reflection),
ωg−1 (perfect Andreev reflection).

(94)

For the helical/topological junction, normal reflection is stable
in the regime g < 1/2, and the local density of states vanishes
as a power law in ω. More interestingly, for 1/2 < g < 1,
which is likely the most physically accessible regime for
solid state systems, the Andreev fixed point is stable and
results in a divergent density of states at low energies. This
remarkable feature has also been predicted for a spinful
Luttinger liquid-ordinary superconductor junction with perfect
Andreev reflection boundary conditions (but see the discussion
below), and may be observable in tunneling measurements.55

Attractive interactions corresponding to g > 1 remove this
divergence, despite the perfect Andreev reflection fixed point
remaining stable there as well.

B. Helical wire/nontopological superconductor junction

In the case of a helical/nontopological junction, the normal
reflecting fixed point is stable for g < 2. Thus, in the
physical regime of weak repulsive interactions, the zero-bias
tunneling conductance is predicted to vanish. We can again
use perturbation theory to extract the finite bias conductance
for small V . We obtain the power law vanishing form

G ∼ (V/V ∗)2(2/g−1). (95)

We expect this form to be valid down to voltages eṼ ∼ h̄vF /L

below which point the finite length of the interacting Luttinger
liquid becomes important. Indeed, if we model the helical
wire as a Luttinger liquid whose Luttinger parameter changes
continuously from its interacting value of g to the free Fermi
value 1 at x ∼ L, then for eṼ ∼ h̄vF /L, we are mostly
sensitive to the long distance free Fermi part of the lead, and
thus we expect the conductance to cross over to the behavior
given by Eq. (95) with g = 1 (see Fig. 6).

The stability of the normal reflecting fixed point in the
physical regime 1/2 < g < 1 also yields a different local
density of states for the helical/nontopological junction.
Indeed, Eq. (94) shows that

ρLDOS(ω) ∼ ω1/g−1 (96)

vanishes at zero energy.
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FIG. 6. (Color online) Sample dI/dV curve as a function
of voltage V (in arbitrary units) for g = 0.7 in a helical
nanowire/nontopological superconductor junction. The red portion
is calculated according to Eq. (95), while at sufficiently low voltages
(blue curve), the Fermi liquid leads dominate and we have a crossover
to g = 1 scaling.

C. Spinful junctions

The analysis of the spinful junctions proceeds analogously
to that of the helical junctions. In the case of a topological
superconductor, we once again have a zero-bias anomaly,
and we can compute the shape of the conductance curve
for high and low V from the scaling dimensions of the
leading perturbations to the normal and Andreev fixed points
respectively. Using the results of the previous section, and
assuming gσ = 1 [i.e., spin SU(2) invariance] for simplicity,
we obtain

G ∼
{

(V/V ∗)−
3−g

−1
ρ

2 , V � V ∗,

2e2/h − (V/V ∗)
6gρ−2
gρ+1 , V � V ∗.

(97)

The local density of states at the junction in the physically
relevant regime of gρ < 1 can be computed by evaluating the
fermion two point function. For the spinful/nontopological
junction, we must evaluate the two point function at the normal
reflecting fixed point, resulting in

ρLDOS(ω) ∼ ω1/(2gρ )−1/2, (98)

which goes to zero at low energy. This is a generic feature
of the gρ < 1 regime of the spinful/nontopological junction,
resulting from the instability of the perfect Andreev reflecting
fixed point. On the other hand, for the spinful/topological
junction, the two point function must be evaluated at the
Andreev fixed point, at least for gρ > 1/3, resulting in

ρLDOS(ω) ∼ ωgρ/2−1/2. (99)

The local density of states thus diverges for weakly repulsive
interactions in this case.

D. Future directions

Although we have shown that perfectly quantized conduc-
tance is a universal property of the low-energy/long-distance
limit in topological junctions, a relevant issue for experiments
is how closely one can approach this limit in practice. In partic-
ular, in our analysis we have assumed a semi-infinite Luttinger
liquid lead, and an arbitrarily long topological superconductor.

In a physical setup, neither assumption is valid. In particular,
a finite topological superconductor of length LSC will have
additional couplings δ and t ′ (c.f. the discussion at the end
of Sec. III A) of magnitude ∼ exp(−LSC/ξ ), where ξ is the
induced coherence length. These couplings are relevant (for
g < 2 in the helical case) and ultimately drive the system to the
normal reflecting fixed point, with zero conductance. However,
if they are small to begin with, the crossover will occur
at low energies and an intermediate regime with enhanced
conductance is to be expected.

There exist many directions for further investigation. One
has to do with the nature of the crossover of the quantized
conductance from G = 2e2/h to G = g(2e2/h) as a function
of the driving frequency ω, which is expected to occur for ω ∼
vF /LLL, where LLL is the length of the Luttinger liquid lead.
Extracting the full dependence on both ω and the temperature
T is subtle and may require use of the Keldysh formalism.
Another is to study the fate of the Majorana zero mode for g <

1/2 in the helical/topological junction. Here, we expect the
Majorana mode to be hybridized with the degrees of freedom
in the wire but nevertheless to remain power-law localized near
the junction. It would be interesting to study the form of this
Majorana zero mode using DMRG simulations. Yet another
direction would be to extend the present analysis to the case
of the multichannel case, which may be an experimentally
relevant regime. Another potentially experimentally relevant
issue is the role of disorder in the Luttinger liquid lead, and
its effect on the conductance. Finally, it would be interesting
to investigate multiterminal junctions and possible universal
signatures here.
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APPENDIX A: DERIVATION OF THE EFFECTIVE
ACTION FOR �

We start with the action

S =
∫

dτ

[
H (φ,θ ) + i

π

∫ ∞

0
dx ∂τ θ∂xφ

]
(A1)

with

H =
∫ ∞

0
dx

v

2π
[g(∂xφ)2 + g−1(∂xθ )2]. (A2)

The normal reflection fixed point pins θ (x = 0). Consider the
right and left moving fields:

φR = φ + θ/g, φL = φ − θ/g. (A3)

245121-17



FIDKOWSKI, ALICEA, LINDNER, LUTCHYN, AND FISHER PHYSICAL REVIEW B 85, 245121 (2012)

The boundary condition θ (x = 0) = 0 gives

φL(x = 0) = φR(x = 0). (A4)

We define a new field φ̃(x) as

φ̃(x) = φR(x), x > 0, (A5)

φ̃(−x) = φL(−x), x < 0. (A6)

Note that φ̃(0) = φR(0) = φL(0) = φ(0). We have

S0 = g

∫
dxdτ

[
v

4π
(∂xφ̃)2 + i

4π
∂τ φ̃∂xφ̃

]
. (A7)

We introduce a variable �(τ ) and a Lagrange multiplier � as

S� = i

∫
dτ�(τ )[�(τ ) − φ̃(x = 0,τ )]. (A8)

We now integrate over the modes φ̃k,ω. Note that

S0 =
∫

dk dω

(2π )2
G−1(k,ω)φ̃k,ωφ̃−k,−ω (A9)

with

G−1(k,ω) = gv

4π

[(
k + i

ω

2v

)2

+ ω2

4v2

]
. (A10)

Performing the Gaussian integral over φ̃k,ω yields

S = i

∫
dω

2π
�ω�−ω +

∫
dk dω

(2π )2

1

4
G(k,ω)�ω�−ω. (A11)

Performing the integral over k gives

S =
∫

dω

2π

[
i�ω�−ω + π

2g|ω|�ω�−ω

]
. (A12)

Finally, performing the functional integral over �ω yields

Sλ =
∫

dω

2π

g|ω|
2π

�ω�−ω (A13)

as desired.

APPENDIX B: DERIVATION OF THE PATH INTEGRAL AT
THE PERFECT NORMAL REFLECTION FIXED POINT

Here, we will derive the path integral representation for the
partition function in Eq. (30) beginning from the full action
that includes bulk degrees of freedom in the helical Luttinger
liquid. This is done by inserting resolutions of the identity
between intermediate imaginary time steps, using the dual
orthonormal bases

1 =
∑
sx ,φ

|sx φ〉〈sx φ| =
∑
sz,θ

|sz θ〉〈sz θ |. (B1)

Here, sx,z denote the eigenvalues (=±1) of the corresponding
Pauli operators σx,z, and φ,θ are shorthand for eigenvalues
of φ(x),θ (x),0 � x � L. To obtain the partition function, we
need the overlaps between these states. Using

|sx = ±1〉 = 1√
2

(|sz = 1〉 ± |sz = −1〉), (B2)

we obtain

〈sx |sz〉 = 1√
2

exp

[
iπ

(1 − sx)

2

(1 − sz)

2

]
(B3)

that together with the fact that φ(x) and ∂xθ (x)/π are dual
variables yields (up to unimportant constants)

〈φ sx |θ sz〉

= exp

[
iπ

(1 − sx)

2

(1 − sz)

2
+ i

π

∫ L

0
dx φ ∂xθ

]
. (B4)

It follows that the partition function can be expressed as

Z =
∫

DφDθ
∑

{sx (τ )∈±1}

∑
{sz(τ )∈±1}

e−SE+iSB (B5)

with SE the usual Euclidean action

SE = v

2π

∫
dx dτ

[
1

g
(∂xθ )2 + g(∂xφ)2

]

+ 2t

∫
dτ cos

[
φ(x = 0) + π

1 − sx

2

]
(B6)

and SB the Berry phase contribution

SB = π

4

∫
dτ (1 − sz)∂τ s

x + 1

π

∫
dx dτ ∂τφ ∂xθ. (B7)

Suppose that we sum over sx in Eq. (B5). To do so, it is
convenient to first rewrite the path integral exchanging φ(x,τ )
for the new variable

φ̃(x,τ ) = φ(x,τ ) + π

2
[1 − sx(τ )]. (B8)

Integration by parts shows that sx then appears only in the
following contribution to the action:∫

dτ
(1 − sx)

2
∂τ

[
−θ (x = 0) + π

2
(1 − sz)

]
. (B9)

Summing over sx , at each discrete time step, gives a
vanishing contribution to the partition function unless
∂τ [−θ (x = 0) + π/2 (1 − sz)] = 0 modulo 2π at each τ .
Hence the exponential of 2πi times this quantity is conserved.
Converting to operator notation, this is σ z(τ ) exp[iθ (0,τ )],
which is just the fermionic parity of the superconductor plus
Luttinger liquid system.

Let us now instead sum over sz in Eq. (B5). Using Eq. (B7),
it follows that sx is a conserved quantity, so the path integral
sums over only two imaginary time configurations of sx :
sx = +1 for all τ and sx = −1 for all τ . Integrating out
everything but � = φ(x = 0) yields the action Snormal + δSt

derived above [see Eqs. (20) and (28)]. The partition function
then becomes

Z =
∫

D�
∑

sx=±1

e−Snormale−2t
∫

dτsx cos �, (B10)

which indeed recovers Eq. (30).

APPENDIX C: SOLUTION OF A NONINTERACTING
HELICAL WIRE COUPLED TO A SINGLE

MAJORANA MODE

In this Appendix, we will sketch the solution of the
following Hamiltonian:

H =
∫ L

−L

dx

[
−ivF ψ†∂xψ + t√

2
γ1(ψ† − ψ)δ(x)

]
, (C1)
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which describes a noninteracting helical wire of length L

coupled to a single Majorana mode γ1 at one end. This
Majorana’s “partner” γ2 is assumed to decouple entirely from
both the wire and γ1. At the other end of the wire, we
will impose perfect normal reflecting boundary conditions,
requiring

ψ(x = L) = ψ(x = −L). (C2)

Our goal will be to find the low-energy wave functions of
H in the limit E � t and expand ψ and γ1 in terms of the
corresponding modes.

As a first step, we write H in terms of �†(x) =
[ψ†(x)ψ(x)f †f ], where f = (γ1 + iγ2)/2:

H = 1

2

∫ L

−L

dx�†H�, (C3)

H =

⎡
⎢⎢⎢⎣

−ivF ∂x 0 − t√
2
δ(x) − t√

2
δ(x)

0 −ivF ∂x
t√
2
δ(x) t√

2
δ(x)

− t√
2
δ(x) t√

2
δ(x) 0 0

− t√
2
δ(x) t√

2
δ(x) 0 0

⎤
⎥⎥⎥⎦ . (C4)

The wave functions �E(x) with energy E can be immediately
written for x �= 0 as

�E(x > 0) =

⎡
⎢⎢⎣

e
i Ex

vF a>
E

e
i Ex

vF b>
E

cE

dE

⎤
⎥⎥⎦ , �E(x < 0) =

⎡
⎢⎢⎣

e
i Ex

vF a<
E

e
i Ex

vF b<
E

cE

dE

⎤
⎥⎥⎦ . (C5)

The elements above are constrained by normalization, the
boundary condition of Eq. (C2) that requires

e
i EL

vF a>
E = e

−i EL
vF a<

E ,
(C6)

e
i EL

vF b>
E = e

−i EL
vF b<

E,

and the following relations needed to satisfy the Hamiltonian
at x = 0,

0 = (a>
E − a<

E ) + (b>
E − b<

E ),

0 = ivF (a>
E − a<

E ) + t√
2

(cE + dE), (C7)

EcE = EdE = t√
2

(b>
E − a<

E ).

Equations (C6) and (C7) admit a nontrivial solution provided
the energies satisfy

0 = EvF

t2

[
cos

(
2EL

vF

)
− 1

]
+ sin

(
2EL

vF

)
. (C8)

For E � t , the energies are well approximated by

En = nπvF

2L
(C9)

for integer n; the associated wave function components can be
found to leading order in En/t from Eqs. (C6) and (C7).

One can deduce by inspection that one of the zero-energy
wave functions supported by H is

�γ2 = 1√
2

⎡
⎢⎣

0
0
i

−i

⎤
⎥⎦ , (C10)

which simply corresponds to the decoupled Majorana mode
γ2. The wave functions carrying energy En with n even are
given by

�En
= 1√

Nn

⎡
⎢⎢⎢⎣

e
i Enx

vF

e
i Enx

vF

0
0

⎤
⎥⎥⎥⎦ (n even), (C11)

where Nn is the normalization. Note that �E0 corresponds
to the zero-energy Majorana mode that is absorbed into the
helical wire due to the tunneling t . Finally, the n odd wave
functions read

�En
= 1√

Nn

⎡
⎢⎢⎢⎢⎢⎣

isgn(x)ei Enx
vF

−isgn(x)ei Enx
vF

√
2vF

t√
2vF

t

⎤
⎥⎥⎥⎥⎥⎦ (n odd). (C12)

With these wave functions in hand, one can now expand
ψ(x) and γ1 in terms of low-energy modes for the system:

ψ(x) ∼
∑

n even

e
i Enx

vF√
Nn

	n + isgn(x)
∑
n odd

e
i Enx

vF√
Nn

	′
n,

(C13)

γ1 = f † + f ∼ 2
√

2vF

t

∑
n odd

1√
Nn

	′
n.

Here, 	†
n = 	−n and 	

′†
n = 	′

−n, respectively, create energy En

excitations with n even and odd. Equations (C13) encode two
important relations. First, it follows that at low energies

ψ(x = 0+) = ψR(x = 0) = ψ†(x = 0−) = ψ
†
L(x = 0),

(C14)

which is the familiar perfect Andreev reflection boundary
condition induced by the coupling to γ1. Second, γ1 and ψ,ψ†

are not independent at low energies; using Eq. (C14) their
relation can be expressed in the following symmetric form:

γ1 ∼ i
vF√

2t
[ψ†(0+) − ψ(0+) − ψ†(0−) + ψ(0−)],

= i
vF√

2t
[ψ†

R(0) − ψR(0) − ψ
†
L(0) + ψL(0)]. (C15)

APPENDIX D: SOLUTION OF AN INTERACTING
HELICAL WIRE COUPLED TO A SINGLE

MAJORANA MODE

We now treat the interacting helical wire. We first redo the
calculation for the noninteracting case directly in terms of the
bosonic modes, and then generalize to g �= 1. It is useful to
bosonize both the Luttinger liquid and the two-level system
formed by γ1,γ2, as done in Sec. II B:

γ1 = σy, (D1)

γ2 = σx. (D2)

Also, because the Jordan-Wigner string goes to the left in
Eq. (26), the bosonized form of the continuum Fermi fields
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includes an extra factor of σ z, which is simply the fermionic
parity of the γ1,γ2 system. The tunneling term is Ht =
2tσ x cos[φ(x = 0)], but for convenience in this Appendix, we
shift the phase of φ(x) by π/2, so that the tunneling term
becomes

Ht = 2tσ x sin[φ(x = 0)]. (D3)

From now on, we work in the low energy Hilbert space
Hlow ⊂ H where φ(x = 0) is pinned at ±π/2, i.e., we assume
we are exactly at the Andreev fixed point. The state of the
spin-1/2 representing the topological superconductor is then
completely determined by φ(x = 0), so that we need only
retain the Luttinger liquid degrees of freedom to describe all
the states and operators in Hlow.

In particular, the operator γ2 = σx , representing the de-
coupled Majorana mode, is given by sin[φ(x = 0)]. Now,
if the fermionic Hamiltonian were quadratic, we would
necessarily have a partner Majorana mode for γ2, i.e., another
fermionic operator that commuted with the Hamiltonian and
squared to 1. Indeed, this operator is a zero momentum
“plane-wave” solution of the Bogoliubov-de Gennes equation
[see Eq. (C11)]. What about the interacting case? In this
section, we derive a bosonized expression for the partner
Majorana mode in such an interacting helical wire, for all
g > 1/2. Furthermore, we check that this expression is correct
perturbatively to leading order in g − 1.

We begin by redoing the calculation for g = 1 in the bosonic
framework, and then generalize to g �= 1. The normal reflect-
ing boundary condition at θ (L) = 0 is equivalent to ∂φ(L)

∂x
= 0.

A general φ field configuration can thus be expanded as

φ(x) = ±π/2 +
∞∑

n=0

φn sin
(2n + 1)πx

2L
. (D4)

The Hamiltonian for g = 1 reads

H = vF

2π

∫ L

0
dx

{
(∂xφ)2 −

[
π

∂

∂φ(x)

]2 }
. (D5)

Expanding

∂

∂φn

=
∫ L

0
dx sin

[
(2n + 1)πx

2L

]
∂

∂φ(x)
(D6)

and inverting, we obtain

H = πvF

L

∑
n�0

[
−1

2

(
∂

∂φn

)2

+ ω2
n

2
φ2

n

]
(D7)

with ωn = (2n + 1)/4. We define creation and annihilation
operators

φn = 1√
2ωn

(an + a†
n), (D8)

∂

∂φn

=
√

ωn

2
(an − a†

n), (D9)

?and expand out the field operators φ(x) and

θ ′(x) = −πi

∫ L

x

dy
∂

∂φ(y)
. (D10)

Here, θ ′(x) = θ (x) − θ (L) sends the Jordan-Wigner string
to the right, and thus preserves the boundary condition

φ(0) = ±π/2. We obtain

φ(x) = ±π

2
+ i

2

∑
n

e−iknx − eiknx

√
2ωn

(a†
n + an), (D11)

θ ′(x) = i

2

∑
n

e−iknx + eiknx

√
2ωn

(a†
n − an), (D12)

where kn = 2πωn/L. We can exchange θ for θ ′ at the expense
of introducing an extra factor of PLL = exp(θ (0) − θ (L)), so
that the bosonization now becomes

ψR/L ∼ (1 − 2b
†
−1b−1)ei(φ±θ) = PLLei(φ±θ ′). (D13)

For the sake of efficiency, we now change notation
[ψR(x),ψL(x)] → [r(x),�(x)]. For a quadratic fermionic
Hamiltonian (g = 1), one can easily verify that

δ1 = − i

4L

∫ L

0
dx(r − r† + � − �†) (D14)

is the partner plane-wave Majorana mode for γ2. δ1 is the
result of γ1 leaking into the Luttinger liquid via the coupling
t , with Eq. (D14) valid in the low-energy Andreev limit.
Equation (D14) bosonizes to

δ1 = PLL

2L

∫ L

0
dx[sin(φ + θ ′) + sin(φ − θ ′)]. (D15)

It is instructive to expand out Eq. (D15) in oscillator modes
and verify explicitly that the bosonized expression commutes
with the bosonized Hamiltonian, anticommutes with δ2, and
squares to 1. We represent δ1 as

δ1 =
(

0 δ−+
1

δ+−
1 0

)
(D16)

with respect to the decomposition of Hlow into the two φ(0) =
±π/2 sectors. Note that δ1 is purely off-diagonal because the
factor of PLL in Eq. (D15) exchanges the two sectors. This
immediately shows that δ1 anticommutes with

δ2 =
(

I 0
0 −I

)
. (D17)

The bosonized expressions for both δ+−
1 and δ−+

1 are simply
Eq. (D15) with the factor of PLL stripped off, but it is useful
to rewrite them as

δ+−
1 =

∫ L

0
dx

cos
[(

φ − π
2

)+ θ ′]+ cos
[(

φ − π
2

)− θ ′]
2L

,

δ−+
1 = −

∫ L

0
dx

cos
[(

φ + π
2

)+ θ ′]+ cos
[(

φ + π
2

)− θ ′]
2L

.

This form removes the constant ±π/2 from φ and, in
particular, shows that only terms with an even number of cre-
ation/annihilation operators appear with nonzero coefficients.
Furthermore, the coefficient of a potentially energy-violating
term would be the real part of an oscillatory integral, which is
purely imaginary; hence δ1 commutes with the Hamiltonian.
Similarly, one can compute δ2

1 directly and see that it equals
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1, though it is instructive to check this explicitly on some
low-energy subspaces. The lowest lying states are

|0〉 : E = 0,

a
†
0|0〉 : E = πvF

4L
,

(D18)
1√
2

(a†
0)2|0〉 : E = πvF

2L
,{

1√
6

(a†
0)3|0〉,a†

1|0〉
}

: E = 3πvF

4L
.

One can explicitly compute that on the lowest three subspaces
δ+−

1 acts as +1,−1,−1, respectively, whereas on the E =
3πvF /(4L) subspace it acts as(

− 1
3 − 2

√
2

3

− 2
√

2
3

1
3

)
, (D19)

a nontrivial matrix that squares to +1.
When g �= 1, we have

H = πvF

gL

∑
n�0

[
− 1

2

(
∂̂

∂φn

)2

+ (gωn)2

2
φ̂2

n

]
. (D20)

We can still expand φ in modes as in Eq. (D4), but this time

φn = 1√
2gωn

(an + a†
n),

(D21)
∂

∂φn

=
√

gωn

2
(an − a†

n).

To get rid of unwanted g’s, we define

φg(x) = ±π

2
+ √

g

∫ x

0
dy ∂yφ(y). (D22)

φg(x) is thus diagonal with respect to the φ(0) = ±π/2
sector decomposition, with the choice of sign in Eq. (D22)
corresponding to the choice of sector. Essentially, we have
used the fact that φ(0) is pinned to give well-defined meaning
to the operator

√
gφ(x). Similarly, we can use the fact that

θ ′(L) = 0 to define

θ ′g(x) = − 1√
g

∫ L

x

dy ∂xθ
′(y). (D23)

The virtue of the operators φg(x),θ ′g(x) is that their mode
expansions are identical to those of φ(x),θ ′(x) in the free case,
given by Eqs. (D11) and (D12). Thus δ

g

1 , defined by

δ
g

1 = PLL

2L

∫ L

0
dx[sin(φg + θ ′g) + sin(φg − θ ′g)], (D24)

has all the necessary properties: it anticommutes with δ2,
commutes with H , and squares to 1. It can also be written
in terms of the fermions. Let us see how that works explicitly
for small ε = g − 1. We expand to leading order:

φg(x) ≈ φ(x) + ε

2

∫ x

0
dy ∂yφ(y), (D25)

θ ′g(x) ≈ θ ′(x) + ε

2

∫ L

x

dy ∂yθ
′(y), (D26)

so that

sin(φg + θ ′g) ≈ sin(φ + θ ′) + ε

2
cos(φ + θ ′)

×
[∫ x

0
dy ∂yφ(y) +

∫ L

x

dy ∂yθ
′(y)

]
.

(D27)

We now rewrite (D27) in terms of fermions using

∂xφ = π (r†r − �†�), (D28)

∂xθ
′ = π (r†r + �†�), (D29)

to obtain

PLL sin[φg(x) + θ ′g(x)]

= − i

2
[r(x) − r†(x)] + πε

4
[r(x) + r†(x)]

×
[∫ L

0
dy (r†r + �†�) − 2

∫ x

0
dy �†�

]
. (D30)

A subtle point is that (D28) has to be normal ordered
with respect to the ground state of the free fermions with
the tunneling term included; in practice, this means re-
placing r†r → (r†r + rr†)/2, etc. With a similar expression
for PLL sin[φg(x) − θ ′g(x)], we finally obtain the interacting
Majorana mode:

δ
g

1 = δ1 + δ′
1 (D31)

with

δ′
1 = πε

8L

∫ L

0
dx (r + r† − � − �†)

∫ L

0
dy (r†r + �†�)

+ πε

4L

∫ L

0
dx

∫ x

0
dy {[�(x) + �†(x)]r†r(y)

− [r(x) + r†(x)]�†�(y)}. (D32)

Likewise, we can also expand the Hamiltonian in fermions:

H = H0 + H ′ (D33)

with

H0 = ivF

2

∫ L

0
dx(−r†∂xr − r∂xr

† + �†∂x� + �∂x�
†)

(D34)

and

H ′ = −2πεvF

∫ L

0
dx r†r�†�. (D35)

Note that the H0 we have differs from the usual one by a
boundary term; again this boundary term effectively takes
into account the tunneling at x = 0. We now need to check
[H,δ

g

1 ] = 0, which at leading order reduces to checking that

[H0,δ
′
1] = [δ1,H

′]. (D36)

Equation (D36) can be explicitly verified with some algebra,
showing that Eq. (D32) is the correct leading order interacting
correction to the Majorana mode δ1.
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