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We study the acoustic phonon response of crystals hosting a gapped time-reversal symmetry-breaking electronic
state. The phonon effective action can in general acquire a dissipationless “Hall’ viscosity, which is determined
by the adiabatic Berry curvature of the electron wave function. This Hall viscosity endows the system with a
characteristic frequency ωv; for acoustic phonons of frequency ω, it shifts the phonon spectrum by an amount of
order (ω/ωv)2 and it mixes the longitudinal and transverse acoustic phonons with a relative amplitude ratio of
ω/ωv and with a phase shift of ±π/2, to lowest order in ω/ωv . We study several examples, including the integer
quantum Hall states, the quantum anomalous Hall state in Hg1−yMnyTe quantum wells, and a mean-field model
for px + ipy superconductors. We discuss situations in which the acoustic phonon response is directly related to
the gravitational response, for which striking predictions have been made. When the electron-phonon system is
viewed as a whole, this provides an example where measurements of Goldstone modes may serve as a probe of
adiabatic curvature of the wave function of the gapped sector of a system.
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I. INTRODUCTION

One of the most important discoveries in condensed matter
physics has been that there are distinct states of matter
that are distinguished not by their patterns of symmetry
breaking, but by their topological order.1 Such topological
states of matter (TSM) can not be described by local order
parameters, but can sometimes be characterized by quantized
topological responses to external fields. For example, the
quantum Hall states,2,3 the first topological states discovered
in nature, can be characterized by their quantized Hall
conductance. The three-dimensional time-reversal-invariant
topological insulators discovered more recently4–6 can be
characterized by a topological magnetoelectric effect.7,8 More
generically, topological insulators in arbitrary dimensions can
be characterized by topological responses to electromag-
netic fields.7 However, many TSM can not be characterized
by electromagnetic response. For example, in topological
superconductors (TSC), the charge conservation symme-
try is effectively broken, and the electromagnetic field is
screened. Thus, more generic response properties need to
be investigated in order to distinguish different topological
states.9–11

In this paper, we propose a response property, the “phonon
Hall viscosity,” for gapped states that break time-reversal
symmetry. For a quantum liquid, the viscosity tensor ηijkl

is defined by the linear response Tij = −pij + ηijklvkl , with
Tij the stress tensor, pij the pressure tensor, and vij =
1
2 (∂ivj + ∂jvi) the gradient of the velocity field vi . Usually,
a finite viscosity indicates dissipation in the system, similar
to a finite resistivity. However, the viscosity can have a
dissipationless component, associated with the part of ηijkl

that is antisymmetric under exchange of the first and second
pair of indices.12 This Hall viscosity can only exist in a
system that breaks time-reversal symmetry and is analogous
to the dissipationless Hall resistivity. The Hall viscosity has
appeared in the hydrodynamic theory of the A-phase of
He-3 (Ref. 13) and was studied for quantum Hall liquids by
Avron et al.14,15 It has since been studied for various (2 + 1)-
dimensional topological states, including integer quantum
Hall (IQH) states,14 the (2 + 1)-dimensional Dirac model,16

fractional quantum Hall (FQH) states,17–20 and px + ipy-
paired topological superconductors.17

The Hall viscosity provides a probe of gapped time-reversal
symmetry-breaking states in the charge-neutral channel, which
does not require charge conservation and thus may be a
suitable response for TSC and more generic TSM that can
not be characterized by topological electromagnetic response.
In particular, it was recently proposed that the Hall viscosity
of a rotationally invariant system is related to the angular
momentum carried by each quasiparticle of the system,17,21

which is in turn proportional to the “topological shift’ of the
topological field theory on the sphere.22 However, the Hall
viscosity is only defined for a liquid in continuum since the
stress tensor is a momentum current which is ill defined if
continuous translation symmetry is broken by the lattice. The
discussions of Hall viscosity in the literature have been treating
the electron system as a liquid without explicitly considering
the lattice effects. This approximation is in general problematic
since the Hall viscosity intrinsically depends on a length
scale, and there are two natural length scales in a gapped
system: a length scale associated with the energy gap, and a
different length scale associated with the electron density. In
general, the Hall viscosity will depend on both of these length
scales and will therefore depend on nonuniversal short-range
physics. Even if the results in the continuum approximation
are applicable in some cases, we are facing another problem of
how to observe the Hall viscosity in general since it is difficult
to measure the velocity and stress of the electron liquid. To
distinguish the Hall viscosity defined in this traditional way
with the phonon Hall viscosity that we study in this work, we
refer to the Hall viscosity of the continuum electron liquid as
the gravitational Hall viscosity since the viscosity tensor of the
electron liquid can be considered as a response to an external
deformation of the spatial metric gij .14

To solve these problems of the gravitational Hall viscosity,
we alternatively define the phonon Hall viscosity, which is
the adiabatic response of the electron state to the deformation
of the crystal, i.e., to acoustic phonons. Instead of the stress
tensor which couples to the deformation of the spatial metric
and is only well defined in the continuum, the deformation
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of the crystal and the electron-phonon coupling are always
well defined. The linear response of the electron liquid to the
crystal deformation leads to a correction to phonon dynamics.
The strain field uij = 1

2 (∂iuj + ∂jui) plays the role of the
spatial metric gij , with ui the displacement field of the nuclei.
The phonon Hall viscosity is defined by the linear response
〈 ∂H

∂uij
〉 = λijklukl + ηijkl u̇kl with H the electron Hamiltonian

depending on the lattice strain uij , λijkl the elastic moduli, and
ηijkl the phonon Hall viscosity. The phonon Hall viscosity
is well defined for all gapped states with a regular lattice
background, and is physically observable through phonon
dynamics.

In the rest of this paper, we will first give a general definition
of the phonon Hall viscosity in Sec. II and show how it
relates to the adiabatic Berry curvature of the many-body
electron wave function. In Sec. III, we study the phonon
Hall viscosity in several example systems such as quantum
Hall states, quantum anomalous Hall states, and (p + ip)
superconductors. We make comparisons between the phonon
Hall viscosity and the gravitational Hall viscosity in the
continuum limit, and in certain examples, we analyze features
of the Hall viscosity that are universal or depend only on the
low-energy theory of the electronic system. Finally, in Sec. IV
we will discuss the physical consequences of the phonon Hall
viscosity, give order-of-magnitude numerical estimates, and
discuss experimental prospects for the observation of phonon
Hall viscosity.

II. DEFINITION OF THE PHONON HALL VISCOSITY

A. Effective action of acoustic phonons

In this section, we will define the phonon Hall viscosity
based on a generic discussion of acoustic phonon dynamics.
The dynamics of acoustic phonons can be described using the
long-wavelength effective action in terms of the displacement
fields u(r), which describe the displacement of an atom from
its original location. For a gapless state, such as a metal or
a magnet, the phonon effective action will not be a local
theory in terms of the strain fields. For an insulator, dissipation
can be ignored at frequencies below the energy gap, and the
long-wavelength elastic response is described by an effective
action for the displacement fields u, which can be obtained
by integrating out the electrons: e−Seff[u] = ∫

Dc†Dce−S[u,c,c†].
For a time-reversal-invariant insulator, the phonon effective
action is, to lowest order,

Seff = 1

2

∫
ddx dt(ρ∂tuj ∂tuj − λijkl∂iuj ∂kul), (1)

where λijkl = λklij = λjikl are the elastic moduli; its symmetry
under interchange of the first or second pair of indices
follows from invariance of the energy under rigid rotations. In
the presence of time-reversal symmetry breaking, additional
“Hall’ viscosity terms are allowed:

δSH = 1

2

∫
ddx dt ηijkl∂iuj ∂ku̇l, (2)

where ηijkl = −ηklij . The total effective action is given by
Seff + δSH . As we discuss further in the following sections,
we expect that for a gapped system, such time-reversal
symmetry-breaking terms in the phonon effective action will

be dominated by contributions from the many-body electron
state. For an inversion symmetric system, this is the only
additional term that can be added, to cubic order in momenta.
Anharmonic corrections to the acoustic phonon dynamics go
like (∂u)4, so they are O(k4), implying that the Hall viscosity
term may be distinctly measurable since it is lower order in
momenta. Impurities in the crystal may be difficult to treat,
but as we discuss in Sec. IV B, their contributions are not
sensitive to the sign of the time-reversal symmetry breaking of
the electronic system and may be separated from Hall viscosity
contributions.

Up to total derivatives, Eq. (2) only depends on ηijkl + ηkjil :

δSH = 1

2

∫
ddx dt[η+

ijkl∂iuj ∂ku̇l + η−
ijkl∂i(uj∂ku̇l)], (3)

where η±
ijkl = 1

2 (ηijkl ± ηkjil). The boundary terms may have
interesting consequences for the surface waves of a medium
with such a Hall viscosity, but we will ignore them in this paper.
In some cases, it will be conceptually more clear to write the
above action in terms of the strain tensor uij ≡ 1

2 (∂iuj + ∂jui)
and the rotation tensor mij ≡ 1

2 (∂iuj − ∂jui):

δSH = 1

2

∫
ddx dt

[
ηSS

ijkluij u̇kl + ηAA
ijklmij ṁkl + 2ηSA

ijkluij ṁkl

]
,

(4)

where ηSS
ijkl = ηSS

jikl = −ηSS
klij , ηAA

ijkl = −ηAA
jikl = −ηAA

klij , and
ηSA

ijkl = ηSA
jikl = −ηSA

ijlk can all be deduced from ηijkl . For
an isotropic three-dimensional system, ηijkl must vanish. In
two dimensions, ηAA always vanishes; for an isotropic two-
dimensional (2D) system, or one with π/4 rotation symmetry,
ηSS and ηSA each reduce to a single number: ηH ≡ ηSS

xxxy =
ηSS

xyyy (Refs. 14 and 15) and ηM ≡ ηSA
xxxy = ηSA

yyxy . In this case,

δSH = 2
∫

d2x dt[ηH (uxx − uyy)u̇xy + ηM (uxx + uyy)ṁxy],

(5)

where ηH = 1
2 (ηxxxy + ηxxyx) = 1

2 (ηxyyy + ηyxyy) and ηM =
1
2 (ηxxxy − ηxxyx) = 1

2 (ηxyyy − ηyxyy). It also follows that, up
to boundary terms, (5) is equivalent to

δSH =
∫

d2x dt[ηxxxy(uxx − uyy)u̇xy + ηxxxy(uxx + uyy)ṁxy].

(6)

To obtain this, we have used the fact that, up to boundary
terms, ηxxyx does not contribute to the action.

B. Phonon Hall viscosity as a response property
of the electron system

In the adiabatic approximation, it is assumed that the motion
of the lattice is infinitely slow compared with the motion of
the electrons, so that at any moment, the electrons are in
their ground state with respect to that particular instantaneous
configuration of the lattice. Within this approximation, the
effect of lattice displacements is to alter the parameters in the
effective Hamiltonian of the electron system. The dependence
of these parameters on the atom positions can be calculated
using standard ab initio methods. Thus, in the adiabatic
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approximation, the electrons will be described by an effective
Hamiltonian where the lattice displacements appear as external
parameters: H [{ui}]. un is the displacement of the nth atom
from its original location. We may also view H as a function
of the Fourier components uq = 1√

Nsite

∑
n une

iq·n. Then, the
following linear response formula

ηab(q,ω) = 1

ω

1

Ld

∫
dt eiωt

〈[
∂H

∂uq,a

(t),
∂H

∂u−q,b

(0)

]〉
(7)

gives an additional term to the acoustic phonon effective action
of the form

δS = 1

2

∫
dd+1x dd+1x ′ηab(x − x ′)ua(x)u̇b(x ′), (8)

where x here is a (d + 1)-component vector including space
and time, ηab(x) is the Fourier transform into real space-time
of ηab(q,ω), and we have taken the continuum limit to get
the displacement field u(x). The leading-order term that is
independent of uniform displacements u → u + a is given by
Eq. (2). Starting from Eq. (8), we find

ηijkl = 1

2
lim
ω→0

lim
q→0

∂

∂qi

∂

∂qk

ηjl(q,ω). (9)

For spatially homogeneous deformations, the distortion tensor
wij ≡ ∂iuj is a constant. To calculate ηijkl , it will be more
convenient to take wij to be a constant and to treat it as a
parameter in H . Then,

ηijkl = 1

2
lim
ω→0

1

ω

1

Ld

∫
dt eiωt

〈[
∂H

∂wij

(t),
∂H

∂wkl

(0)

]〉
+ (i ↔ k).

(10)

For spatially inhomogeneous deformations, we can continue
to use the dc response (10) instead of the exact ac response, as
long as the acoustic phonon frequency is much less than the
electronic energy gap.

It is well known that the adiabatic response of a Hamil-
tonian to changes in some parameter is directly related to
Berry curvature23 of the ground-state wave function. For a
Hamiltonian H [{λi}] that depends on a set of parameters {λi},
we have 〈

∂H

∂λi

〉
= ∂E

∂λi

+ 	ij λ̇j , (11)

where 	ij is the Berry curvature of the ground-state wave
function. Thus, ηijkl is given by the Berry curvature associated
with adiabatically varying the distortion tensor wij ≡ ∂iuj as
external parameters:

iηijkl

= 1

2

(
∂

∂wij

〈ψ | ∂

∂wkl

|ψ〉 − ∂

∂wkl

〈ψ | ∂

∂wij

|ψ〉 + (i ↔ k)

)
,

(12)

where |ψ〉 is the ground state of the Hamiltonian H .

III. EXAMPLES

In this section, we will study some examples of systems
with a phonon Hall viscosity, including electrons hopping
among the s orbitals of a square lattice in a background

magnetic field, a simple model for the quantum anomalous
Hall state in HgMnTe quantum wells, and a simple mean-field
model of a spinless px + ipy superconductor. In certain limits,
we compare the phonon Hall viscosity of these systems with
their conventional Hall viscosity studied in the literature.

A. Hofstadter model

Consider a square lattice with nearest- and next-nearest-
neighbor hopping:

H = −1

2

∑
〈ij〉

tij e
iAij c

†
i cj − 1

2

∑
〈〈ij〉〉

t̃ij e
iAij c

†
i cj + H.c. (13)

Consider hopping among s-wave orbitals, in which case tij and
t̃ij depend only on the distance |rj − ri | between atoms. To
leading order in the crystal deformations, ti,i+x̂ 	 t + t ′uxx ,
ti,i+ŷ 	 t + t ′uyy , and t̃i,i+x̂±ŷ = t̃ + t̃ ′[ 1

2 (uxx + uyy) ± uxy].
If t(r) is the hopping matrix element between the s-wave
orbitals that are a distance r apart, t ≡ t(a), t̃ = t(

√
2a),

t ′ = a ∂t
∂r

|a , t̃ ′ ≡ √
2a ∂t

∂r
|√2a , where a is the lattice spacing

in the absence of lattice deformations. In the absence of
a background electromagnetic field and for constant lattice
displacements, the Hamiltonian can be written in momentum
space as H = ∑

k εkc
†
kck. We note that a significant effect of

the strain fields on the energy of the system is to change the
onsite energy of atomic orbitals. However, this contribution
does not affect the Hall viscosity below, so we ignore it.

In the continuum limit, the dispersion is, up to a constant,

εk 	 1

2m∗ kikjgij − (t ′ + t̃ ′)(uxx + uyy), (14)

where the effective mass is defined by 1
2m∗ ≡ (t/2 + t̃), and

gij = δij + δgij ,

δg = 2m∗ t̃ ′
2

⎛
⎝

(
1 + t ′

t̃ ′
)
uxx + uyy 2uxy

2uxy

(
1 + t ′

t̃ ′
)
uyy + uxx

⎞
⎠ .

In the presence of a gauge field, we take k → −iD ≡ −i(∂ −
iA), so the effective theory becomes

H = − 1

2m∗ gijDiDj − (t ′ + t̃ ′)(uxx + uyy). (16)

The phonon Hall viscosity is then related directly to the
gravitational Hall viscosity of the electronic fluid.14 We find

ηH ≡ ηSS
xxxy = (t/2 + t̃ )−2 t̃ ′t ′

4
ηH

gr . (17)

For NL filled Landau levels, ηH
gr = NLh̄n/4, where n is the

density of electrons, is the Hall viscosity of the electron liquid
when the crystal is ignored.14,17 The prefactor (t/2 + t̃)−2 t̃ ′t ′
can explicitly be verified to be of order one for typical s-wave
orbitals and typical separations between atoms; it can also be
calculated fairly precisely using ab initio methods. Note that
since the Hamiltonian depends only on the strain field uij , the
phonon effective action also only depends on uij and there is
no dependence on the rotation tensor mij , i.e., ηSA = ηAA = 0.

Therefore, we see that the result of Refs. 14 and 24 for inte-
ger quantum Hall (IQH) states has a direct effect in the phonon
response, which, as will be discussed in Sec. IV, is a directly
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TABLE I. Realistic parameters for HgTe quantum wells, taken
from Ref. 31.

A (eV Å) B (eV Å2) a (Å) M (eV)

3.645 −68.6 6.46 −0.01

measurable physical quantity. For higher density systems, we
can not take the continuum limit; the phonon Hall viscosity
is still a well-defined quantity that is calculable through linear
response theory, but the previously defined “gravitational Hall
viscosity’of Refs. 14 and 24 is not well defined.

B. Quantized anomalous Hall state and Hg1− yMn yTe
quantum wells

Here, we will calculate the phonon Hall viscosity for
Hg1−yMnyTe quantum wells, which exhibit a quantized
anomalous Hall (QAH) state for certain thicknesses of the
quantum well and spin polarization of the Mn ions.25 The
QAH state is a band insulator that exhibits a quantized Hall
conductance in the absence of a net magnetic field. The first
lattice model for such a state was introduced by Haldane,26 and
since then it has been proposed to be realized in Hg1−yMnyTe
quantum wells.27–29 As the quantum-well thickness and the
magnetization of the Mn ions is tuned, the system can be tuned
between different topological states: a quantum spin Hall state,
QAH states, and the topologically trivial state.

At the topological phase transitions, the phonon Hall vis-
cosity exhibits nonanalyticities that can be accounted for in the
continuum Dirac approximation. In what follows, we will cal-
culate the phonon Hall viscosity for physically realistic param-
eters, we will isolate the universal contributions that depend
only on the low-energy physics near the Dirac cones, and we
make contact with the calculations of Ref. 16 for the regular-
ized gravitational Hall viscosity of the continuum Dirac model.

The model for Hg1−yMnyTe quantum wells is given by a
four-band Bloch Hamiltonian

H (k) =
(

h+(k) 0
0 h−(k)

)
, (18)

where the two-band Bloch Hamiltonians can be expanded
in terms of Pauli matrices h±(k) = ε±(k)I + d±(k) · σ , and
h−(k) = h∗

+(−k). In the continuum limit and in the absence
of lattice distortions, expanding near the � point k = (0,0),
we have

d±,x + id±,y = A(±kx + iky), d±,z = M± − B
(
k2
x + k2

y

)
,

(19)
ε(k) = C± − D

(
k2
x + k2

y

)
,

where M± = M ± δM/2. The parameters A, B, C, D, M , and
the lattice spacing a are given in Refs. 30 and 31 for HgCdTe/
HgTe quantum wells and the relevant ones are listed in Table I.

δM depends on Mn doping and spin polarization, as discussed
in Ref. 25.

The phonon Hall viscosity will be a sum of the contributions
of each of the two blocks:

ηijkl = η+
ijkl + η−

ijkl, (20)
where

η±
ijkl = 1

2

h̄

8π2

1

a2

∫
d2k d̂±·

(
∂d̂±

∂(∂iuj )
× ∂d̂±

∂(∂kul)

)
+ (i ↔ k).

(21)

In order to calculate ηijkl , we need to obtain the Hamiltonian
as a function of lattice distortions. To do this, observe that
the blocks h±(k) are composed of the spin-orbit coupled
states |s,± 1

2 〉 and |px ± ipy ; ± 1
2 〉.30 Concentrating on a single

2 × 2 block (for definiteness consider h+), the Hamiltonian is
written as

H+ = 1

2

∑
n,i

c†n(t̃iI + tiσ
z + ei · σ )cn+î

+m+
∑

n

c†nσ
zcn + H.c., (22)

where i = x,y and n labels the sites of a two-dimensional
square lattice. σ is the vector of Pauli matrices and the hopping
parameters are, to first order in lattice distortions,

t̃i = t̃ + at̃ ′∂iui, ti = t + at ′∂iui,

ex = i(λ + aλ′∂xux)(x̂ + ∂xuyŷ), (23)

ey = i(λ + aλ′∂yuy)(∂yuxx̂ + ŷ).

The lattice parameters λ, t , t̃ , and m used above are related
to the continuum parameters A, B, C, D, and M through
λ = A/a, M± = m± + 2t , B = a2t/2, C = 2t̃ , and D = t̃/2.
The hopping parameters are functions of the distance between
neighboring atoms; the prime indicates a derivative with
respect to this distance. The upper 2 × 2 block has topological
phase transitions as a2M+

2B
is tuned. The Chern number C1 of

the lower of the two bands is

C1 =

⎧⎪⎨
⎪⎩

1 for 2 <
a2M+

2B
< 4,

−1 for 0 <
a2M+

2B
< 2,

0 otherwise,

(24)

and similarly for the lower 2 × 2 block.
From the Kubo formula (21), we see that the only nonzero

terms are η+
xxxy = −η+

yyyx . The full effective action is given by
(6); making the physically reasonable approximation aλ′ ≈ λ

and at ′ ≈ t , we find

η+
xxxy = h̄

8πa2
f

(
aA

2B
,
a2M+

2B

)
, (25)

where f is a function of dimensionless parameters:

f (α,β) =
∫

α2 sin2 kx(β − 2 + cos ky)d2k

{α2(sin2 kx + sin2 ky) + [β − 2 + (cos kx + cos ky)]2}3/2
. (26)
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α = 0.1
α = 0.3
α = 0.7
α = 1.5

β
3 410

FIG. 1. (Color online) The function 1
8π2 f (α,β), plotted as a

function of β for various choices of α. As α increases, the jump
at β = 0,4 weakens until it eventually becomes a kink.

In Fig. 1, we plot the function 1
8π2 f (α,β) as a function of

β for various choices of α. Note f has nonanalyticities at the
quantum phase transitions β = 0,2, and 4.

The full Hall viscosity is given by the sum of contributions
from the two blocks [see Eq. (20)], which corresponds to taking
the difference of the curve in Fig. 1 for two different values
of m:

ηxxxy = h̄

8π2

1

a2
(f+ − f−), (27)

where f± = f (Aa
2B

,
a2M±

2B
). We may view ηxxxy as a function of

M = (m+ + m−)/2 − 4B/a2 and δM ≡ m+ − m−. In Figs. 2
and 3, we plot ηxxxy as a function of either M or δM , using
physically realistic parameters (Table I) and focusing on the
region near one of the transitions into the QAH state.

In Fig. 2, we fix M and plot ηxxxy(δM); experimentally,
this can be done by tuning an external magnetic field. We
observe a discontinuity in the slope of ηxxxy as a function
of δM at the transition into the QAH state. We denote this
discontinuity �

∂ηxxxy

∂δM
. In Fig. 3, we fix a2δM/2B � 1 and

plot ηxxxy(M). This shows a discontinuity �η(M). While a full
lattice calculation is required to compute the Hall viscosity, the
properties of these nonanalyticities can be accounted for in the

δM (meV)
100 200 300-100-200-300

-0.0015

-0.0010

0.0015

0.0010

0.0005

FIG. 2. (Color online) Plot of ηxxxy/h̄ as a function of δM for fixed
M and for realistic parameters (Table I). There is a discontinuity in
the slope at the transition to the quantum anomalous Hall state, which
occurs at δM = ±2M .

M (eV)

0.04

0.03

0.02

0.01

-0.04 -0.02 0.02 0.04 0.06 0.08

FIG. 3. Plot of ηxxxy/h̄δM as a function of M for fixed δM =
10−7 eV and for realistic parameters (Table I). There is a discontinuity
at the transition to the quantum anomalous Hall state, which occurs
at δM = ±M .

continuum Dirac approximation to the above lattice model. In
this approximation, we take sin k ≈ k and cos k ≈ 1 − k2/2 in
(26); near the topological phase transition at β = 0, we have

f (α,ε) ≈ −2πα2|ε|(ε − 1)

(α2 − ε)2
+ O(�), (28)

where � is a high-energy cutoff. While the Hall viscosity will
in general depend on �, the first term above is responsible
for the nonanalyticities of f and consequently of ηxxxy . Using
(28), we can estimate the discontinuity in ∂ηxxxy/∂δM at the
transition, as shown in Fig. 2:∣∣∣∣�∂ηxxxy

∂δM

∣∣∣∣ = h̄

π

|B|
a2A2

. (29)

Similarly, the discontinuity in ηxxxy(M) for fixed a2δM/2B �
1 at the transition is found to be

|�ηxxxy | =
∣∣∣∣ h̄π B

a2A2
δM

∣∣∣∣ . (30)

Finally, we note that the discontinuity in the derivative
of ηxxxy(M) can also be computed using (28): �

∂ηxxxy

∂M
∝

[ ∂2f

∂ε2 |ε=0+ − ∂2f

∂ε2 |ε=0−]. We find

�
∂ηxxxy

∂M
≈ h̄

π
δM

(
2

A2
− a2

4B2

)
. (31)

The first term above depends only on parameters of the low-
energy theory of the state and is independent of the lattice
spacing and other high-energy details. This is essentially the
contribution that was found for the gravitational Hall viscosity
in the regularized Dirac model studied in Ref. 16. We see
that the other contributions to the Hall viscosity that we find
are dependent on the lattice spacing and other high-energy
details, which is why they are missed in the regularization of
the continuum Dirac model of Ref. 16.

C. Interacting states and px + i py superconductors

For interacting systems, while there is no universal relation-
ship between phonon Hall viscosity and the gravitational Hall
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viscosity, a major exception occurs in systems with only on-site
interactions: H = ∑

ij (tij eiAij c
†
i cj + H.c.) + U

∑
i ni↑ni↓. If

the hopping involves s-wave orbitals, then in the dilute limit,
where the system can be described by a continuum interacting
theory, the effect of a strain in the lattice is equivalent to a
deformation of the gravitational metric. For such systems,
the phonon Hall viscosity is then directly related to the
gravitational Hall viscosity through a proportionality factor
of order unity, as in Eq. (17).

As an example of an interacting state with a phonon
Hall viscosity, we consider a BCS mean-field description
for a px + ipy superconductor since such a model may
be relevant for the chiral superconductor Sr2RuO4.32 First
consider the interaction between the nearest- and the next-
nearest neighbors,

U = −V
∑
〈ij〉

c
†
i cic

†
j cj − Ṽ

∑
〈〈ij〉〉

c
†
i cic

†
j cj . (32)

Taking only the Cooper channel of the interaction yields

U = −
∑
k,k′

Vkk′c
†
k′c

†
−k′c−kck, (33)

where

Vkk′ = 1

N
[2(V + Ṽ ) + (V ′ + Ṽ ′)(uxx + uyy)

−(V/2 + Ṽ )(ki − k′
i)(kj − k′

j )g̃ij ]. (34)

g̃ij = δij + Ṽ ′
2(V/2+Ṽ )

δg̃ij has the same form as gij in Eq. (15),

with t and t̃ replaced by V and Ṽ :

δg̃ij =
((

1 + V ′
Ṽ ′

)
uxx + uyy 2uxy

2uxy

(
1 + V ′

Ṽ ′
)
uyy + uxx

)
. (35)

V ′ = a ∂V
∂r

|r=a and Ṽ ′ = √
2a ∂Ṽ

∂r
|r=√

2a , where V (r) and Ṽ (r)
are the nearest- and next-nearest-neighbor interactions, which
only depend on the distance r between the nearest- or next-
nearest-neighbor sites. As will be discussed below, the phonon
Hall viscosity is proportional to the gravitational Hall viscosity
only when the two metrics gij and g̃ij are the same.

To study the simplest possible scenario, we assume the
electrons hop among a single s-wave orbital of the atoms. The
BCS mean-field Hamiltonian is then

HBCS =
∑

k

(εk − μ)c†kck + 1

2

∑
k

[�kc
†
kc

†
−k + H.c.], (36)

where εk is given by Eq. (14). For px + ipy pairing, we take
the order parameter to be

�k = �(sin kx+i sin ky) + �̃(sin kx cos ky + i sin ky cos kx).

(37)

The order parameter must satisfy a self-consistency equation

�k = −
∑

k′
Vkk′

�k′

2Ek′
, (38)

where Vkk′ is the Cooper channel of the interaction and Ek =√
(εk − μ)2 + |�k|2.
To calculate the phonon Hall viscosity for this system, we

need to obtain the effect of the lattice deformation on the order

FIG. 4. (Color online) The px + ipy superconductor phonon Hall
viscosity. The filled curves are for the cases with gij �= g̃ij , while the
dotted curves are for gij = g̃ij . We have set V ′/V = 2t ′/t , t̃/t =
−t̃ ′/t = 0.75, and Ṽ /V = −Ṽ ′/V = 0.40. The pairing gap was set
to have a Gaussian cutoff � = �̂k exp[−k2/2(δk)2], with δk = 1/a

and �̂(2meffa/h̄2) = 0.3, 0.4, 0.6 for the blue, purple, and red curves,
respectively. Note that while ηH converges to the same asymptotic
values in the weak-pairing limit, in the strong-pairing phase and near
the quantum phase transition, it is not proportional to the density n

when gij �= g̃ij .

parameter �k . For simplicity, we consider the long-wavelength
continuum limit, where

HBCS = 1

2

∑
k

�
†
kHBdG(k)�k, (39)

where �
†
k = (c†k,c−k), and

ĤBdG =
[

εk − μ �(|k|)(k̂iexi + ik̂j eyj )

�∗(|k|)(k̂iexi − ik̂j eyj ) −εk + μ

]
.

(40)
k̂i is a unit vector, and �(|k|) is chosen to fall to zero far
away from the Fermi surface (the cutoff scheme is explained
in Fig. 4), μ is their chemical potential, and eij = δij + δeij

where δeij is a linear combination of the lattice distortions
wkl ≡ ∂kul . It is convenient to define an “order-parameter
metric’ g�

ij = eiaeja , which we can fix in terms of g and g̃

using the BCS self-consistency equation. In the continuum
limit, where the system is rotationally invariant, it is simple to
show (see Appendix A) that

g�
ij = γgij + (1 − γ )g̃ij , (41)

where γ is a constant that can be determined from the self-
consistency equations (see Appendix A). To first order in wij ,
we have g�

ij = δij + (δeij + δeji), so the above equation does
not fix δeij − δeji . We may fix δeij − δeji by observing that
the only affect of a rigid rotation of the crystal should be to
rotate kx and ky into each other. Thus, eij − eji = 2mij . These
considerations fix the dependence of the order parameter on the
lattice deformations. Thus, we can now use the Kubo formula
and explicitly obtain the Hall viscosity:

ηijkl = 1

2

h̄

8π2

∫
d2k d̂ ·

(
∂d̂

∂wij

× ∂d̂

∂wkl

)
+ (i ↔ k). (42)

In Appendix B, we present some details of the calcula-
tion. In the case where g̃ij = gij , the calculation simplifies
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considerably and we find a simple result

ηH = t̃ ′t ′

4(t/2 + t̃)2

1

4
h̄n = t̃ ′t ′

4(t/2 + t̃)2
ηH

gr , (43)

where the gravitational Hall viscosity is ηH
gr = 1

4h̄n. The
constant of proportionality ηH/ηH

gr is typically of order one.
In Fig. 4, we show the Hall viscosity calculated from the
results presented in Appendix B for gij �= g̃ij . While this does
not modify the Hall viscosity in the weak-pairing limit much,
the behavior close to the weak- to strong-pairing transition is
dependent on completely nonuniversal features, such as the
frequency dependence of the pairing gap.

For a system with a circular Fermi surface, the px + ipy

state has another interesting feature: the U(1)φ × U(1)Lz
sym-

metry associated with particle number and angular momentum
conservation is spontaneously broken to a diagonal subgroup
U(1)Lz−φ . This implies that in the effective action mxy and
φ, the angle through which the crystal is rotated about the
z direction and the overall phase of the order parameter,
respectively, should appear together as mxy + φ. This means
that the effective action of the crystal involves the phase of the
order parameter as well:

δSH = 2
∫

ddx dt[ηH (uxx − uyy)u̇xy

+ ηM (uxx + uyy)(ṁxy + φ̇)]. (44)

Physically, the U(1)Lz−φ symmetry requires Lz to increase by
h̄ when two electrons are adiabatically added. Since mxy and φ

are conjugate variables to Lz and the number of Cooper pairs,
the above effective action contains the Berry phase term for
this adiabatic process:

h̄
δn

2
= ∂LH

∂φ̇
= ∂LH

∂ṁxy

= δLz. (45)

The physical consequences of the coupling between the
uniform compression uxx + uyy and φ means that the change
in particle density is given by

δn = 4ηM (uxx + uyy) = 4ηM δA

A
, (46)

where A is the area of the 2D system and n is the particle
density, when μ is held constant. A generic superconductor of
course has

δn/n = α(μ)δA/A, (47)

where α(μ) is a constant depending on the chemical potential;
note that we would have α = −1 if the total particle number
had been fixed. The additional symmetry in this problem,
which relates phase rotations to rotations of the crystal,
sets α(μ) = −4ηM/n. This suggests a way to experimentally
measure ηM in systems that have an additional symmetry
involving spatial rotations of the crystal.

IV. PHYSICAL CONSEQUENCES OF PHONON
HALL VISCOSITY

A. Acoustic phonon dynamics

Consider the effective long-wavelength elasticity theory
of a crystal, given by Eqs. (1) and (2). Note that this is an

expansion in the displacement fields and its gradients. Since
for the sound waves ω ∝ |k| + · · · , the Hall viscosity terms
are actually of order k3, so for consistency one must also
include a term of the form δS3 = ∫

ddx dt λijklm∂m∂iuj ∂kul ,
but such a term vanishes in the presence of inversion symmetry.
As we noted in Sec. II A, anharmonic effects are O(k4), so
Hall viscosity may be distinctly measurable because its effects
appear at lower order in k. We briefly mention the effects of
impurities later. The physical consequences of Hall viscosity
terms can be analyzed most simply by considering 2D systems,
the long-wavelength elastic theory of which is isotropic. This
would be directly physically relevant for 2D systems with
square lattice symmetry; the considerations directly apply
for layered 3D crystals as well, where the 2D layers have
a square lattice symmetry and where we consider phonons
with wave-vector oriented parallel to the 2D layers. For such
systems, the elastic theory simplifies and one obtains for the
equation of motion

üi = c2
t ∇2ui + (

c2
l − c2

t

)
∂i∇ · u + η∇2εij u̇j /ρ, (48)

where the indices i, j run over the 2D spatial coordinates,
ct and cl are the transverse and longitudinal sound velocities,
respectively, and η ≡ ηxxxy is the Hall viscosity. It is simple
to show that such a wave equation does not admit purely
transverse or purely longitudinal solutions. Let us denote e±
as the eigenmodes of the system, and let the basis ( 1 0 )T and
( 0 1 )T correspond to the longitudinal and transverse acoustic
phonon modes, respectively. In this basis, the eigenmodes of
the system in the presence of the Hall viscosity are

e+ ∝
(

1
−ix

)
+ O(x2), e− ∝

(−ix

1

)
+ O(x2), (49)

where x ≡ ω
ωv

= ηω

ρ(c2
t −c2

l )
is a dimensionless parameter. This

defines the characteristic frequency ωv = ρ(c2
t −c2

l )
η

∼ B
η

, where
B is the bulk modulus of the crystal. [Note that for a crystal,
cl > αct , for some constant α of order unity, which is why
ρ(c2

t − c2
l ) ∼ ρc2

l ∼ B.] Observe that to linear order, there is
a π

2 sgn(η) phase shift between the longitudinal and transverse
modes. The dispersion relation is

ω2 = k2

2

[
c2
l + c2

t + η2k2/ρ2

±
√

c4
l + (

c2
t + k2η2/ρ2

)2 + 2c2
l

(
k2η2/ρ2 − c2

t

)]
.

(50)

The shift in frequency for a given acoustic phonon mode for
finite η is �ω/ω(η = 0) ∼ x[ω(η = 0)]2. In principle, then
the shift in frequency can determine η. However, since this is
not sensitive to the sign of the Hall viscosity, it may not be a
useful method in practice for determining the Hall viscosity.

An analysis of surface (Rayleigh) waves of a 3D medium
with nonzero ηxxxy = ηyyyx displays similar behavior. For a
medium with surface at z = 0, a surface wave traveling in the
x direction must have uy = 0 in the absence of Hall viscosity,
due to stress-free boundary conditions. In the presence of a
Hall viscosity, the surface wave acquires a uy component,
which to linear order in ηω/ρc2 differs by a phase shift of π/2
and has a relative amplitude of ηω/ρc2.
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B. Numerical estimates and discussion of possible
experimental detection

As explained above, the physical consequences of a Hall
viscosity in the phonon effective action are the mixing of
longitudinal and transverse sound modes, which at a frequency
ω are determined by ω/ωv , with ωv = ρc2/ηH a characteristic
frequency scale associated with the Hall viscosity. To lowest
order in ω/ωv , there is a phase shift of π/2. For the bulk
modes, a more precise value of ωv is ωv = ρ(c2

l − c2
t )/ηH ,

and the amplitude ratio between the two modes in the
elliptical polarization is ω/ωv . It is not clear what the minimal
experimentally measurable value of the Hall viscosity is. From
elementary considerations, we can put a rough bound on what
may realistically be measured. First, for the sound waves to not
destroy the crystal, we expect that the strain is small: |∂u| � 1,
which implies that |ku| � 1. Since we have roughly ω ∼ ck,
this implies ωu � c. The amount of mixing is determined by
ω/ωv , so the amount of amplitude from the other mode that
is mixed in is (ω/ωv)u. For this to be realistically measurable,
this should be much larger than the size of the quantum
fluctuations of the wave function of an atom, which is on
the order of 0.1 Å. That is, |ωu| � ωv × 0.1 Å. Thus, we have
the conditions ωv × 0.1 Å � ωu � c. For a typical sound
velocity of 5 × 105 cm/s, this implies

ωv � 5 × 1014 s−1. (51)

For smaller sound velocities, this bound will be smaller. This
is not a fundamental bound, but a practical one. This is
because in principle it is possible to measure oscillations of
the center of the wave function of an atom at a resolution
that is smaller than the characteristic size of its wave
function.

The two-dimensional mass density of the crystal is ρ ∝
Amp/a2, where A is the atomic number of atoms of the
crystal. Typically, A ∼ 10, and a ∼ 4 × 10−8 cm, so ρ ∼
10−8 g/cm2. Furthermore, c2

l − c2
t ∼ (α2 − 1)1010 cm2/s2,

where α = cl/ct and typically α ∼ 2. ηH ∼ ηH
gr ∼ h̄ne, where

ne is the electron density. Thus, for a typical 2D electron
density of 1015 cm−2, with α ∼ 2, we see ωv ∼ 1014 s−1. For
a 1-GHz measurement, ω/ωv ∼ 10−5; at 100 GHz, ω/ωv ∼
10−3 and, depending on material parameters, could be closer
to 10−2. Note that the acoustic phonon frequencies must be
much less than the energy gap of the electronic state, which
for a 10-K gap translates to approximately 0.2 THz, and
also less than the phonon Debye frequency, which is close
to 10 THz.

For quantum Hall states induced by an external magnetic
field, the electron densities are usually low, ne ∼ 1011 cm−2,
yielding immeasurably small values for ω/ωv . An exception
may be graphene, where recent advancements in applying
extremely large gate voltages may allow for much larger
densities of electrons participating in quantum Hall states.33

The necessary values of ne ∼ 1015 cm−2 usually appear in
states that spontaneously break time-reversal symmetry, such
as quantum anomalous Hall states, ferromagnetic insulators, or
chiral superconductors, where the effective magnetic moment
per lattice site is much larger than could be produced by an
external magnetic field.

The effects discussed here would most easily be measurable
in bulk, layered 3D crystals, for phonons propagating along an
in-plane high-symmetry direction. While there are a number
of examples of 3D IQH states,34–39 the value of the Hall
viscosity is probably too small to be measured since the
particle density is too small, although not typically as low as
in 2D quantum wells. More promising systems are those that
spontaneously break time-reversal symmetry because those
typically will have much higher angular momentum densities.
One promising candidate may be the chiral superconductor
strontium ruthenate, which exists as a 3D crystal and may
have a large enough Hall viscosity because it spontaneously
breaks time reversal. Another promising set of materials
to measure a phonon Hall viscosity are 3D ferromagnetic
insulators, for example, those discussed in Refs. 40–42. Note
that in cases where the spin gap is small, an external magnetic
field can be used to ensure the electronic state is fully
gapped.

In principle, one way to measure such an effect would be
through pulsed echo ultrasound measurements, which have
been successful in detecting circular polarization between
transverse sound waves. However, while bulk pulsed ultra-
sound seems to be limited to frequencies on the order of 1 GHz,
it is not clear what the ultimate bounds are on an experimentally
accessible amplitude ratio between transverse and longitudinal
waves. A more promising experimental technique appears to
be time-dependent x-ray diffraction.43 Such techniques have
been developed only recently over the last decade and have
been used to directly image acoustic phonon modes.44,45

One complication of measuring the phonon Hall viscosity
is related to the effects of crystal disorder, which can also
mix transverse and longitudinal waves. However, the effects
of disorder are not sensitive to the sign of the time-reversal
symmetry breaking of the electronic state; this dependence on
the sign of the time-reversal symmetry breaking is unique to
the Hall viscosity, and can be used to extract the phonon Hall
viscosity even for imperfect crystals.

We would like to point out that related phenomena occur
in various other time-reversal breaking systems. The phonons
in a ferromagnet, for example, can exhibit acoustic Faraday
rotation, where the two transverse modes acquire a circular
or elliptic polarization.46,47 However, such systems can not
be described by a simple local effective action in terms
of the strain fields because they are coupled to magnons,
which are gapless; integrating out the magnons will result
in nonlocal terms in the crystal effective action. The physical
manifestations of such phenomena are also quite different; they
occur as resonances when the frequency and wavelength of
the phonons and magnons are matched. More directly related
phenomena have been considered in the case of ionic crystals
in an external magnetic field48 and in Tkachenko modes of
vortex lattices in rotating superfluids.49–51 In these situations,
one obtains a related equation of motion as in Eq. (48).

V. CONCLUSION

We have proposed the acoustic phonon Hall viscos-
ity as a probe into the adiabatic Berry curvature of the
many-body electron wave function for gapped, time-reversal
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symmetry-breaking electronic states, and we have computed it
and studied its behavior in a number of theoretical models. It is
important to note that while the phonon Hall viscosity appears
as a general higher-order term in the acoustic phonon effective
action, its contribution is dominated by the Berry curvature of
the electronic wave function. Additional contributions aside
from the electronic one would require the atoms of the
crystal to directly couple to a time-reversal breaking field;
such an effect may be appreciable only in ionic crystals in
a large magnetic field, where locally the charge of the ions
is not entirely screened by the electrons. In more generic
situations, there is no net charge locally as it is completely
screened by the electrons, and therefore the only time-reversal
symmetry-breaking effects occur through the adiabatic change
of the electron Hamiltonian as the phonons are excited.

In some simple cases, we have found that the phonon Hall
viscosity is proportional, with a numerical factor of order 1,
to the gravitational Hall viscosity of the continuum electronic
theory. Our numerical estimates indicate that this is a measur-
able effect and there may be a number of materials, particularly
the ferromagnetic insulators or chiral superconductors, which
might be suitable candidates for experimentally detecting the
phonon Hall viscosity by measuring time-reversal symmetry-
breaking corrections to acoustic phonon dynamics. Since the
effects are expected to be small and their measurement would
require high spatial resolution, it appears that time-dependent
x-ray diffraction may be currently the most promising probe.
As phonon Hall viscosity is developed into a more mature
experimental probe, we hope that it can eventually be useful
as a lens into the possible topological behavior of electron
systems.
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APPENDIX A: p + i p BCS SELF-CONSISTENCY

The BCS mean-field Hamiltonian is

HBdG =
∑

k

(εk − μ)c†kck −
∑

k

�kc−kck, (A1)

where

�k =�(sin kx + i sin ky)

+ �̃(sin kx cos ky + i sin ky cos kx) (A2)

and the kinetic energy is that of Eq. (14). �k satisfies a self-
consistency equation

�k = −
∑

k′
Vkk′

�k′

2Ek′
, (A3)

where Vkk′ is the Cooper channel of the interaction and Ek =√
(εk − μ)2 + |�k|2.
When the crystal is strained, the order parameter will take

the following form in the continuum limit:

�k = �(k̂iexi + ik̂ieyi), (A4)

where eab[{∂iuj }] are functions of the distortion tensor wij ≡
∂iuj . In order to obtain the phonon response, we need to
obtain this function to linear order in ∂iuj . First, observe that
due to the U(1)Lz

× U(1)φ → U(1)Lz−φ symmetry breaking,
φ spatial rotation is equivalent to the gauge transformation
� → � exp(iφ). Therefore,

exy − eyx = wxy − wyx. (A5)

Next, observe that exx , eyy , and exy + eyx are symmetric in x

and y, so they can only depend on the strain tensor uij . The
self-consistency equation can be thought of as a constraint on
the “order-parameter metric’ g�:

f (g�,g,g̃) = 0. (A6)

Considering the variations of this,

δg�
ij

∂f

∂g�
ij

+ δgij

∂f

∂gij

+ δg̃ij

∂f

∂g̃ij

= 0. (A7)

For a rotationally invariant system, ∂f/∂gij ∝ δij , and sim-
ilarly for ∂f/∂g̃ij . This implies that δg�

ii = γ δgii + γ̃ δg̃ii ,
where γ and γ̃ are constants. Now, observe that when gij =
g̃ij , we are merely implementing a coordinate transformation,
so we should have g�

ij = gij , which implies γ + γ̃ = 1.
Furthermore, for a rotationally invariant system, the deforma-
tions δgxx = −δgyy = e and δg̃xx = −δg̃yy = ẽ are equivalent
to the deformations δgxy = e and δg̃xy = ẽ because, for a
rotationally invariant system, the two types of deformations
simply differ by a rotation. Thus, we conclude

g�
ij = γgij + (1 − γ )g̃ij . (A8)

The constant γ can be found from the self-consistency
equation.

To actually calculate γ from the self-consistency equation,
we note that the assumption we made above tells us that the
effect of change in the kinetic metric gij should be proportional
to the effect of coordinate transformation δij → gij . This
means that, if we consider the case δgxx = −δgyy = e1 and
δg̃ = 0, the change in the order parameter should come out
as δ�k = γ e1�(k̂x − ik̂y)/2. Thus, to the self-consistency
condition

∂�k

∂e1
= −

∑
k′

Vkk′

[
1

2Ek′

∂�k′

∂e1
− �k′

2E2
k′

×
(

εk′ − μ

Ek′

∂εk′

∂e1
+ |�k′ |

Ek′

∂|�k′ |
∂e1

) ]
, (A9)

we can insert

∂�k

∂e1
= 1

2
γ�(k̂x − ik̂y),

∂εk

∂e1
= εk

(
k̂2
x − k̂2

y

)
(A10)
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to obtain

1

2
γ�(k̂x − ik̂y) = −1

2
γ

∑
k′

Vkk′
�(k̂′

x − ik̂′
y)

2Ek′

+
∑

k′
Vkk′

�k′εk′(εk′ − μ)

2E3
k′

(
k̂2
x − k̂2

y

)

+
∑

k′
Vkk′

�k′ |�′
k|

2E3
k′

∂|�k′ |
∂e1

(A11)

and solve for γ . For this step, it is convenient to eliminate
∂|�k′ |/∂e1 through a coordinate transformation argument,
which makes use of the fact that in the integral over k′,
we can do a coordinate transformation (k′

x,k
′
y) → (k′

x,k
′
y) +

γ e1(k′
x, − k′

y)/2 without changing the value of the integral
because the Jacobian of this transformation is one, to linear
order in e1. This gives us∑

k′
Vkk′

�k′ |�′
k|

2E3
k′

∂|�k′ |
∂e1

=
∑

k′
Vkk′

(
1

2Ek′

∂�k′

∂e1
− �k′

2E2
k′

εk′ − μ

Ek′

∂εk′

∂e1

)

−
∑

k′

∂Vkk′

∂e1

�k′

2Ek′
. (A12)

We can obtain the derivatives on the right-hand side by noting
that this coordinate transformation gives us

�k′ → �k′ + 1
2γ�(k̂′

x − ik̂′
y), εk′ → εk′ + γ εk

(
k̂2
x − k̂2

y

)
,

(A13)
Vkk′ → Vkk′ − γV (k̂x k̂

′
x − k̂y k̂

′
y),

where we used Vkk′ = −2V (k̂ · k̂′). Since the change in |�k′ |
is the same, we can insert this result from the coordinate
transformation into Eq. (A9).

We find at the weak-coupling limit

γ = −1 − ln(2εc/|�0|)
1 + ln(2εc/|�0|) , (A14)

where εc is the cutoff energy of the pairing and |�0| is the
value of � at the Fermi surface. The negative sign of γ is
because our kinetic metric deformation increases the density
of state around (0,±kf ) compared to (±kf ,0) and therefore
it is energetically advantageous to have the py pairing to be
stronger than the px pairing.

APPENDIX B: p + i p BCS HALL VISCOSITY
CALCULATION

Now we would like to calculate the Hall viscosity for
the px + ipy Bogoliubov–de Gennes (BdG) Hamiltonian.
We want

ηH = 1

2
(ηxxxy + ηxxyx) = h̄

16π2

∫
d2k d̂ ·

(
∂d̂

∂wxx

× ∂d̂
∂uxy

)
.

(B1)

From HBdG = d · τ , we have

dx = �(k̂xexx + k̂yexy), dy = �(k̂yeyy + k̂xeyx),
(B2)

dz = 1

2m∗ kikjgij − μ;

note that in a flat metric, d‖ ≡ √
d2

x + d2
y and dz would depend

only on k. In this section, since d‖ has explicit dependence
only on eij while dz has explicit dependence only on gij , we
will treat eij and gij as independent variables.

For our calculation, we want to write the derivatives in
terms of gij and eij , which gives us

∂d‖
∂wxx

= 1

2

(
ã

∂d‖
∂exx

+ b̃
∂d‖
∂eyy

)
= 1

2

(
ãkx

∂d‖
∂kx

+ b̃ky

∂d‖
∂ky

)
,

∂dz

∂wxx

= a
∂dz

∂gxx

+ b
∂dz

∂gyy

= 1

2

(
akx

∂dz

∂kx

+ bky

∂dz

∂ky

)
,

(B3)
∂d‖
∂uxy

= b̃

(
∂d‖
∂exy

+ b̃
∂d‖
∂eyx

)
= b̃

(
kx

∂d‖
∂ky

+ ky

∂d‖
∂kx

)
,

∂dz

∂uxy

= 2b
∂dz

∂gxy

= b

(
kx

∂dz

∂ky

+ ky

∂dz

∂kx

)
,

where

a = meff(t
′ + t̃ ′), b = meff t̃

′,

ã = γ [meff(t
′ + t̃ ′)] + (1 − γ )

V ′ + Ṽ ′

V/2 + Ṽ
, (B4)

b̃ = γ (meff t̃
′) + (1 − γ )

Ṽ ′

V/2 + Ṽ
,

and we used

∂dz

∂gij

= 1

4

(
ki

∂dz

∂kj

+ kj

∂dz

∂ki

)
gij =δij

,

(B5)
∂d‖
∂eij

= ki

∂d‖
∂kj

∣∣∣∣
eij =δij

.

To see this, first observe

∂d‖
∂wij

=
∑
kl

∂ekl

∂wij

∂d‖
∂ekl

,
∂dz

∂wij

=
∑
kl

∂gkl

∂wij

∂dz

∂gkl

. (B6)

Assuming wxy − wyx = exy − eyx , all ∂gkl/∂wij ,∂ekl/∂wij

vanish except for

a = ∂gxx

∂wxx

= ∂gyy

∂wyy

,

(B7)

b = ∂gxx

∂wyy

= ∂gyy

∂wxx

= ∂gxy

∂wxy

= ∂gxy

∂wyx

,

and

ã = 2
∂exx

∂wxx

= 2
∂eyy

∂wyy

,

b̃ = 2
∂exx

∂wyy

= 2
∂eyy

∂wxx
(B8)

= 2
∂exy

∂wxy

− 1 = 2
∂exy

∂wyx

+ 1

= 2
∂eyx

∂wxy

+ 1 = 2
∂eyx

∂wyx

− 1.
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Now, we need to calculate

ηH = h̄

16π2

∫
d2k d̂ ·

(
∂d̂

∂wxx

× ∂d̂
∂uxy

)

= h̄

32π2
ab

∫
d2k

1

d2
d̂ ·

[
kx

∂d′′

∂kx

×
(

kx

∂d′

∂ky

+ ky

∂d′

∂kx

)]

+ h̄

32π2
b2

∫
d2k

1

d2
d̂ ·

[
ky

∂d′

∂ky

×
(

kx

∂d′

∂ky

+ ky

∂d′

∂kx

)]

= h̄

32π2
ab

∫
k2
xd

2k
1

d2
d̂ ·

(
∂d′′

∂kx

× ∂d′

∂ky

)

+ h̄

32π2
b2

∫
k2
yd

2k
1

d2
d̂ ·

(
∂d′

∂ky

× ∂d′

∂kx

)
, (B9)

where d′ = (b̃d‖/b,dz) and d′′ = (ãd‖/a,dz). Then, using

∂

∂kx

= cos φ
∂

∂k
− sin φ

k

∂

∂φ
,

∂

∂ky

= sin φ
∂

∂k
+ cos φ

k

∂

∂φ
,

(B10)

we obtain

ηH = C1

∫
k2dk

∂d̂z

∂k
+ C2

∫
k2dk

[
d̂z

(
1 − d̂2

z

) 1

d

∂d

∂k
− d̂2

z

∂d̂z

∂k

]
+ C3

∫
k3dk

[(
1 − d̂2

z

) 1

d

∂d

∂k
− d̂z

∂d̂z

∂k

](
∂d̂z

∂k
+ d̂z

1

d

∂d

∂k

)

= 8πC1n − 2

3
C2

∫
k dk

(
1 − d̂3

z

) + C2

∫
k2dk d̂z(1 − d̂2

z )
1

d

∂d

∂k
+ C3

∫
k3dk

[(
1 − d̂2

z

) 1

d

∂d

∂k
− d̂z

∂d̂z

∂k

](
∂d̂z

∂k
+ d̂z

1

d

∂d

∂k

)
,

(B11)

where

C1/h̄ = 1

128π
(ãb + 3ab̃ − 4bb̃), C2/h̄ = C1/h̄ − 1

32π
b̃(ã − b̃), C3/h̄ = 1

256π
(ab̃ − ãb). (B12)

Now, note that when the kinetic and interaction metrics are equal, we have a = ã, b = b̃, which means C1/h̄ = b(a − b)/32π

and C2 = C3 = 0. Inserting these into Eq. (B11) gives us

ηH = 8πC1n = b(a − b)h̄n/4 = (t/2 + t̃)−2 t ′ t̃ ′

4

h̄n

4
. (B13)

In the weak-pairing limit, even when the kinetic and interaction metrics are different, we have ηH ∝ n under some reasonable
assumptions. First, note that ∫

k dk
(
1 − d̂3

z

) =
∫

k dk(1 − d̂z) = 4πn,

(B14)∫
k2dk

dzd
2
‖

d5

(
dz

∂dz

∂k
+ d‖

∂d‖
∂k

)
=

∫
k dk

dzd
2
‖

d5
k
∂dz

∂k
= k2

f

∫ ∞

−μ

dξ
ξ 2�2

(ξ 2 + �2)5/2
= 2

3
k2
f = 8π

3
n

in this limit. Meanwhile, if we assume |�k| ∝ k near the Fermi surface, we have∫
k3dk

d‖
d3

∂dz

∂k

∂d‖
∂k

=
∫

k dk
d2

‖
d3

2(dz + μ) = k2
f

∫ ∞

−μ

dξ
�2

(ξ 2+�2)3/2
= 2k2

f = 8πn. (B15)

At the quantum critical point, the ratio of the phonon Hall viscosity to the gravitational Hall viscosity becomes different from
what we have for the weak-pairing limit. We can see this from∫

k dk(1 − d̂z) =
∫

k dk
d2

‖
d(d + dz)

= 1

2

∫
dk2 �̂2k2

d(d + dz)
= 1

4

(
2m∗

h̄2

)2 ∫ ∞

0
dξ

�̂2

ξ + m∗�̂2/h̄2
= 4πn,

∫
k2dk

dzd
2
‖

d5

(
dz

∂dz

∂k
+ d‖

∂d‖
∂k

)
=

∫
k dk

dzd
2
‖

d5

(
2d2

z + d2
‖
) =

(
2m∗

h̄2

)2 ∫ ∞

0
dξ

�̂2

ξ + 2m∗�̂2

h̄2

√
ξ
(
ξ + m∗�̂2

h̄2

)
(
ξ + 2m∗�̂2

h̄2

)5/2
>

8π

3
n, (B16)

∫
k3dk

d‖
d3

∂dz

∂k

∂d‖
∂k

=
∫

k dk
d2

‖
d3

2dz =
(

2m∗

h̄2

)2 ∫ ∞

0
dξ

�̂2

ξ + 2m∗�̂2

h̄2

√
ξ

ξ + 2m∗�̂2

h̄2

> 8πn,

where d‖ = �̂k. We also have

4πn <

∫
k dk

(
1 − d̂3

z

) =
∫

k dk(1 − d̂z)
(
1 + d̂z + d̂2

z

)
< 12πn. (B17)

In the strong-pairing limit, we do not find an asymptotic limit to the ratio of integrals to n that is independent of cutoff.

245107-11



MAISSAM BARKESHLI, SUK BUM CHUNG, AND XIAO-LIANG QI PHYSICAL REVIEW B 85, 245107 (2012)

1X.-G. Wen, Quantum Field Theory of Many-Body Systems–From
the Origin of Sound to an Origin of Light and Electrons (Oxford
University Press, Oxford, 2004).

2K. V. Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494
(1980).

3D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. Lett. 48,
1559 (1982).

4L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98, 106803
(2007).

5J. E. Moore and L. Balents, Phys. Rev. B 75, 121306 (2007).
6R. Roy, Phys. Rev. B 79, 195321 (2009).
7X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Phys. Rev. B 78, 195424
(2008).

8A. M. Essin, J. E. Moore, and D. Vanderbilt, Phys. Rev. Lett. 102,
146805 (2009).

9S. Ryu, J. Moore, and A. Ludwig, Phys. Rev. B 85, 045104 (2012).
10K. Nomura, S. Ryu, A. Furusaki, and N. Nagaosa, Phys. Rev. Lett.

108, 026802 (2012).
11Z. Wang, X.-L. Qi, and S.-C. Zhang, Phys. Rev. B 84, 014527

(2011).
12E. Lifshitz and L. Pitaevskii, Landau Lifshitz, Volume 10: Physical

Kinetics (Butterworth-Heinemann, London, 1981).
13G. Volovik, Sov. Phys.–Usp. 27, 363 (1984).
14J. E. Avron, R. Seiler, and P. G. Zograf, Phys. Rev. Lett. 75, 697

(1995).
15J. E. Avron, J. Stat. Phys. 92, 543 (1998).
16T. Hughes, R. Leigh, and E. Fradkin, Phys. Rev. Lett. 107, 075502

(2011).
17N. Read, Phys. Rev. B 79, 045308 (2009).
18F. Haldane, arXiv:0906.1854.
19N. Read and E. Rezayi, Phys. Rev. B 84, 085316 (2011).
20C. Hoyos and D. T. Son, Phys. Rev. Lett. 108, 066805 (2012).
21A. Nicolis and D. T. Son, arXiv:1103.2137.
22X. G. Wen and A. Zee, Phys. Rev. Lett. 69, 953 (1992).
23A. Shapere and F. Wilczek, Geometric Phases in Physics (World

Scientific, Singapore, 1989).
24P. Levay, J. Math. Phys. 36, 2792 (1995).
25C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, Phys. Rev.

Lett. 101, 146802 (2008).
26F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).
27X. L. Qi, Y. S. Wu, and S. C. Zhang, Phys. Rev. B 74, 085308

(2006).
28C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, Phys. Rev.

Lett. 101, 146802 (2008).

29R. Yu, W. Zhang, H. J. Zhang, S. C. Zhang, X. Dai, and Z. Fang,
Science 329, 61 (2010).

30B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science 314, 1757
(2006).

31M. Koenig, H. Buhmann, L. W. Molenkamp, T. Hughes, C.-X.
Liu, X.-L. Qi, and S.-C. Zhang, J. Phys. Soc. Jpn. 77, 031007
(2008).

32A. P. Mackenzie and Y. Maeno, Rev. Mod. Phys. 75, 657 (2003).
33D. K. Efetov and P. Kim, Phys. Rev. Lett. 105, 256805 (2010).
34S. Hill, S. Uji, M. Takashita, C. Terakura, T. Terashima, H. Aoki,

J. S. Brooks, Z. Fisk, and J. Sarrao, Phys. Rev. B 58, 10778
(1998).

35Y. K. H. Kempa and P. Esquinazi, Solid State Commun. 138, 118
(2006).

36D. Elefant, G. Reiss, and C. Baier, Eur. Phys. J. B. 4, 45 (1998).
37H. L. Störmer, J. P. Eisenstein, A. C. Gossard, W. Wiegmann, and

K. Baldwin, Phys. Rev. Lett. 56, 85 (1986).
38J. R. Cooper, W. Kang, P. Auban, G. Montambaux, D. Jérome, and
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