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Kondo lattice on the edge of a two-dimensional topological insulator
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We revisit the problem of a single quantum impurity on the edge of a two-dimensional time-reversal invariant
topological insulator and show that the zero-temperature phase diagram contains a large local moment region
for antiferromagnetic Kondo coupling, which was missed by previous poor man’s scaling treatments. The
combination of an exact solution at the so-called decoupling point and a renormalization group analysis à la
Anderson-Yuval-Hamann allows us to access the regime of strong electron-electron interactions on the edge
and strong Kondo coupling. We apply similar methods to the problem of a regular one-dimensional array of
quantum impurities interacting with the edge liquid. When the edge electrons are at half-filling with respect
to the impurity lattice, the system remains gapless unless the Luttinger parameter of the edge is less than 1/2
in which case two-particle backscattering effects drive the system to a gapped phase with long-range Ising
antiferromagnetic order. This is in marked contrast with the gapped disordered ground state of the ordinary
half-filled one-dimensional Kondo lattice.
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I. INTRODUCTION

Topological insulators1,2 are recently discovered states of
quantum matter that are topologically distinct from conven-
tional insulators such as diamond or silicon. Topological
insulators are characterized by a bulk energy gap, just like
conventional insulators, but support gapless boundary modes
that are unusually robust to external perturbations. The two-
dimensional (2D) quantum spin Hall (QSH) insulator3–5 is the
first time-reversal invariant topological insulator to be exper-
imentally observed,6–8 following its theoretical prediction in
HgTe quantum wells.9 Its 1D boundary modes form a gapless
helical liquid in which a Kramers’ pair of states with opposite
spin polarization counterpropagate at a given edge. The helical
liquid is itself a new 1D gapless state of matter protected
by time-reversal symmetry,10,11 distinct from the conventional
spinless and spinful Luttinger liquids.12 As long as the 2D bulk
gap does not close, the helical liquid is robust against potential
scatterers of arbitrary strength, concentration, or degree of
randomness, provided that the strength of repulsive electron-
electron interactions in the helical liquid does not exceed a
critical value, which is finite,10 rather than infinitesimal as
is the case for the ordinary spinless and spinful Luttinger
liquids.13

However, the helical liquid is not necessarily protected
against magnetic impurities. Classical magnetic impurities,
i.e., static magnetic moments, act on the helical liquid just
as potential scatterers do on a spinless Luttinger liquid. In
the presence of such impurities, infinitesimally weak electron-
electron repulsive interactions are sufficient to renormalize
the conductance of the helical liquid to zero at zero tem-
perature. The physics is more subtle in the case of quantum
impurities. Time-reversal symmetry allows for two types of
such perturbations:10 dynamical, local magnetic moments
coupled by magnetic exchange to the spin of neighboring edge
electrons, and localized interaction centers that backscatter
two edge electrons at a time. Those kinds of quantum
impurities might occur in the HgTe QSH state due to potential
inhomogeneities which can trap bulk electrons in a small
region and force them to interact with the edge electrons.

As has been argued previously,14 such localized perturbations
might account for the deviation of the observed longitudinal
conductance from its predicted quantized value of 2e2/h as
well as its unusual temperature dependence.15 Experimental
efforts are underway16 that might help test those predictions.

In addition to being a question of experimental relevance,
the study of quantum impurities interacting with the helical
edge modes of the QSH state acquires a broader theoretical
significance in the context of the study of strong correlation
effects in topological insulators, which is a topic of tremendous
current interest.17–31 Recent quantum Monte Carlo studies27,28

of the Kane-Mele-Hubbard model indicate that as the strength
U of the on-site Hubbard interaction increases from zero to
some critical value Uc, the 2D bulk remains paramagnetic and
time-reversal invariant while the effective Luttinger parameter
K of the edge decreases from the noninteracting value K = 1
to values K < 1/2. This means that it is possible to reach
a regime, at least numerically, where the helical edge liquid
is strongly interacting, i.e., where 1 − K ∼ O(1). However,
previous studies10,14 of a single quantum impurity interacting
with the helical edge liquid are in fact perturbative in 1 − K ,
as will be seen. Those studies are also perturbative in the
Kondo coupling J between the impurity and the edge liquid.
In order to further our understanding of strong correlation
effects in topological insulators, it is desirable to revisit
those studies and extend them beyond the weak coupling
regime 1 − K � 1 and ρJ � 1 with ρ the density of states
of the helical liquid. Finally, it is natural to ask what
happens when several quantum impurities are present along
the edge. From an experimental point of view, impurities are
not necessarily isolated and interimpurity coherence effects
might play an important role in transport properties at low
temperatures. From a theoretical point of view, one expects
that effective interactions of the Ruderman-Kittel-Kasuya-
Yosida (RKKY) type will be mediated between quantum
impurities by the helical edge electrons,32 and it is natural
to ask what particular quantum phases will be formed by a
collection of quantum impurities under the influence of such
interactions.
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In this paper, we revisit the problem of a single quantum
impurity interacting with the edge of a QSH insulator (see
Sec. II) and construct an improved zero temperature phase
diagram in the (K,Jz) plane where Jz is the Kondo coupling
for spins in the z direction. We consider the original model
of the QSH state as two copies of the quantum Hall state
with opposite spin and chirality,3,4 where the z component of
the total spin is conserved. Our revised phase diagram [see
Fig. 2(b)] differs markedly from that which is inferred from
previous results [see Fig. 2(a)], especially due to a newly found
large portion of the phase diagram for antiferromagnetic Jz

which does not exhibit Kondo screening. We then generalize
this problem to a regular 1D array of quantum impurities (see
Sec. III) for which we derive a zero temperature phase diagram
(see Fig. 3). This phase diagram can be contrasted to that of
the ordinary 1D Kondo lattice.33 The most striking difference
is found at half-filling, where our system remains gapless for
K > 1/2 but becomes gapped and develops long-range Ising
antiferromagnetic order for K < 1/2, while the ordinary 1D
Kondo lattice is gapped but has no long-range magnetic order.

II. REVISITING THE SINGLE-IMPURITY PROBLEM

Our first goal is to obtain a phase diagram for the single-
impurity problem as a function of the Luttinger parameter
K of the helical liquid and the Kondo coupling Jz. As
mentioned before, previous analyses10,14 were perturbative
in 1 − K and in Jz, such that only the regions 1 − K � 1
and ρJz � 1 were accessible. In Sec. II A, we describe the
special “decoupling” line ρJz = 2K along which the Kondo
Hamiltonian becomes exactly solvable. In Sec. II B, we obtain
the phase diagram of the single-impurity problem for all Jz

and 0 < K < 1 using renormalization group (RG) equations
which are perturbative in J⊥ but exact in 1 − K and in Jz.
We derive those equations using a method that is equivalent
to the Anderson-Yuval-Hamann procedure34 but simpler in its
application.

The Hamiltonian of the single-impurity problem in the
bosonized representation is10,14

H = HTL + Hz + H⊥

= vF

2

∫
dx

[
K�2 + 1

K
(∂xφ)2

]
− Jza√

π
Sz�(0)

+ J⊥a

2πξ
(S+ei2

√
πφ(0) + H.c.), (1)

where vF is the Fermi velocity of the edge electrons, K is
their Luttinger parameter, a is the size of the impurity, ξ is
the penetration length of the edge states into the bulk and acts
as a short-distance cutoff, and S± = Sx ± iSy and Sz are the
spin- 1

2 operators for the impurity spin localized at x = 0. The
bosonic fields φ(x) and �(x) describe the low-energy degrees
of freedom of the helical liquid and satisfy the equal-time
canonical commutation relations [φ(x),�(x ′)] = iδ(x − x ′).
The first term in Eq. (1) is the Tomonaga-Luttinger Hamilto-
nian which describes the translationally invariant, unperturbed
helical liquid in the absence of impurities. The second
and third terms represent the anisotropic Kondo interaction.
The helical liquid has no SU(2) spin rotation symmetry,
hence the Kondo interaction is generally anisotropic. The

Hamiltonian (1) has two conserved charges, Qc = ∫
dx 1√

π
∂xφ

corresponding to the U (1)c electromagnetic gauge invariance
and Qs = 1

2

∫
dx(− 1√

π
)� + Sz corresponding to the U (1)s or

XY spin rotation symmetry. Although the U (1)s symmetry is
not required by the topology of the QSH state,35 it is present
in the simplest model of the QSH state3,4 as two copies of the
quantum Hall state with opposite spin and chirality.

A. Decoupling limit

We first consider a particular line in the space of coupling
constants for which the Hamiltonian (1) becomes exactly
solvable. A solution of this type was considered recently,36

which corresponds to the well-known Toulouse limit37 of
the Kondo problem in which the Kondo Hamiltonian reduces
to a noninteracting resonant level problem. The solution we
are considering here is the “decoupling limit”38 in which
the Kondo Hamiltonian reduces to a problem where the
impurity effectively decouples from the conduction electrons.
The decoupling limit corresponds in fact to the unitarity limit
δ = π/2, where δ is the scattering phase shift of the conduction
electrons (see Appendix). For a Kondo impurity embedded
in a 3D metallic host, the scattering phase shift δ is given
by tan δ ∝ ρJz,39 hence the decoupling limit is unphysical
because δ = π/2 corresponds to an infinite coupling Jz = ∞.
However, for a 1D metallic host the scattering phase shift is
given by δ ∝ ρJz, hence the decoupling limit corresponds to
a finite value of Jz and is therefore physical.

We begin by introducing a unitary transformation14,40 that
we will use repeatedly in this paper. We define the unitary
operator U = eiλφ(0)Sz

under which the various fields transform
as

Uf (φ(x),∂xφ(x), . . .)U † = f (φ(x),∂xφ(x), . . .), (2)

U�(x)2U † = �(x)2 − 2λSz�(0)δ(x),

US±U † = S±eiλφ(0), (3)

USzU † = Sz,

where f is any function of φ and its spatial derivatives. Using
these relations, we find that the Hamiltonian (1) transforms as

H̃ ≡ UHU † = HTL[φ,�] − J̃za√
π

Sz�(0)

+ J⊥a

2πξ
[S+ei(2

√
π+λ)φ(0) + H.c.],

where J̃za = Jza + λ
√

πvF K . We observe that the exponent
of the vertex operator can be canceled by choosing λ =
−2

√
π . Choosing λ as such, we obtain J̃za = Jza − 2πvF K ,

such that for the special value

ρJz = 2K, (4)

where ρ = a/πvF is the density of states of the helical liquid,
the transformed Hamiltonian is simply

H̃ = HTL[φ,�] + J⊥a

πξ
S · ê, (5)

where ê = x̂. The impurity spin completely decouples from the
conduction electrons, since the two terms in Eq. (5) commute.
Since [S · ê,H̃ ] = 0, the projection of S onto ê is a good
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quantum number under H̃ . In the ground state of H̃ , we
therefore obtain S · ê = − 1

2 sgn J⊥. However, S · ê is not a
good quantum number under the original Hamiltonian H ,
because of the transformation law (3). We have

− 1
2 sgn J⊥ = 〈S · ê〉H̃ = 〈U †SU · ê〉H = 〈S · ê(φ(0))〉H ,

where we define the unit vector

ê(φ(0)) ≡ x̂ cos 2
√

πφ(0) − ŷ sin 2
√

πφ(0). (6)

The impurity spin is entirely in the xy plane, and the angle that
it makes with the x axis is locked to the local charge-density-
wave (CDW) phase 2

√
πφ(0) of the helical edge electrons. The

dynamics of the impurity is therefore entirely controlled by the
Hamiltonian HTL of the conduction electrons. The impurity
correlation functions are easily obtained by making use of
the unitary transformation U . The imaginary time transverse
spin-spin correlation function at zero temperature is given at
long times by

χ⊥(τ ) = 〈TτS
+(τ )S−(0)〉H

= 〈TτS
+(τ )S−(0)〉H̃ 〈eiλ[φ(τ )−φ(0)]〉H̃

= 1 + e−ω⊥|τ |

4(
|τ |)2K
, (7)

where 
 = vF /ξ is a high-energy cutoff, we define ω⊥ ≡
|J⊥|a/πξ , and we have used the expression12

〈Tτφ(x,τ )φ(0,0)〉TL = − K

4π
ln

[
x2 + (vF τ )2 + ξ 2

ξ 2

]
, (8)

for the propagator associated to the Tomonaga-Luttinger
Hamiltonian as well as the fact that

〈eiλ[φ(τ )−φ(0)]〉H̃ = exp[λ2〈Tτφ(τ )φ(0)〉H̃ ],

since HTL is a quadratic boson Hamiltonian. The frequency-
dependent transverse susceptibility χ ′′

⊥(ω) is defined as the
imaginary part of the Fourier transform of the retarded
correlation function χR

⊥ (t) = iθ (t)〈[S+(t),S−(0)]〉H , which
can be obtained directly from Eq. (7) by analytic continuation
in the time domain,41

χ ′′
⊥(ω) = 1

2

∫ ∞

−∞
dt eiωt [χ+

⊥ (it) − χ−
⊥ (it)],

where χ±
⊥ are defined by χ⊥(τ ) = θ (τ )χ+

⊥ (τ ) + θ (−τ )χ−
⊥ (τ ).

We obtain at low frequencies,

χ ′′
⊥(ω) = π
−2K

4�(2K)
[|ω|2K−1

+ (|ω| − ω⊥)2K−1θ (|ω| − ω⊥)] sgn ω, (9)

which is odd in frequency, as required for a bosonic spectral
function. The longitudinal spin-spin correlation function is
given by

χz(τ ) = 〈TτS
z(τ )Sz(0)〉H = 〈TτS

z(τ )Sz(0)〉H̃
= 1

4e−ω⊥|τ |, (10)

hence the frequency-dependent longitudinal susceptibility is
given by

χ ′′
z (ω) = π

4
δ(|ω| − ω⊥) sgn ω, (11)

and is entirely unaffected by the interactions in the helical
liquid. Note that the results (9) and (11) are not only exact in Jz

and K on the decoupling line (4), but they are also exact in J⊥.

B. Away from the decoupling limit: Anderson-Yuval-Hamann
approach

The results Eq. (9) and (11) that we found for the impurity
spin susceptibilities hold only in the decoupling limit (4),
which is a line in the plane of K and Jz. In this section,
we derive renormalization group (RG) equations [see Eq. (23)
and (24)] that will allow us to explore the phase diagram of
the single-impurity problem away from that special line. RG
equations for the single-impurity problem have been derived
previously10 and read

dJ⊥
d�

= (1 − K)J⊥ + ρJzJ⊥, (12)

dJz

d�
= ρJ 2

⊥. (13)

Those equations were obtained using Anderson’s poor man’s
scaling approach,42 and as such are perturbative in both J⊥
and Jz. The poor man’s scaling approach considers the first
term of Eq. (1) as the unperturbed Hamiltonian, and the Jz and
J⊥ terms as perturbations. This is reasonable because the first
term of Eq. (1) is the free boson Hamiltonian, which is exactly
solvable. However, the original approach of Anderson, Yuval,
and Hamann34 in which the Kondo problem is viewed as a
succession of x-ray edge problems is exact in the phase shift
associated to Jz. In this approach, one considers the first two
terms of Eq. (1) as the unperturbed Hamiltonian. In the basis
of eigenstates of Sz, this Hamiltonian is simply that of a free
boson scattering off a potential impurity and is also exactly
solvable in terms of scattering phase shifts. Therefore it is not
necessary to treat Jz as a perturbation. As we will see, Eqs. (12)
and (13) are also perturbative in 1 − K . This is because
they were obtained using the poor man’s scaling approach
in the fermion language, where the interactions between edge
electrons are treated perturbatively. We will use the bosonized
description of the edge electrons in which electron-electron
interactions represented by the Luttinger parameter K can be
treated exactly. Our treatment is conceptually equivalent to the
Anderson-Yuval-Hamann approach, but is made technically
simpler by the use of bosonization techniques.12

The imaginary time action at zero temperature corre-
sponding to the Hamiltonian (1) is S = S0 + S⊥ with S0 =
STL + Sz + SWZ, where

STL = 1

K

∫
dω

2π
|ω||φ(ω)|2, (14)

Sz = − Jza√
πvF

∫ ∞

0
dτ Szi∂τφ, (15)

S⊥ = J⊥a

2πξ

∫ ∞

0
dτ (S+ei2

√
πφ + c.c.), (16)

and SWZ is the Wess-Zumino or Berry phase term for the
impurity spin43 whose exact expression is not needed because
we will revert to the operator formalism for the computation
of impurity spin correlators. As our notation suggests, S0

including the Jz Kondo term is used as the unperturbed action.
We have defined φ(τ ) ≡ φ(x = 0,τ ), and STL in Eq. (14)
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is obtained from the full (1 + 1)-dimensional Tomonaga-
Luttinger action by integrating out φ(x �= 0,τ ).13

We use the standard Wilsonian RG procedure in which we
define slow fields φ<, S< and fast fields φ>, S>,

φ<(τ ) =
∫ 
/b

−
/b

dω

2π
e−iωτ φ<(ω),

φ>(τ ) =
∫


/b<|ω|<


dω

2π
e−iωτ φ>(ω),

and likewise for S<(τ ) and S>(τ ), where 
 ∼ vF /ξ is a
high-energy cutoff and b = 1 + d� is the rescaling parameter.
Note that φ(τ ) = φ<(τ ) + φ>(τ ) and S(τ ) = S<(τ ) + S>(τ ).
To simplify the notation, we use the collective variable � ≡
(φ,S) to denote all the fields in the functional integral. Because
S0 is quadratic in �, we have

S[�] = S0[�<] + S0[�>] + S⊥[�< + �>].

We define the effective action S<[�<] with reduced cutoff

/b to be

e−S<[�<] ≡
∫

D�>e−S[�] = e−S0[�<]Z>
0 〈e−S⊥[�<+�>]〉>,

where Z>
0 = ∫

D�>e−S0[�>] and 〈· · ·〉> denotes an expecta-
tion value with respect to S0[�>]. Using the linked cluster
theorem, we obtain

S<[�<] = S0[�<] + 〈S⊥[�< + �>]〉>
− 1

2 (〈S⊥[�<+�>]2〉>−〈S⊥[�<+�>]〉2
>), (17)

to O(J 2
⊥). The first-order term contains the expectation value

〈(S±
< + S±

> )e±i2
√

π (φ<+φ>)〉>, which is given by the sum of two
terms,

S±
<e±i2

√
πφ<〈e±i2

√
πφ>〉> + e±i2

√
πφ<〈S±

>e±i2
√

πφ>〉>
= S±

<e±i2
√

πφ<. (18)

Using the unitary transformation U introduced earlier enables
us to compute correlators in the 〈· · ·〉> ensemble exactly,
without having to expand in powers of Jz. Passing to the
operator formalism, we consider U = eiλφ>Sz

> , which leaves Sz
>

and the vertex operators e±i2
√

πφ> unchanged, but under which
the S±

> operators transform as S±
> → US±

>U † = S±
>e±iλφ> [see

Eq. (3)]. Instead of choosing λ = −2
√

π as in the decoupling
limit, here we choose λ = −Jza/

√
πvF K , which implies

that the Jz term in the transformed Hamiltonian cancels
altogether.14 Note that this cancellation occurs for any values
of Jz and K , i.e., we are not assuming the decoupling limit
Eq. (4). Performing this transformation, we trade correlators
of S±

> and e±i2
√

πφ> in an ensemble governed by STL + Sz

for correlators of S±
>e±iλφ> and e±i2

√
πφ> , respectively, in an

ensemble governed by STL alone. Applying these results to
Eq. (18), we obtain

〈e±i2
√

πφ>〉> = 〈e±i2
√

πφ>〉>,TL = 1,

〈S±
>e±i2

√
πφ>〉> = 〈S±

>e±i2
√

πχφ>〉>,TL

= 〈S±
>〉>,TL〈e±i2

√
πχφ>〉>,TL = 0,

from which Eq. (18) follows. We have defined χ ≡ 1 +
λ/2

√
π = 1 − ρJz/2K , which can be seen as a measure of

the deviation from the decoupling limit χ = 0. As a result, we
obtain

〈S⊥[�< + �>]〉> = S⊥[�<]. (19)

We now consider the second-order term in Eq. (17). The first
term is

〈S⊥[�< + �>]2〉>
=

(
J⊥a

2πξ

)2 ∫ ∞

0
dτ

∫ ∞

0
dτ ′

×〈{[S+
< (τ ) + S+

> (τ )]ei2
√

π[φ<(τ )+φ>(τ )] + c.c.}
×{[S+

< (τ ′) + S+
> (τ ′)]ei2

√
π [φ<(τ ′)+φ>(τ ′)] + c.c.}〉>.

Expressions containing the φ< and S< fields factor out of the
average. However, because the average 〈· · ·〉> is time ordered,
products of the noncommuting operators S+

< and S−
< need

to be time ordered as well. Using the unitary transformation
introduced earlier, we obtain

TτS
±
< (τ )S∓

< (τ ′) = [
1
2 + Sz

< sgn(τ − τ ′)
]
eiλ[φ<(τ )−φ<(τ ′)],

where Tτ is the time-ordering operator in imaginary time, and
the time dependence of φ< and Sz

< on the right-hand side of the
equality is governed by STL[�<]. The products TτS

±
< (τ )S±

< (τ ′)
are zero. The remaining expectation values are

〈e±i2
√

π[φ>(τ )−φ>(τ ′)]〉> = 〈e±i2
√

π [φ>(τ )−φ>(τ ′)]〉>,TL

= e4πD>(τ−τ ′) (20)

and

〈S±
> (τ )S∓

> (τ ′)e±i2
√

π[φ>(τ )−φ>(τ ′)]〉>
= 〈S±

> (τ )S∓
> (τ ′)〉>,TLe4πχ2D>(τ−τ ′),

= 1
2e4πχ2D>(τ−τ ′), (21)

where D>(τ − τ ′) ≡ 〈φ>(τ )φ>(τ ′)〉>,TL is the propagator
associated to STL[�>]. Correlators involving S±

< (τ )S±
< (τ ′)

vanish. Substituting Eqs. (20) and (21) in the expression for
〈S2

⊥〉>, we find three terms, one involving sin 2
√

πχ (φ< −
φ′

<), one involving cos 2
√

πχ (φ< − φ′
<), and one involving

cos 2
√

π (φ< − φ′
<), where we have denoted φ< ≡ φ<(τ )

and φ′
< ≡ φ<(τ ′). The fields φ< are slow fields and their

expectation value 〈φ<〉 vanishes in the unperturbed ensemble
STL[�<], which governs their time dependence. Therefore we
will perform a gradient expansion of the sines and cosines
in powers of time derivatives of φ<. The lowest-order term
for the sine is a single power of ∂τφ< ∼ ωφ(ω), which is a
marginal operator at the Tomonaga-Luttinger fixed point. This
term will lead to a renormalization of Jz, which is precisely
what we are looking for. The lowest-order term for the cosine
is the quadratic term ∼(∂τφ<)2 ∼ ω2|φ<(ω)|2, i.e., a quadratic
kinetic energy term. However, the kinetic energy term Eq. (14)
in the unperturbed action is proportional to |ω|, hence the
ω2 term is irrelevant and can be neglected. In particular, this
means that the Luttinger parameter K is not renormalized.
This is physically intuitive: a perturbation that exists only at
x = 0 cannot renormalize a bulk parameter.12 Therefore only
the term containing sin 2

√
πχ (φ< − φ′

<) needs to be kept.
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The boson propagator D>(τ − τ ′) in Eq. (20) is given by

D>(τ − τ ′) =
∫


/b<|ω|<


dω

2π
e−iωτD(ω),

where the propagator D(ω) = K/2|ω| is read off of the
unperturbed action Eq. (14). We have

D>(τ − τ ′) = K

∫ 



/b

dω

2π

1

ω
cos ω(τ − τ ′)

= K

2π

[∫
dω

ω
cos ω(τ − τ ′)

]∣∣∣∣




/b

= K

2π
d� cos 
(τ − τ ′) + O(d�2), (22)

hence we obtain to O(d�),

1
2 (〈S2

⊥〉> − 〈S⊥〉2
>)

=
(

J⊥a

2πξ

)2 ∫ ∞

0
dτ

∫ ∞

0
dτ ′[e2Kd� cos 
(τ−τ ′) − 1]

×iSz
< sgn(τ − τ ′) sin 2

√
πχ [φ<(τ ) − φ<(τ ′)].

We expand the exponential to O(d�) and are led to consider
the following integral:

I [φ<] =
∫ ∞

0
dτ

∫ ∞

0
dτ ′ cos 
(τ − τ ′)

× sin 2
√

πχ [φ<(τ ) − φ<(τ ′)] sgn(τ − τ ′).

Changing variables from τ and τ ′ to center-of-mass T =
1
2 (τ + τ ′) and relative t = τ − τ ′ variables, we observe that
cos 
(τ − τ ′) = cos 
t oscillates with a high frequency 
.
As a result, the integral over t will be cut off at the short time
∼
−1 and we can expand the functions of φ<(τ ) − φ<(τ ′) in
powers of t . We obtain

I [φ<] �
∫ ∞

0
dT

∫ 1/


−1/


dt[2
√

πχ |t |∂T φ<(T ) + O(t3)]

= 2
√

πχ
−2
∫ ∞

0
dT ∂T φ< + O(
−4),

and the effective action Eq. (17) becomes

S<[�<] = S[�<] − δ(Jza)√
πvF

∫ ∞

0
dτSzi∂τφ<,

where the correction to Jz is given by

δ(Jza)

πvF

=
(

J⊥a

πvF

)2

Kχd�,

so that using the definition of χ in terms of Jz, the RG equation
for Jz is given by

dJz

d�
= ρK

(
1 − ρJz

2K

)
J 2

⊥. (23)

We have effectively computed the one-loop contribution to
the RG equations. The tree-level contributions are obtained by
performing a scale transformation to restore the cutoff 
/b to
its original value 
, or alternatively44 by computing the scaling
dimensions of the perturbation. In our case, we treated S0 =
STL + Sz as the unperturbed action, hence the only perturbation

is S⊥. The scaling dimension � of an operator O(τ ) is defined
by44

〈O(τ )O†(τ ′)〉 ∼ |τ − τ ′|−2�,

where the expectation value is taken at the appropriate fixed
point, which in our case is the unperturbed ensemble governed
by S0 = STL + Sz. Defining O⊥ ≡ S+ei2

√
πφ + H.c. and using

the unitary transformation mentioned earlier, we have

〈O⊥(τ )O†
⊥(τ ′)〉0 ∼ 〈S+(τ )S−(τ ′)ei2

√
πχ[φ(τ )−φ(τ ′)]〉TL + c.c.

∼ e4πχ2D(τ−τ ′) = |τ − τ ′|−2Kχ2
,

where the full boson propagator, as opposed to the propagator
of Eq. (22) for the fast field φ>, is given by D(τ − τ ′) =
−(K/2π ) ln |τ − τ ′|. We therefore have �⊥ = Kχ2, and the
RG equation44 for J⊥ is given by

dJ⊥
d�

=
[

1 − K

(
1 − ρJz

2K

)2
]

J⊥. (24)

Equations (23) and (24) are the main result of this section
and are perturbative in J⊥ but exact in Jz and in K . In the
weak-coupling limit ρJz � 1, Eq. (24) reduces to the poor
man’s scaling result Eq. (12), but Eq. (23) becomes

dJz

d�
= ρKJ 2

⊥,

which agrees with Eq. (13) except for a factor of K . Since
K → 1 in the noninteracting limit, we conclude that Eq. (13)
is perturbative in the strength of electron-electron interactions
in the helical liquid.

From Eq. (23) and (24), we immediately see that there is a
quantum critical point at J ∗

⊥ = 0 and J ∗
z such that Kχ2 = 1.

For a generic value of K with 0 < K < 1, there are in fact two
critical points at ρJ ∗

z = 2(K ± √
K), which merge as K → 0.

In contrast, the RG equations (12) and (13) predict a single
critical point at ρJ ∗

z = K − 1 = −g, where we have defined
g ≡ 1 − K as the strength of electron-electron interactions in
the helical liquid. In the limit g � 1 of weak interactions, we
find

ρJ ∗,−
z ≡ 2(K −

√
K) = −g + O(g2), (25)

ρJ ∗,+
z ≡ 2(K +

√
K) = 4 − 3g + O(g2). (26)

In other words, in the weak interaction limit K � 1, we
recover the critical point (25), which has been previously
predicted,10,14 but we also find a new critical point [see
Eq. (26)] at large Jz, which has been missed in previous studies.
The RG flow in the (Jz,J⊥) plane for all Jz and small J⊥ and for
different values of K is easily obtained by a numerical solution
of Eqs. (23) and (24), and is of the Kosterlitz-Thouless type
[see Fig. (1)] as could be expected for a single-channel Kondo
impurity problem.34 For Jz close to the J⊥ = 0 critical points
J ∗

z , the Kosterlitz-Thouless separatrix is given by

J ∗
⊥ = ± 1√

K
(Jz − J ∗

z ) + O((Jz − J ∗
z )2),

and separates a strong-coupling antiferromagnetic (AF) phase
where J⊥ flows to infinity from a weak-coupling “local
moment” (LM) phase where J⊥ flows to zero. The AF phase
is a Kondo screened phase for which a qualitative description
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FIG. 1. Kosterlitz-Thouless RG flow for the single-impurity
problem, with two critical points at ρJ ∗,±

z = 2(K ± √
K). The dotted

lines correspond to the Kosterlitz-Thouless separatrix.

à la Nozières45 has been given previously.10,14 The LM phase
is described by an effective Hamiltonian of the form of Eq. (1)
but with J⊥ = 0 and Jz = J �

z where J �
z (not to be confused

with the critical point J ∗
z ) is the renormalized value of Jz, i.e.,

the � → ∞ limit of the solution Jz(�) of the RG equations
(23) and (24), which is finite in the LM phase (See Fig. 1). The
spin-spin correlations are easily obtained from this effective
Hamiltonian by applying the unitary transformation U with
λ = −J �

z a/
√

πvF K to remove the Sz term from the effective
Hamiltonian. We thus obtain in the LM phase

χ ′′
⊥(ω) = π
−ρJ �

z /2K

2�(ρJ �
z /2K)

|ω|ρJ �
z /2K−1 sgn ω,

χ ′′
z (ω) = 0.

C. Two-particle backscattering

The Hamiltonian (1) describes a spin- 1
2 local moment

interacting by magnetic exchange with the helical liquid.
However, as argued in the introduction, a generic quantum
impurity on the edge of a QSH insulator can also give rise to
a local two-particle backscattering term, which is allowed by
the topology of the QSH state.10,11 In the bosonized language,
this amounts to adding to Eq. (1) the term

H2PB = λ2a

πξ
cos 4

√
πφ(0). (27)

This term breaks the full U (1)s = {eiαQs : α ∈ [0,2π )} sym-
metry of the original Hamiltonian (1) down to the subgroup
{1,eiπQs } ∼= Z2. Indeed, this operator flips the spins of two
conduction electrons and thus violates the conservation of the
total Sz. However, this operator is allowed because it does not
violate time-reversal symmetry. Recently, it has been realized
that the inelastic backscattering term [∂2

xϑ(0)]ei2
√

πφ(0) + H.c.
with ϑ(x) = ∫ x

−∞ dx ′�(x ′) the dual boson, which is a con-
formal descendant of the time-reversal symmetry breaking
single-particle backscattering operator cos 2

√
πφ(0), does not

itself break time-reversal symmetry and is thus an allowed
perturbation.35,46 However, this operator has the scaling di-
mension K + 2, which is always greater than one for repulsive
interactions 0 < K < 1, and is thus always irrelevant. Since
we are only interested in the zero-temperature phase diagram,
this operator can be safely ignored here.

We first consider the effect of Eq. (27) in the decoupling
limit ρJz = 2K . Because any function of φ alone commutes
with the unitary transformation U [see Eq. (2)], the trans-
formed Hamiltonian H̃ still exhibits the decoupling of the
impurity spin from the conduction electrons,

H̃ = Hc[φ,�] + J⊥a

πξ
S · ê, (28)

but the conduction electron part of H̃ is

Hc[φ,�] = HTL[φ,�] + λ2a

πξ
cos 4

√
πφ(0), (29)

i.e., the boundary sine-Gordon model. We still have 〈S ·
ê(φ(0))〉H = − 1

2 sgn J⊥ with the unit vector ê(φ(0)) defined
in Eq. (6), but now there is the possibility that the local
CDW phase 2

√
πφ(0) might get pinned because of the cosine

potential in Eq. (29). As can be inferred from the RG equation10

dλ2

d�
= (1 − 4K)λ2, (30)

this occurs when K < 1/4, and 2
√

πφ(0) is pinned in the
ground state at (n + 1

2 )π for λ2 > 0 and nπ for λ2 < 0, with
n ∈ Z. From Eq. (6), this means that ê(φ(0)) = ±ŷ for λ2 > 0
and ê(φ(0)) = ±x̂ for λ2 < 0, hence

〈Sy〉 = ± 1
2 sgn J⊥, λ2 > 0,

〈Sx〉 = ± 1
2 sgn J⊥, λ2 < 0,

where the sign in ± is picked by spontaneous breaking of the
Z2 symmetry. That spontaneous symmetry breaking is allowed
in this (0 + 1)-dimensional problem at zero temperature can
be seen by mapping the boundary sine-Gordon model (29)
to a 1D classical gas with long-ranged, logarithmic two-body
interactions.12 In contrast to the λ2 = 0 case where the ground
state is paramagnetic with 〈S〉 = 0, for K < 1/4 and any λ2 �=
0, the ground state is an Ising ferromagnet with 〈S〉 �= 0. For
K > 1/4, the two-particle backscattering term is irrelevant and
the ground state is paramagnetic.

Away from the decoupling limit, one may wonder whether
the scaling dimension of the two-particle backscattering
operator Eq. (27) deviates from its value 4K in the de-
coupling limit. Since the two-particle backscattering opera-
tor commutes with the unitary transformation U = eiλφ(0)Sz

with λ = −Jza/
√

πvF K for any value of Jz, its scaling
dimension is independent of Jz and is always equal to
4K for weak coupling, ρλ2,ρJ⊥ � 1. Furthermore, in the
single-impurity problem, K is a bulk property, which is
invariant under the (0 + 1)-dimensional RG flow.12 Therefore
the RG equation (30) is valid for all Jz, and the two-particle
backscattering term is relevant for K < 1/4 and irrelevant for
K > 1/4 independent of Jz. More formally, we can repeat
the perturbative analysis of Sec. II B after adding the term
S2PB = λ2a

πξ

∫ ∞
0 dτ cos 4

√
πφ to the action. The first-order

contribution is 〈S2PB[�< + �>]〉> = S2PB[�<] as expected.
The second-order contribution contains two terms, the mixed
term 〈S⊥S2PB〉>, which vanishes, and 〈S2

2PB〉>, which only
gives irrelevant terms. The only new contribution to the RG
equations (23) and (24) is the tree-level equation (30).
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FIG. 2. (Color online) Zero-temperature phase diagram of a
single Kondo impurity in the helical edge liquid of the quantum
spin Hall state for small J⊥. (a) Previously derived (incorrect) phase
diagram based on perturbation theory in ρJz and 1 − K , with a
Kondo screened strong-coupling phase (AF) and an unscreened
local moment phase (LM). (b) Phase diagram based on the RG
equations (23) and (24) exact in ρJz and K . The decoupling
limit ρJz = 2K (thicken dashed line) and the Toulouse limit (thick
dotted line, Ref. 36) both lie in the AF phase. The new AF-LM
phase boundary (thick solid line) is contrasted with the previously
derived phase boundary (thin solid line) of (a). (c) Phase diagram
in the presence of impurity-induced two-particle backscattering,
with an additional symmetry-breaking Ising ferromagnetic phase
(Ising FM).

D. Phase diagram of the single-impurity problem

Based on the results just described, we can construct
a revised zero-temperature phase diagram for the single-
impurity problem in the space of coupling constants K and
Jz and in the limit ρ|J⊥| � 1 and ρλ2 � 1 (see Fig. 2).
The previously obtained poor man’s scaling equations (12)
and (13) predict the existence of a single Kondo screened
strong-coupling phase (AF) and a single unscreened local
moment phase (LM) separated by a single phase boundary
at ρJz = K − 1 [see Fig. 2(a)]. In particular, they predict that
for antiferromagnetic Jz > 0 a Kondo screened phase will
always result. Our new RG equations (23) and (24) predict a
different topology for the phase diagram [see Fig. 2(b)]. The
AF phase is sandwiched between two LM phases. This leads
to the surprising result that for large enough antiferromagnetic
Jz > 0, a LM phase will result, with no Kondo screening. The
decoupling limit studied in Sec. II A and the Toulouse limit
studied in Ref. 36 both lie inside the AF phase. Figures 2(a)
and 2(b) both correspond to the absence of two-particle
backscattering λ2 = 0. For λ2 �= 0, the ground state is an
Ising ferromagnet (Ising FM) for K < 1/4 [see Fig. 2(c)]. The
phase diagrams are independent of the sign of J⊥ as can be
seen from the fact that the RG equations are symmetric under
J⊥ → −J⊥.

III. KONDO LATTICE PROBLEM

We now consider a regular array of spin- 1
2 magnetic

impurities interacting with the helical liquid via exchange
interactions. The Hamiltonian of this 1D Kondo lattice

problem is given in the bosonized representation by

H = HTL + Hz + H⊥

= vF

2

∫
dx

[
K�2 + 1

K
(∂xφ)2

]
− Jza√

π

∑
r

Sz
r �(r)

+ J⊥a

2πξ

∑
r

(
S+

r ei2
√

πφ(r)+i2kF r + H.c.
)
, (31)

where
∑

r is a sum over the positions r of the impurity
spins Sr , which are equally separated by a distance a,
i.e., r = na, n ∈ Z. An important difference between the
single-impurity Hamiltonian (1) and the lattice Hamiltonian
(31) is the presence of the 2kF r phase factors in the latter
case, where kF is the Fermi wave vector of the helical
liquid. Whereas the Fermi wave vector plays no role in the
single-impurity problem, it plays an important role in the lattice
problem, especially when two-particle backscattering terms
are considered (see Sec. III C). As will be seen, the phase
diagram of the Kondo lattice problem depends crucially on
whether the system is at half-filling (2kF a = π ) or away from
half-filling (2kF a �= π ). Although this can be expected from
the physics of the 1D Kondo lattice problem in an ordinary
spinful 1D Fermi liquid,33 there are important differences,
which will be pointed out in due course. As in the single-
impurity problem, the Hamiltonian (31) has continuous U (1)c
charge and U (1)s spin rotation symmetries, but the generator
of U (1)s now contains the z component of the total impurity
spin, Qs = 1

2

∫
dx(− 1√

π
)� + ∑

r Sz
r .

The model (31) is similar to an orbital analog of the
1D Kondo lattice model studied earlier47 in which physical
impurity spins were replaced by impurity pseudospins that
couple to the orbital states of the conduction electrons rather
than to their true spin. In both models, the z component of the
impurity (pseudo-)spin couples to the local electronic current
jx(r) = − 1√

π
�(r). In the model of Ref. 47, this occurred be-

cause the impurity pseudospin was assumed to carry an electric
dipole moment which would thus couple to the conduction
electron current. In the helical liquid, however, this is the form
taken by the physical magnetic exchange interaction, because
the local current of the conduction electrons corresponds to the
z component of their local magnetization, due to the helical
property of the QSH edge states.

A. Decoupling limit

The unitary transformation of Sec. II A can be generalized
to the lattice case47 by choosing U = exp(iλ

∑
r φ(r)Sz

r ).
For λ = −2

√
π and in the decoupling limit ρJz = 2K , the

transformed Hamiltonian H̃ = UHU † reads

H̃ = HTL[φ,�] + J⊥a

πξ

∑
r

Sr · êr , (32)

where êr = x̂ cos 2kF r − ŷ sin 2kF r . As in the single-impurity
case, the impurity spins decouple from the conduction elec-
trons: the two terms in Eq. (32) commute and can be diago-
nalized independently. Furthermore, we have [Sr · êr ,H̃ ] = 0
for all impurity sites r , hence Sr · êr is a good quantum
number for all r under H̃ . In the ground state of H̃ , we have
Sr · êr = − 1

2 sgn J⊥ for all r , which appears to indicate that the
system has long-range helical spin-density-wave (SDW) order
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in the xy plane. However, this is not necessarily so for the
same reason as before: Sr · êr is not a good quantum number
under the original Hamiltonian H . We have

− 1
2 sgn J⊥ = 〈Sr · êr〉H̃ = 〈U †SrU · êr〉H

= 〈Sr · êr(φ(r))〉H ,

where we define the unit vector

êr(φ(r)) = x̂ cos αr − ŷ sin αr, (33)

with αr ≡ 2
√

πφ(r) + 2kF r . In this case, the orientation of
each impurity spin in the xy plane is controlled both by
the local dynamical phase 2kF r and the local CDW phase
2
√

πφ(r) of the helical conduction electrons. If φ fluctuates
strongly enough as is the case at the Tomonaga-Luttinger fixed
point of the conduction electrons, there is no long-range helical
SDW order. The impurity spin part of the ground-state wave
function for the transformed Hamiltonian (32) is easily found,

|0〉H̃ =
∏

r

1√
2

(
ei2kF r

− sgn J⊥

)
, (34)

in the Sz
r direct product basis. As in the single-impurity case,

the correlation functions of the impurity spins can be evaluated
with the help of the unitary transformation U . Defining S⊥

r ≡
Sx

r x̂ + S
y
r ŷ, we obtain

χ⊥(r − r ′,τ )

= 〈Tτ S⊥
r (τ ) · S⊥

r ′ (0)〉H
= 1

2

[
〈TτS

+
r (τ )S−

r ′ (0)〉H̃ 〈eiλ[φ(r,τ )−φ(r ′,0)]〉H̃ + c.c.
]

= 1

4

cos 2kF (r − r ′) + e−ω⊥|τ |δ(r − r ′)[(
r−r ′

ξ

)2
+ (
|τ |)2

]K
, (35)

and

χz(r − r ′,τ ) = 〈TτS
z
r (τ )Sz

r ′(0)〉H = 〈TτS
z
r (τ )Sz

r ′(0)〉H̃
= 1

4e−ω⊥|τ |δ(r − r ′). (36)

In the local limit r − r ′ = 0, the correlation functions of
the Kondo lattice reduce to those of the single-impurity
problem Eqs. (7) and (10). We define the momentum- and
frequency-dependent impurity spin transverse susceptibility
χ ′′

⊥(q,ω) as the imaginary part of the Fourier transform of the
corresponding retarded correlation function χR

⊥ (r − r ′,t) =
iθ (t)〈[S+

r (t),S−
r ′ (0)]〉. As can be seen from Eq. (35), the

contribution of the first term in Eq. (35) is almost the same as
the 2kF part of the particle-hole susceptibility of the spinless
1D electron gas, which was calculated by Luther and Peschel.48

We obtain

χ ′′
⊥(q,ω) = A(|ω| − ω⊥)2K−1θ (|ω| − ω⊥) sgn ω

+B
[∣∣ω2−v2

F (q − 2kF )2
∣∣K−1

θ (|ω|−vF |q−2kF |)
+∣∣ω2 − v2

F (q + 2kF )2
∣∣K−1

θ (|ω| − vF |q
+2kF |)] sgn ω, (37)

where A and B are (q,ω)-independent constants. The longitu-
dinal susceptibility is given by

χ ′′
z (q,ω) = π

4
δ(|ω| − ω⊥) sgn ω, (38)

that is, it is purely local (q-independent) and equal to the
single-impurity susceptibility Eq. (11).

B. Away from the decoupling limit: 2D Coulomb gas approach

As in the single-impurity case, the results Eqs. (37) and
(38), which we found for the impurity spin susceptibilities, are
valid only in the decoupling limit ρJz = 2K . In this section,
we derive RG equations that will allow us to explore the phase
diagram of the Hamiltonian (31) away from that special limit.
One way to proceed is to take the continuum limit of the
impurity lattice at the outset and bosonize it. One then obtains
a problem of two coupled boson fields for which RG equations
can be derived either directly or by first mapping it to a classical
2D Coulomb gas problem.38 Taking the continuum limit of the
impurity lattice is usually done by first adding by hand to the
Hamiltonian (31) a short-range exchange interaction term of
the form ∼JH

∑
r Sr · Sr+a , the XY part of which generates

a standard Tomonaga-Luttinger kinetic term.12 The resulting
Hamiltonian is of the Kondo-Heisenberg form. On the other
hand, if one were to integrate out the conduction electron field
φ in Eq. (31), one would generate long-range RKKY-type
spin-spin interaction terms32 of the form ∼∑

rr ′ J
σσ ′
rr ′ Sσ

r Sσ ′
r ′ ,

with J σσ ′
rr ′ ∝ |r − r ′|−γ for some power γ which depends on

the Luttinger parameter K of the helical liquid. Therefore it is
not clear that the Kondo-Heisenberg model with finite JH , or
anisotropic versions thereof, faithfully represents the original
Kondo lattice model (31). For that reason, we follow the
approach of Novais et al.,49 which does not require the adding
by hand of a kinetic term for the impurity spins. This approach
is essentially an extension of the Anderson-Yuval-Hamann
procedure to the lattice case, where the Kondo lattice problem
(31) is mapped to a classical 2D Coulomb gas, for which RG
equations can be derived using the real-space renormalization
procedure introduced by Kosterlitz.50 The main steps of the
procedure are as follows.49 As in Sec. II B for the single-
impurity problem, we use the unitary transformation U to
eliminate the Jz term in Eq. (31) and formally expand the
partition function in powers of J⊥.39,51 We then perform the
path integral over impurity spins and over the conduction
electron field φ in the Tomonaga-Luttinger ensemble. The
resulting partition function is that of a classical 2D gas
of particles with unit charge m = ±1 interacting through a
two-body logarithmic potential. It is well known that this
problem is equivalent to the classical 2D XY model and
that the associated RG equations are the Kosterlitz-Thouless
equations.50,52

The quantum partition function associated to Eq. (31) is

Z =
∫

Dφ

(∏
r

∫
DSr

)
e−S[φ,Sr ]. (39)

Because the partition function is invariant under unitary trans-
formations, we can choose to evaluate Eq. (39) using the trans-
formed Hamiltonian H̃ = UHU † with λ = −Jza/

√
πvF K ,

in which case the Jz term disappears and the Euclidean action
S in Eq. (39) becomes

S[φ,Sr ] = STL + S⊥ + SWZ

= vF

2K

∫ ∞

0
dτ

∫
dx

[
(∂xφ)2 + 1

v2
F

(∂τφ)2

]
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+ J⊥a

2πξ

∫ ∞

0
dτ

∑
r

[S+
r (τ )ei2

√
πχφ(r,τ )+i2kF r + c.c.]

+
∑

r

SWZ[Sr ], (40)

where χ = 1 − ρJz/2K as in Sec. II B, and SWZ[Sr ] in the
last line of Eq. (40) is the Wess-Zumino term for a single
impurity spin. Here again, we do not require the explicit form
of the Wess-Zumino term because spin-spin correlators will be
evaluated using the operator formalism. We formally expand
the partition function Eq. (39) in powers of J⊥,

Z =
∫

Dφ

(∏
r

∫
DSr

)
e−(STL[φ]+∑

r SWZ[Sr ])

×
∞∑

N=0

(
J⊥a

2πξ

)N 1

N !

(
N∏

�=1

∫ ∞

0
dτ�

∑
r�

)

× [S+
r1

(τ1)ei2
√

πχφ(r1,τ1)+i2kF r1 + c.c.]

× · · · [S+
rN

(τN )ei2
√

πχφ(rN ,τN )+i2kF rN + c.c.]. (41)

The factors involving impurity spin flips can be written as

S+
r�

(τ�)ei2
√

πχφ(r�,τ�)+i2kF r� + c.c.

=
∑

m�=±1

Sm�

r�
(τ�)e[i2

√
πχφ(r�,τ�)+i2kF r�]m�, (42)

with the obvious symbolic notation Sm ≡ S± for m = ±1,
where we have introduced N Ising variables m� = ±1, � =
1, . . . ,N , which correspond to spin-flip events in spacetime.
Substituting Eq. (42) in Eq. (41), we obtain

Z =
∞∑

N=0

1

N !

(
J⊥a

2πξ

)N ∑
{m}

∫
Dη

∫
Dφ

(∏
r

∫
DSr

)

× e−STL[φ] exp

{
N∑

�=1

[i2
√

πχφ(η�)m� + i2kF r�m�]

}

× e− ∑
r SWZ[Sr ]

N∏
�=1

Sm�

r�
(τ�), (43)

where we introduce the 2D coordinates η ≡ (r,τ ) and the
associated integration measure∫

Dη =
N∏

�=1

∫
d2η� ≡

N∏
�=1

∫ ∞

0
dτ�

∑
r�

,

and we denote the sum over all possible configurations of the
Ising variables m� by

∑
{m}

≡
N∏

�=1

∑
m�=±1

.

The path integral over impurity spins in Eq. (43) can be
performed first,(∏

r

∫
DSr

)
e− ∑

r SWZ[Sr ]
N∏

�=1

Sm�

r�
(τ�)

= ZS

〈
TτS

m1
r1

(τ1)Sm2
r2

(τ2) · · · SmN

rN
(τN )

〉
, (44)

where ZS ≡ (
∏

r

∫
DSr )e− ∑

r SWZ[Sr ] is the partition function
of the unperturbed impurity spins. Since only the Wess-
Zumino term appears in the action, the expectation value
on the right-hand side of Eq. (44) is with respect to a zero
Hamiltonian. As a result, the spin operators have no time
dependence. However, the order of the operators does still
matter because of the time-ordering operator. We calculate the
expectation value in the Sz basis,

ZS

〈
TτS

m1
r1

(τ1)Sm2
r2

(τ2) · · · SmN

rN
(τN )

〉
=

∑
{Sz}

〈{Sz}|Sm1
r1

Sm2
r2

· · · SmN

rN
|{Sz}〉, (45)

where we assume the ordering τ1 > τ2 > · · · > τN . The
nonvanishing of the correlation function (44) imposes some
constraints on the Ising variable configurations {m}. First,
because only S+ and S− operators appear in Eq. (44) with
no Sz operators, N must be even. Second, in order for the final
state to be the same as the initial state, there must be an equal
number of S+ and S− operators, i.e.,

∑N
�=1 m� = 0. This is

a global neutrality condition that is typical of sine-Gordon
and Coulomb gas models.53 However, there are two more
constraints on {m} that are specific to Kondo models. Since for
S = 1/2 spins we have (S±

r )2 = 0 for each r , the Ising variable
m� must necessarily alternate in imaginary time39,51 for fixed
r = r�. For the expectation value in Eq. (45) to be nonzero,
this means that in addition to the global neutrality condition,
we have a “local” neutrality condition

∑
r�=r m� = 0 for each

r .49 These constraints can be illustrated by examples with few
spins. For N = 2, we have∑

{Sz}
〈{Sz}|Sm1

r1
Sm2

r2
|{Sz}〉

= δm1+m2,0δr1=r2

∑
{Sz}

〈{Sz}|Sm1
r1

S−m1
r1

|{Sz}〉

= δm1+m2,0δr1=r2

∑
{Sz}

δSz
r1 = 1

2 m1

= 2Nsites−1δm1+m2,0δr1=r2 ,

where Nsites is the number of impurity sites. For N = 4, we
have ∑

{Sz}
〈{Sz}|Sm1

r1
Sm2

r2
Sm3

r3
Sm4

r4
|{Sz}〉

= δ∑4
�=1 m�,0

×
∑
{Sz}

(
δm1+m2,0δr1=r2δr3=r4δSz

r1 = 1
2 m1

δSz
r3 = 1

2 m3

+ δm1+m3,0δr1=r3δr2=r4δSz
r1 = 1

2 m1
δSz

r2 = 1
2 m2

+ δm1+m4,0δr1=r4δr2=r3δSz
r1 = 1

2 m1
δSz

r2 = 1
2 m2

)
= 2Nsites−2δ∑4

�=1 m�,0
(δm1+m2,0δr1=r2δr3=r4

+ δm1+m3,0δr1=r3δr2=r4

+ δm1+m4,0δr1=r4δr2=r3 ).

The Kronecker deltas enforce the local neutrality condition
for each impurity site. The average contains a factor of
2−N/2, which can be absorbed in the factor containing J⊥ [see
Eq. (43)]. The factor of 2Nsites is simply the partition function
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ZS of the unperturbed impurity spins. The partition function
Eq. (43) becomes

Z = ZS

∞∑
N=0

1

N !

(
J⊥a

2
√

2πξ

)N ′∑
{m}

∫
Dη

∫
Dφ e−STL[φ]

× exp

{ N∑
�=1

[i2
√

πχφ(η�)m�+i2kF r�m�]

}
, (46)

where the prime on the sum over {m} indicates the neutrality
constraints mentioned earlier. The local neutrality condition∑

r�=r m� = 0 for each r implies that
∑

� r�m� = 0, hence the
term proportional to 2kF in Eq. (46) vanishes. The path integral
over φ is Gaussian and can be performed exactly,∫

Dφ e−STL[φ] exp

{
N∑

�=1

[i2
√

πχφ(η�)m� + i2kF r�m�]

}

= ZTL exp

{
−2πχ2

∑
��′

m�m�′ 〈Tτφ(η�)φ(η�′)〉TL

}
,

(47)

where ZTL is the partition function of the Tomonaga-Luttinger
liquid. We see from Eq. (8) that 〈Tτφ(η′)φ(η′)〉 → ln(1) = 0
for |η − η′| � ξ , hence the � = �′ term can be removed from
Eq. (47). We have therefore rewritten the partition function
of the Kondo lattice problem (31) as that of a 2D classical
Coulomb gas,53

Z = ZTLZS

∞∑
N=0

′∑
{m}

YN

N !

∫
|�x|>ξ

Dx e−SCG , (48)

where Y ≡ ρ|J⊥|/2
√

2 is the fugacity of the gas, and

SCG = − 1
2g

∑
� �=�′

m�m�′ ln
|x� − x�′ |

ξ
, (49)

is a two-body logarithmic interaction potential with interaction
strength g ≡ 2Kχ2. We have introduced 2D coordinates
with dimensions of length x = (r,vF τ ). Approximating the
discrete sum over impurity sites by an integral

∑
r � ∫

dr
ξ

, the
integration measure is∫

Dx =
N∏

�=1

∫
d2x�

ξ 2
. (50)

The subscript |�x| > ξ in Eq. (48) signifies that the configu-
ration space integral (50) is subject to the hard-core constraint
|x� − x�′ | > ξ for all � �= �′. As mentioned previously, this
constraint comes from the short-distance behavior of the
Tomonaga-Luttinger propagator Eq. (8). We also note that the
dimensionless fugacity Y does not depend on the sign of J⊥,
because N is even. Finally, the unperturbed partition functions
ZTL and ZS in Eq. (48) do not contain any thermodynamic
singularities and will be ignored in what follows.

The RG equations for the single-component Coulomb gas
(48) are the well-known Kosterlitz-Thouless equations:50,52

dY

d�
= (

2 − 1
2g

)
Y, (51)

dg

d�
= −2π2Y 2g2. (52)

There is a quantum phase transition in the 2DXY universality
class at the position g = gc(Y ) of the Kosterlitz-Thouless
separatrix, which for small Y is given by gc(Y ) = 4 + 8πY +
O(Y 2). For ρJ⊥ � 1 corresponding to Y � 1, the transition
occurs on a curve in the (K,Jz) plane defined by Kχ2 = 2.

C. Two-particle backscattering

As discussed in Sec. II C, a quantum impurity on the edge
of a QSH insulator can generally give rise to two-particle
backscattering processes. In the case of a regular array of
impurities, this corresponds to adding to the Kondo lattice
Hamiltonian (31) the term

H2PB = λ2a

πξ

∑
r

cos[4
√

πφ(r) + 4kF r], (53)

in the boson representation. As in the single-impurity case,
H2PB explicitly breaks the continuous U (1)s spin rotation
symmetry of Eq. (31) to a discrete Z2 symmetry {1,eiπQs },
where Qs is given at the end of the paragraph following
Eq. (31).

We first consider the effect of Eq. (53) in the decoupling
limit ρJz = 2K . Following the same steps as in Sec. III A, the
transformed Hamiltonian H̃ = UHU † is

H̃ = Hc[φ,�] + J⊥a

πξ

∑
r

Sr · êr ,

where

Hc[φ,�] = HTL[φ,�] + λ2a

πξ

∑
r

cos[4
√

πφ(r) + 4kF r],

(54)

i.e., the transformed Hamiltonian in the conduction electron
sector is a periodic sine-Gordon model. This problem can
be solved exactly in two limits: at the Luther-Emery point54

K = 1/4, where the problem can be mapped to free fermions,
and at the free boson point K → 0.

We first discuss the solution of Eq. (54) at the Luther-Emery
point K = 1/4. We rescale the boson fields � → �̃ = 1

2�

and φ → φ̃ = 2φ, which preserves the canonical commutation
relations [φ̃(x),�̃(x ′)] = [φ(x),�(x ′)]. The Hamiltonian (54)
becomes

H̃c[φ̃,�̃] = vF

2

∫
dx[�̃2 + (∂xφ̃)2]

+ λ2a

πξ

∑
r

cos[2
√

πφ̃(r) + 4kF r], (55)

which can be refermionized by defining the new spinless
fermion field �̃(x) = eik̃F xψ̃R(x) + e−ik̃F xψ̃L(x) with the slow
fields

ψ̃R,L(x) = 1√
2πξ

ei
√

π [±φ̃(x)−ϑ̃(x)],

with �̃ = ∂xϑ̃ and k̃F = 2kF , in terms of which the Hamilto-
nian reads

H̃c = −ivF

∫
dx(ψ̃†

R∂xψ̃R − ψ̃
†
L∂xψ̃L)

+
∫

dx[V ∗(x)ψ̃†
Rψ̃L + V (x)ψ̃†

Lψ̃R],

245108-10



KONDO LATTICE ON THE EDGE OF A TWO- . . . PHYSICAL REVIEW B 85, 245108 (2012)

where V (x) = e2ik̃F xV0(x) is a single-particle potential with

V0(x) = λ2a

∞∑
n=−∞

δ(x − na),

i.e., a periodic Kronig-Penney potential, V0(x) = V0(x + a).
The phase e2ik̃F x can be removed from the potential by
a chiral rotation ψ̃(x) → e−ik̃F xγ 5

ψ̃(x) with γ 5 = σz and
ψ̃ = ( ψ̃R ψ̃L )T . Passing to a first-quantized description, the
time-independent Schrödinger equation for the single-particle
wave function ψ̃(x) is

[−ivF σz∂x + V0(x)σx]ψ̃ = Eψ̃.

This Dirac-Kronig-Penney problem has been studied before55

in the context of one-dimensional quark models of the nucleus,
and the single-particle spectrum is given by

En,±(k) = ±vF

a
cos−1[sech(πρλ2) cos ka] + 2nvF

π

a
,

n = 0, ± 1, ± 2, . . . , (56)

where n is a band index and the principal branch 0 <

cos−1 x � π is taken. The crystal momentum k lies in the
first Brillouin zone −π/a < k � π/a. In the absence of two-
particle backscattering λ2 = 0, we recover the massless Dirac
spectrum E0,±(k) = ±vF |k|, while for λ2 �= 0, a gap of magni-
tude 2� opens at k = 0 with � = vF a−1 cos−1[sech(πρλ2)].
In the weak-coupling limit πρλ2 � 1, we have � � |λ2|. The
low-energy spectrum near the center of the zone (k � π/a)
has the form

E0,±(k) = ±
[
� + k2

2m∗ + O(k4)

]
,

where we define a Newtonian effective mass m∗ =
(vF a)−1 sinh(πρ|λ2|). In the weak-coupling limit we have
� � m∗v2

F , i.e., a massive Dirac-like spectrum.
The many-body system is gapped only if the Fermi level lies

in a gap, which corresponds to integer fillings of the spinless
Luther-Emery fermions with respect to the impurity lattice.
Because the wave number k̃F of the Luther-Emery fermions
ψ̃ is twice that of the constituent fermions ψ , the many-body
system will be gapped only if the constituent fermions are at
half-filling with respect to the impurity lattice, i.e., kF = π/2a.
Therefore, at the Luther-Emery point K = 1/4 and for half-
filling of the conduction electrons with respect to the impurity
lattice, the system acquires a gap � for any nonzero λ2, where
� � |λ2| for small ρλ2. Away from half-filling kF �= π/2a, the
system is gapless and is described by a Fermi surface of free
Luther-Emery fermions with Fermi wave number k̃F = 2kF .
Since φ̃ = 2φ and �̃ = 1

2�, we conjecture that these carry
charge 2e and Sz spin h̄/4.

The Hamiltonian Eq. (54) can also be studied in the
free boson limit K � 1, which corresponds to very strong
electron-electron interactions in the helical liquid. We perform
a more general rescaling of the boson fields �̃ = √

K� and
φ̃ = φ/

√
K of which the Luther-Emery point K = 1/4 was

a special case. At half-filling, kF = π/2a, and for K � 1,
we can expand cos 4

√
πKφ̃ � −8πKφ̃2 + const, which is

appropriate for λ2 < 0 for which 4
√

πKφ̃ = 0(mod 2π ) in
the ground state. Therefore, in the continuum limit, the boson
φ̃ develops a mass term ∼ 1

2M2φ̃2 with M ∝ |λ2|1/2.

It is not difficult to ascertain the physics of the decoupling
limit beyond those limiting cases. In the long-wavelength limit
k � π/a, we can take the continuum limit a → 0. Then the
discrete sum over impurity sites r in Eq. (54) can be replaced
by an integral over x, and we obtain

H̃c = vF

2

∫
dx[�̃2 + (∂xφ̃)2]

+ λ2a

πξ

∫
dx cos(4

√
πKφ̃ + 4kF an),

where n ≡ x/a is integer (not to be confused with the Luther-
Emery band index in Eq. (56)). If kF �= π/2a, the integral over
the cosine term averages to zero and we have a free massless
boson Hamiltonian with a gapless spectrum. The physics is the
same as that of Sec. III A. At half-filling kF = π/2a, we have
4kF an = 2πn and the cosine term survives the averaging,

H̃c = vF

2

∫
dx[�̃2 + (∂xφ̃)2] + λ2a

πξ

∫
dx cos 4

√
πKφ̃,

i.e., the usual sine-Gordon model. A term of the form cos βφ̃

is relevant in the infrared43 for β2 < 8π . Here we have
β2 = 16πK . On the one hand, if K > 1/2, the cosine term is
irrelevant. The spin U (1)s symmetry is dynamically restored
at low energies, the conduction electrons remain gapless, the
field φ fluctuates wildly and there is no long-range order
of the impurity spins. Once again, the physics is the same
as that of Sec. III A. On the other hand, if K < 1/2 the
cosine term is relevant. The ground state spontaneously breaks
the Z2 spin symmetry with long-range order of the field
φ. The Luther-Emery and free boson points are particular
points in that phase. The conduction electrons open up a
gap10 � ∝ |λ2|1/(2−4K) for ρλ2 � 1, which agrees with the
expressions � ∝ |λ2| and � ∝ |λ2|1/2 in the Luther-Emery
K = 1/4 and free boson K → 0 limits, respectively. As in
Sec. II C, the local CDW phase 2

√
πφ(r) is pinned in the

ground state at (n + 1/2)π for λ2 > 0 and nπ for λ2 < 0 with
n ∈ Z. To the difference of the single-impurity case, however,
here there is long-range spatial order of the CDW phase. Using
Eqs. (33) and (34), one can see that the impurity spins develop
long-range Ising antiferromagnetic order:〈

Sy
r

〉 = ± 1
2 (−1)r/a sgn J⊥, λ2 > 0,〈

Sx
r

〉 = ± 1
2 (−1)r/a sgn J⊥, λ2 < 0,

i.e., the order is either in the y or x direction depending on
the sign of λ2. The ± sign corresponds to the two degenerate
antiferromagnetic ground states and is picked by spontaneous
symmetry breaking.

As in Sec. II C, one can ask whether the scaling dimension
of the two-particle backscattering term at half-filling is
affected by the impurity spin sector away from the decoupling
limit. It is still true that the two-particle backscattering
operator commutes with the unitary transformation U =
exp[iλ

∑
r φ(r)Sz

r ] with λ = −Jza/
√

πvF K for all Jz and
hence that the correlator 〈cos 4

√
πφ(x,τ ) cos 4

√
πφ(0,0)〉 is

independent of Jz. Therefore the scaling dimension of the
two-particle backscattering operator is still 4K . However, in
the Kondo lattice problem, the bulk Luttinger parameter K

does renormalize under the (1 + 1)-dimensional RG flow. In
particular, K is renormalized by the impurity spin sector even
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in the absence of two-particle backscattering, as the Kosterlitz-
Thouless equations (51) and (52) show. One could therefore
expect that the phase boundary at K = 1/2 is changed by the
presence of the Kondo lattice.

To check whether this is the case or not, we repeat the
analysis of Sec. III B in the presence of the two-particle
backscattering term S2PB = λ2a

πξ

∫ ∞
0 dτ

∑
r cos[4

√
πφ(r,τ ) +

4kF r]. The technical details of the mapping to a Coulomb
gas are similar and will not be reproduced here. The main
differences with the λ2 = 0 problem are as follows. In addition
to the Ising variables m� = ±1 representing spin flips, we
need to introduce another set of Ising variables ej = ±1 rep-
resenting two-particle backscattering events. Because two spin
flips also backscatter two conduction electrons, the dynamics
of the m� and ej particles are coupled. After neglecting the
noninteracting factors ZTL and ZS [see discussion following
Eq. (48)], the zero-temperature partition function of the
Kondo lattice in the presence of two-particle backscattering is
exactly mapped to that of two coupled 2D classical Coulomb
gases,56,57

Z=
∞∑

Nm=0

∞∑
Ne=0

′∑
{m}

′∑
{e}

YNm
m

Nm!

YNe
e

Ne!

∫
|�xe |>ξ

Dxe

∫
|�xm|>ξ

Dxm e−SCG ,

(57)

where Nm and Ym = ρ|J⊥|/2
√

2 are the total number of
spin flips and their fugacity [i.e., the same as N and Y in
Eq. (48)], Ne and Ye = ρ|λ2|/2 are the total number of two-
particle backscattering events and their fugacity, the primed
sum over spin-flip configurations {m} is the same as that in
Eq. (48), the primed sum over two-particle backscattering
event configurations {e} is subject to the global neutrality
constraint

∑
j ej = 0, and the integration measures

∫
Dxm and∫

Dxe are as in Eq. (50), subject to the hard-core constraints
|xm

� − xm
�′ | > ξ , � �= �′ and |xe

j − xe
j ′ | > ξ , j �= j ′, for particles

of same type. The action in Eq. (57) is

SCG = −1

2

(
gmm

∑
� �=�′

m�m�′ ln

∣∣xm
� − xm

�′
∣∣

ξ
+ gee

∑
j �=j ′

ej ej ′

× ln

∣∣xe
j − xe

j ′
∣∣

ξ
+ gem

∑
j�

ejm� ln

∣∣xe
j − xm

�

∣∣
ξ

)

+ 4ikF

∑
j

re
j ej , (58)

where gmm = 2Kχ2 [i.e., the same as g in Eq. (49)], gee = 8K ,
and gem = 8Kχ . The last term in Eq. (58) is pure imaginary
and can be thought of as a Berry phase effect, with re

j

the spatial coordinate of the j th two-particle backscattering
event [recall that x = (r,vF τ )]. Unlike for the spin flips,
there is no local neutrality condition that would allow us to
set this term to zero. However, due to the presence of the
impurity lattice re

j is an integer multiple of a. Furthermore,
ej = ±1 is an integer. Therefore, at half-filling 2kF = π/a,
we find that 4kF

∑
j re

j ej is an integer multiple of 2π , hence
exp(−4ikF

∑
j re

j ej ) = 1 and the Berry phase term does not
contribute to the partition function. Away from half-filling,

TABLE I. New particles generated under renormalization and
their scaling dimensions.

Particle type a Scaling dimension �a

(1,0) ≡ m Kχ 2

(2,0) 4Kχ 2

...
...

(p,0) Kχ 2p2

(0,1) ≡ e 4K

(0,2) 16K

...
...

(0,q) 4Kq2

(1,1) Kχ 2 + 4K

...
...

(p,q) Kχ 2p2 + 4Kq2

this complex factor is oscillatory and strongly suppresses
configurations of e particles. Only the trivial configuration
with Ne = 0, i.e., with no e particles whatsoever, survives the
partition sum. In other words, the fugacity Ye ∝ |λ2| becomes
an irrelevant variable under the RG. We thus confirm the
result expected from the analysis in the decoupling limit that
the two-particle backscattering term is irrelevant away from
half-filling, regardless of the value of Jz.

In the following, we focus on the half-filled case 2kF =
π/a, where both m and e particles need to be retained, and
the action is given by Eq. (58) without the Berry phase term.
The scaling dimensions of the fugacity variables Ye and Ym

can be obtained by rescaling the cutoff ξ → ξ + dξ in the
integration measures

∫
Dx and in the logarithmic interaction

potentials ln(|x − x′|/ξ ).53 In general, to find all the relevant
variables, one also needs to consider the fugacities of new
particle types which are not present in the original problem but
are created along the RG flow by particle “fusion.”53 Those
particles are generally of the type (p,q), which means that they
are composite objects of p particles of type m and q particles
of type e. The scaling dimensions of all possible such particles
are indicated in Table I. A particle of type a is relevant if
its scaling dimension �a < 2. For K > 1/2, all particles of
the type (p,q > 0) are irrelevant, i.e., only pure spin flips are
relevant.

What about the renormalization of K due to spin flips? This
effect which corresponds here to the renormalization of gee

occurs at one-loop level. To illustrate the physics, we compute
the one-loop RG equations taking into account the e and m

particles as well as the next most relevant composite spin flip
operator (2,0) ≡ m̃, which corresponds to double spin flips.
We find

dYe

d�
= (

2 − 1
2gee

)
Ye,

dYm

d�
= (

2 − 1
2gmm

)
Ym + 2πYmYm̃,

dYm̃

d�
= (2 − 2gmm)Ym̃ + πY 2

m,

dgee

d�
= −2π2

[
Y 2

e g2
ee + (

Y 2
m + 4Y 2

m̃

)
g2

em

]
,
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dgmm

d�
= −2π2

[(
Y 2

m + 4Y 2
m̃

)
g2

mm + Y 2
e g2

em

]
,

dgem

d�
= −2π2

[
Y 2

e gee + (
Y 2

m + 4Y 2
m̃

)
gmm

]
gem.

The β function of gee is negative, which means that Ye tends to
be more relevant as we flow into the infrared than if there was
no renormalization of gee. However, the β function of gee is
second order in all the fugacities, which for small J⊥ and λ2 are
small. The consideration of higher-order spin flips (p > 2,0)
will give additional contributions to the β function of gee but
they will all be quadratic in the corresponding fugacities, and
therefore small for small J⊥ and λ2. We therefore conclude
that for small J⊥ and λ2, the phase boundary between the
gapped Ising antiferromagnet and the gapless disordered
state does indeed occur at K = 1/2 regardless of the value
of Jz. We expect that the phase boundary will be affected
by the one-loop RG flows for finite J⊥ and λ2, but this
is a regime where the perturbative approach described here
eventually fails. For the same reasons, we also expect that the
lattice version

∑
r{[∂2

xϑ(r)]ei2
√

πφ(r) + H.c.} of the inelastic
backscattering operator35,46 mentioned in Sec. II C remains
irrelevant for all 0 < K < 1.

D. Phase diagram of the Kondo lattice problem

We now discuss the phase diagram of the Kondo lattice
problem based on the results obtained thus far (see Fig. 3).
There are four cases to distinguish: at half-filling (2kF a =

FIG. 3. (Color online) Zero-temperature phase diagram of the 1D
Kondo lattice in the helical edge liquid of the quantum spin Hall state
for small J⊥. (a) In the absence of two-particle backscattering for
any filling, or in the presence of two-particle backscattering but away
from half-filling (2kF a �= π ), there are two gapless phases: a Kondo
screened strong coupling phase (AF) and an unscreened XY phase,
separated by a quantum phase transition in the 2DXY universality
class. The decoupling limit (dashed line) lies in the AF phase. The
single-impurity phase boundary of Fig. 2(b) is drawn for comparison
(dotted line). (b) In the presence of two-particle backscattering and
at half-filling (2kF a = π ), there is an additional gapped phase with
long-range Ising antiferromagnetic order (Ising AF) for K < 1/2. In
contrast to the ordinary half-filled 1D Kondo lattice (see Ref. 33),
for noninteracting conduction electrons (K = 1) the system remains
gapless.

π ) or away from half-filling (2kF a �= π ), with two-particle
backscattering (λ2 �= 0) or without (λ2 = 0). In three out
of these four cases (away from half-filling without two-
particle backscattering, away from half-filling with two-
particle backscattering, and at half-filling without two-particle
backscattering), the phase diagram is given in Fig. 3(a). There
is a Kondo screened strong coupling phase (AF) sandwiched
between two XY phases. In the AF phase, the spin flip fugacity
Ym and hence |J⊥| flow to infinity. Based on the exact solution
in the decoupling limit (see Sec. III A), we expect that impurity
spin correlations are gapless in the xy plane but gapped in the
out-of-plane z direction with a gap of order |J⊥|. In the XY

phase, Ym flows to zero and the system is described by an
effective Hamiltonian similar to Eq. (31) but with J⊥ = 0 and
renormalized values of K and Jz. As in the single-impurity case
(see Sec. II B), the impurity spin correlations can be computed
in this phase by applying the unitary transformation U on
the lattice to remove the

∑
r Sz�(r) term from the effective

Hamiltonian; they are gapless in the xy plane and vanish in the
z direction. Although the phase diagram of the Kondo lattice is
qualitatively similar to that of the single-impurity problem in
Fig. 2(b), one interesting difference is that for noninteracting
conduction electrons (K = 1), a ferromagnetic Jz < 0 can give
rise to a strong-coupling AF phase at low energies, which did
not occur for a single impurity.

At half-filling and in the presence of two-particle backscat-
tering, there is an additional gapped phase with long-range
Ising antiferromagnetic order (Ising AF) for K < 1/2 [see
Fig. 3(b)]. The Luther-Emery point at K = 1/4 and ρJz =
2K = 1/2 is one point in that phase. For K > 1/2, two-
particle backscattering is irrelevant and that portion of the
phase diagram is the same as Fig. 3(a). In particular, for
noninteracting conduction electrons (K = 1) the system re-
mains gapless, being either in the AF or the XY phase. This
is in marked contrast to the ordinary 1D Kondo lattice with
nonhelical spinful conduction electrons, in which case the
ground state of the system is a gapped spin liquid.33,58,59 The
Kondo lattice in a helical liquid can open a gap, but only for
K < 1/2 and at the cost of developing Ising antiferromagnetic
long-range order, which is also qualitatively different from
the usual spinful case. The Mermin-Wagner theorem, which
forbids the existence of long-range magnetic order in quantum
(1 + 1)-dimensional spin systems with a continuous spin
rotation symmetry, has recently been extended to the case
of lattice spins coupled to itinerant charge carriers such as
the 1D Kondo lattice.60 The disordered ground state of the
half-filled SU(2)-invariant 1D Kondo lattice is a good example
of this general result. However, in the presence of spin-orbit
interactions magnetic order is not excluded.60 In our case,
the two-particle backscattering operator breaks the continuous
U (1) spin rotation symmetry to the discrete Z2 symmetry, and
microscopically arises from electron-electron interactions in
the presence of spin-orbit coupling.10 This allows the system
to escape the extended Mermin-Wagner theorem and develop
long-range Ising AF order.

IV. CONCLUSION

We have generalized previous studies of quantum impuri-
ties on the 1D edge of a 2D time-reversal invariant topological
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insulator (QSH insulator) in two directions. First, we derived
the zero-temperature phase diagram of the single-impurity
problem in the (K,Jz) plane for all values 0 < K < 1 of the
Luttinger parameter K of the helical edge liquid, correspond-
ing to repulsive electron-electron interactions, and all values of
the Kondo coupling Jz in the z direction. Previous treatments
were restricted to the weak coupling regime 1 − K � 1 and
ρ|Jz| � 1. We found that a large portion of the phase diagram
for strong antiferromagnetic Jz > 0 was occupied by a local
moment phase that usually occurs only for ferromagnetic
Jz < 0. This result had been missed by previous works. Our
new results were derived in part by making use of an exact
solution in the so-called decoupling limit ρJz = 2K that
corresponds, at least in the noninteracting limit K = 1, to
the unitarity limit δ = ±π/2 for the scattering of the edge
electrons on the z component of the impurity spin. The solution
in the decoupling limit was exact for all J⊥. This analysis was
supplemented by a calculation à la Anderson-Yuval-Hamann
that allowed us to derive improved renormalization group
equations for the Kondo couplings, and to explore the phase
diagram away from the decoupling limit.

Second, we generalized the single-impurity problem to a
Kondo lattice problem where a regular 1D array of quantum
impurities interacted with the edge electrons. The solution in
the decoupling limit was extended to the lattice. We found
that the topology of the zero-temperature phase diagram was
similar to that of the single-impurity problem. However, an
interesting difference was that in the noninteracting case
(K = 1), ferromagnetic Kondo couplings could give rise to a
Kondo screened phase in the lattice case but not in the single-
impurity case. More importantly, the physics of the Kondo
lattice problem was found to depend crucially on the filling
of conduction electrons with respect to the impurity lattice.
Away from half-filling, we found two gapless phases separated
by a quantum phase transition in the 2DXY universality
class. At half-filling, we found an additional gapped phase
for K < 1/2 with long-range Ising antiferromagnetic order.
This was contrasted with the disordered ground state of the
half-filled Kondo lattice in an ordinary spinful 1D electron gas.
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APPENDIX: DECOUPLING LIMIT AND UNITARITY LIMIT

In this appendix, we show that for noninteracting edge
electrons (K = 1), the decoupling limit ρJz = 2K = 2 cor-
responds to the unitarity limit δ = ±π/2 for scattering on the
z component of the impurity spin, where δ is the scattering
phase shift. For noninteracting electrons, we can work in the
fermion representation where the single-impurity Hamiltonian
(1) in the absence of the J⊥ term is

H = −ivF

∫
dx(ψ†

R↑∂xψR↑ − ψ
†
L↓∂xψL↓)

+JzaSz(ψ†
R↑ψR↑ − ψ

†
L↓ψL↓)x=0,

where ψ
†
R↑ and ψ

†
L↓ are the fermionic creation operators

for the spin-up right-moving edge electrons and spin-down
left-moving edge electrons, respectively. Since [H,Sz] = 0,
we can work in the Sz basis and treat Sz = ± 1

2 as a c

number. Furthermore, H is also diagonal in the electron spin
sz basis, H = ∑

σ=±1

∫
dx ψ†

σ Ĥσψσ where the first-quantized
Hamiltonian Ĥσ is

Ĥσ = −iσvF ∂x + σJzaSzδ(x).

The time-independent Schrödinger equation Ĥσϕ = Eϕ is
solved by the ansatz ϕkσ (x) ∼ eiσkx+if (x) with f such that
∂xf = 0 for x �= 0. For x �= 0, the Schrödinger equation
reads −iσvF ∂xϕkσ = Eϕkσ , which gives the expected linear
dispersion E = vF k. Substituting this result in the Schrödinger
equation at x = 0, we obtain vF ∂xf + JzaSzδ(x) = 0, which
is solved by f (x) = −πρJzS

zθ (x) where ρ = a/πvF is the
density of states of the helical liquid and θ (x) is the Heaviside
step function. As a result, the edge state wave function is

ϕkσ (x) ∼ eiσkx−iπρJzS
zθ(x).

The scattering S matrix is defined by

S(k) = e2iδk = ϕkσ (x = 0+)

ϕkσ (x = 0−)
= eiπρJzS

z

,

hence the scattering phase shift δk = δ is

δ = − 1
2πρJzS

z = ± 1
4πρJz,

since Sz = ±1/2. In the decoupling limit, we have ρJz = 2,
which corresponds to the unitarity limit δ = ±π/2.
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