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General properties of electron-positron momentum densities
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We study properties of electron-positron (e-p) momentum densities, especially as concerns the influence on
electronic densities of both positron wave-function and correlation effects. General considerations, with a small
selection of numerical tests, which prove the validity of our theory, are presented for different models of the
positron wave function and for various band-structure calculations. Many-body enhancement and other effects,
such as those responsible for the tails in the momentum distribution and the behavior of experimental e-p densities

are also discussed.
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I. INTRODUCTION

In studies of electronic densities in solids, by measuring the
angular correlation of annihilation radiation (ACAR) spectra,’
one gets line or plane integrals of the electron-positron (e-p)
momentum density p(p) in the extended p space,

2

p(p) = anjé(p -k — G)‘/ e Py (r,r)dr| . (1)
kj -0

Y (r,,r,)is the e-p wave function, ny ; denotes the occupation
number of a state k in the jth band, G is the reciprocal-lattice
vector, and K extends over the first Brillouin zone, the so-called
reduced momentum space.

Many-body effects have a considerable influence on ob-
servables of positron spectroscopy, first of all on the total
annihilation rate, but also on the momentum dependence of the
e-p densities. Due to this reason, for a reliable interpretation
of experimental positron annihilation data, an understanding
of these effects is of vital importance. An ideal theoretical
description of the e-p annihilation in metals should include
both e-p and electron-electron (e-e) correlations (positron-
positron interaction can be neglected, due to the small number
of these particles in the crystal). Taking into account the
complexity of such a many-body problem, it is evident that
it can be solved only within severe approximations. All
theoretical approaches (except for Arponen and Pajanne’s
theory?) are based on the following result of Carbotte and
Kahana:® An annihilating e-p pair, seen from outside, behaves
like a neutral quantity, so no tail beyond the Fermi momentum
should be observed in the e-p momentum density.

For a long time, this result had been considered almost
an axiom. Meanwhile, new two-dimensional (2D) ACAR
experiments*® clearly demonstrate that the observed smearing
of the Fermi surface (FS) and considerable high-momentum
tails are due to e-e correlations playing a significant role
above the FS. For example, Manuel et al.,’ studying the FS
smearing in experimental 2D ACAR spectra for Al, performed
an analysis with very precisely determined experimental
resolution functions. They found a presence of tails above
the Fermi momentum pr and interpreted it as an effect of
e-e correlations. Such effects are evidently visible in Compton
experiments, e.g., Ref. 9 and references therein. They may be
theoretically described (in the simplest approximation) by the
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isotropic Lam-Platzman correction,'® or, more effectively, by
GW calculations.''~!3 Such correlations influence the electron
momentum density by reducing the momentum step at the FS
and by the appearance of a momentum tail above pr. As a
consequence, the anisotropy of the profiles is also decreased.

In the case of metallic crystals where electrons and
positrons move within a lattice potential, an ideal theory should
also include the influence of such a potential on correlation
effects. An attempt in this direction is the Bloch-modified
ladder (BML) theory14 (based on earlier paperslim) where
this is taken into account by calculating both interband
and intraband transitions of the annihilating Bloch particles.
However, this theory has several shortcomings: It requires
a large amount of computer effort, and it includes some
approximations causing strong deenhancement effects within
the high-momentum region, up to now not confirmed by the
experiment. Due to these reasons, most calculations of e-p
momentum densities are based on electron and positron wave
functions, received from band-structure calculations within the
independent particle model (IPM), multiplied by enhancement
factors obtained by many-body theories for the positron in a
homogeneous electron gas.

Recently, Laverock et al.,'” proposed introducing model
functions including empirical enhancement factors. In opposi-
tion to other authors, they studied correlation effects (attributed
to e-p correlations) by interpreting 2D ACAR spectra folded
into the reduced k space.'®!® From the point of view of FS
studies, working within the reduced k space is very useful
because one expects that FS steps should be better marked.
However, what could be the physical meaning of correlation
effects determined in the k space?

Sections II-IV of the present paper are dedicated to all
these topics. First of all, we want to answer the question
concerning the physical meaning of empirical correlation
factors determined in the k space if the corresponding e-p
correlation functions—defined via e-p wave functions—are
determined in the extended p space. In our point of view, such
a conversion of the correlation factor from the p into the k
zone is acceptable if the correlation effects are dependent on k
but not on the reciprocal-lattice vector G. However, as shown
in the present paper, enhancement factors, due to many-body
effects, do significantly depend on G. This is shown in Sec. II
where we present a small selection of test results performed
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for alkalis, Al, Cu, and Pd and for two various approaches of
the e-p interaction, used for the calculation of enhancement
factors for two valence electron bands in Cu.

A further question, studied in Sec. III, deals with the main
conclusion of Carbotte and Kahana’s theory® on positrons in
a homogeneous electron gas, namely, that there is no tail of
the e-p momentum density beyond the Fermi momentum. The
question is if this conclusion is correct, and if yes, whether it
is also valid for real metals.

Of course, for a reliable comparison of experimental results
with various theoretical calculations, it must be guaranteed
that all differences observed are caused by different models
of the e-p correlations and not by uncertainties due to
approximations of electron and positron wave functions or
to various band-structure methods. Therefore, in Sec. IV,
we check the sensitivity of e-p momentum densities within
the IPM, using various approximations in the calculating of
both electron and positron wave functions. Numerical tests
are based (i) on augmented plane-wave (APW) calculations
and three different models of the positron wave function,?%-2
and (ii) on the full-potential linear APW (FP-LAPW) program
WIEN2K>® with using three different crystal potentials (more
details in Sec. IV). It should be noticed here that all these
models were also used in our tests presented in Sec. II, just to
confirm that conclusions in Sec. II were general, independent
of both models of the positron wave function and various
band-structure methods.

In Sec. V, we show a diversity in behavior of experimental
e-p momentum densities in order to illustrate difficulties in
describing them within theories which ignore the influence of
the lattice potential on the e-p interaction.

II. ELECTRON-POSITRON MOMENTUM DENSITIES

In a periodic lattice potential, the e-p density in the jth band
can be written, within the IPM, as**

PNk +G)
= n(kj)|uk (G *|v(G — G )HP[1 + aj (G, (2)
where

V(G — H)uy ;(H)

(G) = )
akj(G) H;;kj v(G — Gy;)uy;(Gy;)

3

ugjand v are Fourier coefficients of the wave functions of the
electron and the thermalized positron, respectively. H and Gy
are reciprocal-lattice vectors, where Gy; corresponds to the
leading Fourier coefficient of the electron wave function with
the property |uy;(Gy;)|l > |ux;j(H)|, whereas, the uy;(H)’s
belong to the Umklapp components. Such a description of
a two-particle density and knowledge of general properties of
the parameters « allow for determining some general rules
connected with features of p(p).2*%

An influence of the positron wave function on the electron
density p¢ and the effects of e-p correlations, respectively, are
studied through the following enhancement factors:

™k + G) = p"™(k + G)/p°(k + G)
and £“"(k + G) = p(k + G)/p"™(k + G).
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FIG. 1. (Color online) ™ (p) for different electron states in
Cu as a function of |G — Gy;| (in units of 27/a with the lattice
constant a = 6.8308 a.u.). All values for |G — Gy;| = 0 belong to
the leading momentum component, and |G — G| # 0 for Umklapp
components.

For the leading terms of the density [insert G = Gy; into
Eq. 2)], S}PM(k + Gy;)is simply given by

ek + i) = O[T + i) (Gie) ) @

According to our theoretical predictions,?*?> absolute

values of the parameter a(Gy;) are considerably smaller than
1, and negative a(Gy;) are expected for pure d states. This
is confirmed by our numerical calculations: For alkalis, the
lowest and highest values of o correspond to Li (0.038) and
Cs (0.125), respectively, and among the transition metals Cu
and Pd, the highest values of « are observed for Pd (0.172
for spd states). Only for pure d states, did we obtain negative
values of & (— 0.061 for Pd and — 0.088 for Cu).

Since |v(0)| < 1, which follows from the norm of the
positron wave function, negative coefficients ay ; (Gy;) always
lead to a reduction in the corresponding main density d-state
components. Other states could be intensified if ay;(Gy;)
>1/[v(0)| — 1 where this condition is only valid for positive
ayj(Gy;)’s and for states k j for which lattice effects are high.
Such conclusions are confirmed by our numerical tests: Among
16 cases, which we studied, S;P M(k + Gy;) is greater than 1 in
14 cases, changing from 1.03 (Al) to 1.25 (Pd, spd states) and
less than 1 only for pure d bands (0.78 in Cu and 0.80 in Pd).

Similar considerations for Umklapp components (for more
details, see Refs. 2 and 3) lead to the conclusion that ™ (k +
G), state dependent through ay;(G), is strongly dependent on
the reciprocal lattice vector G. In comparison to p°(k + G),
the intensities of the Umklapp components of p™M(k + G)
are generally reduced, with the exception of some of the first
components, which may be intensified. All this is confirmed
by our numerical results where a small selection of them is
displayed in Fig. 1 and in the e™ curves of Fig. 3.

As a consequence of such a strong dependence of the
density p"™(p =k + G) on the reciprocal-lattice vector G,
the Lock-Crisp-West-folded density p"™(k) will be strongly
dependent on k. For this reason, the e-p densities p(k) do not
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FIG. 2. (Color online) Positron density
p+(r) and e-p correlation function g(r) in

2

3 fcc Al and paramagnetic bce Cr along three
main symmetry directions in the unit cell. All
functions are drawn from r = 0 (position of
the atom) up to their maximum value in the

interstitial region.
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resemble the steplike function as they do in the case of electron
densities.

When studying e-p correlation effects where the e-p wave
function can approximately be written in the form wﬁ;p (r,r)=

Y (l’)lp;} (r), the positron wave function, renormalized with
respect to many-body effects by fy;, can be defined as

Ui (0) = fij (),

where 1 T (r)is the IPM positron wave function.

Both functions fy;(r) and &ljj(r), where r denotes the
position of both the electron and the positron, are periodic
in the lattice, i.e., they can be expanded into Fourier series
with respect to the reciprocal-lattice vectors. Thus, Eq. (2)
can be rewritten for e-p densities where the coefficients v
are replaced by the Fourier coefficients of the renormalized
positron wave functions. The main difference between &fj(r)

&)

and ¥ 1 (r) comes from the fact that 1/7;] (r) is not normalized
to unity and is strongly state dependent via correlation effects.

The e-p correlations could be expressed within the local
density approximation (LDA) via the contact value of the e-p
correlation function g[r, —r,; r; (r,)] = g(r,). We will fur-
ther call that quantity correlation function g(r), and ry; = ry(r)
is the local electron-density parameter (radius of the sphere
containing one electron). In the case of a state-independent
approximation, it is simply given by

) = ey (n).

In this paper, for g(r), we use the well-known formula by
Boronski-Nieminen?® (B-N),

g(r) = 1+ 1.23r, +0.8295r/2

— 1.26r2 +0.3286r2 4 r3 /6. (6)

This function describes quite well the experimental positron
lifetime 7 (r = 1/A, where A denotes the total annihilation
rates) in metals—i.e., it can be treated as a real enhancement
factor, averaged over the electron states kj. A comparison of
r dependencies of the B-N correlation function g(r) and the

2

r(a.u.)

positron density p. (r) within the unit cells of the simple metal
Al and the transition metal (paramagnetic) Cr is presented
in Fig. 2. As seen, g(r) has a similar shape to p4(r), being
positive and increasing with r, with a tendency to saturate in
the interstitial region [such a behavior can also be observed for
the local density parameter r,(r) and for fy;(r)]. This follows
from the fact that the electron density p(r) decreases with r
while the e-p correlation function decreases with increasing
p(r). This leads to quite different values of g(r) for Al and Cr
as seen in Fig. 2 and to large values for, e.g., potassium where
the correlation function even approaches 20.

This similarity of the dependencies of g(r) and p,(r) onr
allows us to draw similar conclusions as obtained before for
oIPM.

(1) in the momentum space, the higher-momentum compo-
nents of electronic densities are mostly reduced via the e-p
interaction potential;

(2) even a state-independent correlation function will en-
hance a dependence of ¢°°"(k + G) on both the state kj and
the reciprocal-lattice vector G, similarly as in the case of
8;PM(k + Gy;).

As a prominent example of a state- and energy-dependent
approximation of the correlation function, leading to

IS (0) = Vg (kD (),

we used the LDA formula as proposed in Ref. 27.

Apart from the presented B-N and LDA(E) approach,
the literature also offers some more realistic approaches for
the correlation function fy;(r), which are, however, much
more complicated: Beyond some effects of nonlocality,?®?° the
correlation effects are influenced by the lattice potential'*-'¢
as, e.g., within the BML theory, also applied in this paper.

In Fig. 3, using the example of Cu (it combines features of
simple and transition metals), we demonstrate how similarity
of the dependencies of g(r) and p.(r) on r reveals the
corresponding enhancement factors in the momentum space.
It is clear that it introduces a strong dependence of the
enhancement on the reciprocal vector—this is characteristic

245104-3



G. KONTRYM-SZNAJD, H. SORMANN, AND E. BORONSKI

O | SO

Ep)

A \\\./
~1.2k “,/\‘Eﬁa
(= L

IlA“ '--.l
o —
A

r L r L
FIG. 3. (Color online) Two electron bands in Cu along the
[111] direction, which contribute to e-p momentum densities and
corresponding enhancement factors calculated within LDA(E) and

BML theory. The full line shows the enhancement factor for the total
densities.

of all models. Additionally, in the case of Cu, both theories
[LDA(E) and BML] give the typical monotonic increase in
the Kahana-like enhancement®® with increasing momentum
p inside the FS. For momenta above FS, there is a strong
deenhancement of the Umklapp components in the case of
BML theory (the reduction in the Umklapp components in
favor of the main component is a tendency of this theory).

Another theoretical approach®-3? is based on a state-
dependent correlation factor fi ;(r) = gx;, independent of r,
which leads to the momentum dependence of the enhancement
factor ¢(p) similar to B-N theory. The more recent weighted
density approximation®®?® uses both nonlocal and energy-
dependent e-p correlation functions. The resulting momentum
dependence of the enhancement is similar to LDA(E) for
simple metals while, for transition metals, is somewhat
reduced (but still much higher than in BML theory). As far
as all approaches, mentioned in this section, differ in many
aspects, they have a common feature: They describe only
static e-p correlations, i.e., they ignore dynamical correlations
described in the next section.

III. SELF-ENERGY EFFECTS

As Carbotte and Kahana claimed,? the e-p momentum
distribution characterized by a high-momentum tail could not
be seen by the positron because the dynamic parts of the e-p
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interaction would reduce the influence of the electron as well
as the positron on the other electrons. In order to have deeper
insight into the problem, let us, at first, look at some details of
the approach.? Due to its interaction, the electron polarizes the
electronic medium, and the arising net charge dynamically
influences the electron itself. Therefore, the probability of
spending some time above the FS is greater than zero, the tails
arise above the FS, and the occupation numbers below the FS
become less than 1. Since the energy of the given electron
is changed during the process of self-interaction with the
medium, the phenomenon is commonly called the self-energy
effect.

To the first order, the change in momentum distribution
p(p), due to the above effect, can be described with Green’s-
function formalism in the following way:?

2 ’
x[Glp; )] Gdp -k — &), (D
where

6(pl — pr)
2 p?2m, — w — i0*
®)

is a free particle propagator and u(K;w) is the dynamic random-
phase approximation (RPA) potential in which the polarization
is described by the frequency-dependent Lindhard function.
According to the notation of Ref. 3, the labels e.s.e., p.s.e., and
h.d. mean electron self-energy, positron self-energy, and high
density, respectively.

If there were no e-p interactions, the quantity p(p) =
p%5%(p) could be described with the Daniel-Vosko curve
(Fig. 2 in Ref. 33). However, similar to the electron case,
positron self-energy effects appear when the positron interacts
with the electronic medium. The corresponding polarization
makes the positron momentum distribution different from
Dirac’s § peak, smearing it out around p = 0.

It turns out that the positron self-energy contribution pP*¢
can also be described by Eq. (7), provided that G%(p,w)
is replaced by the positron Green’s function Gg(p,a)), the
electron mass is replaced by the positron one, and pr = 0.
Then, the quantity pP*® is of the same sign and order of
magnitude as pP>® and adds to the electronic effect.* Both
effects just smooth out the momentum distribution (however,
the jump at kp still remains) and produce quite considerable
tails above the FS. If the e-p interaction is, however, switched
on, the situation changes dramatically, at least, for the electron
gas and the contribution (9) to p(p),

dw do'dw”

NN

x Gk + ;0 + ) Gl(q; )
xGY(p—-q-kio' —o)G)p—q:0") ()

O(pr — Pl
R p?2m, — w + i0F

Gl(p;w) =

o (p) = ————u(k; )

has the opposite sign to self-energy terms and effectively
cancels the e-p momentum distributions above pr. Then,

p(p > pr) = p=*(p) + PP (p) + p™*(p) = 0. (10)
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In fact, the suppressed tail has also been found in recent
Monte Carlo calculations.** Although slightly bigger than
those in Refs. 3 and 34, small tails appeared in the very
sophisticated bosonic approach of Arponen and Pajanne.?

So far, we discussed the problem of many-body tails when
calculated only for the first order in perturbation theory.
Carbotte and Kahana estimated, however, that the cancellation
of the tail still would occur in all orders of perturbation. They
showed that the enhancement effects connected with increased
electron density around the positron could, in principle, work
as if the first-order quantities of p(p) for p > pr were
multiplied by some value of the enhancement at pg. The
only many-body momentum-dependent enhancement factors
for the electron gas (if not counting BML theory for crystals'#),
known almost to date have been determined for p < pg. The
attempt to calculate the enhancement factors for all values
of momenta has recently been undertaken by Boronski,*3
who solved a modified Bethe-Goldstone equation, including
approximately, in all orders, electron self-energy effects. Of
course, if the cancellation discussed above always occurs, these
factors would not have any substantial meaning, otherwise, one
should take them into account.

One should underline that the calculation of all effects
leading to the cancellation of the momentum tail have been per-
formed for the “one-positron-many-electrons” system within
a spatially homogeneous electron gas. In this environment, the
Carbotte-Kahana canceling of the e-p momentum tails beyond
pr may be valid in good approximation. However, there is
no certainty that this result will also be true for a positron
within the inhomogeneous electron gas in a crystal. Since a
more precise answer would require tedious band-structure and
spectral function calculations, not always fully feasible, for
now, one proposes an estimation of this effect within a simple
model®” where one assumes the effective-mass approach for
the calculation of electron and positron self-energies with the
dynamic effective potential in the RPA approximation. In this
instant, one can utilize all the formulas presented above to
calculate p(p) but with free electron and positron masses
(m.,m,) appropriately replaced in formulas (7)—(9) by the
electron and positron effective masses (m,,m}). Then,

p(p > pr) = myp**<(my; p) +my, P> (mg,m,; p)
+'Oh'd'(m:»m;; P (11)

where the dependence in pP* on m] appears because of
introducing m into the effective interaction u(k;w). As an
example, we have performed calculations for m} = 2 and,
to make a comparison with Table I of Ref. 3, the electron
density (defined in Ref. 3 via «) corresponds to ry = 3.79
(¢ =0.2).

In comparison to Carbotte and Kahana’s calculations where
m} =m’ = 1,form} = 2andm’, = 1, thereduction in the tail
is much weaker (see Fig. 4), and the momentum distribution
“seen” by the positron is half the distribution of Daniel and
Vosko.* This effect could be even slightly enlarged, and the
overall (for p < pg andfor p > pr)many-body enhancement
may be less visible in angular correlation curves if the
enhancement factor was calculated according to Ref. 36 where
electron self-energy effects are incorporated in calculations of
Bethe-Goldstone amplitude. Thus, the dynamic e-p interaction
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FIG. 4. (Color online) High-momentum tail in p(p). The curve
with triangles corresponds to values from Table 1 of Ref. 3 when the
considerable cancellation of somecontributions occurs. The line with
the balls corresponds to our calculations for m; =2 and m} = 1.
The curve with the squares corresponds to the case when only e-e
correlations are taken into account (Ref. 33).

cannot sufficiently reduce the momentum tail to make it
negligible. More so, if the effective mass of the electron
increases, the tail becomes even more substantial®’ since the
electron self-energy contribution grows up faster than the
other terms. The same rules would diminish the p(p) values
below pp, making the whole distribution far different from the
rectangular one.

The presented estimation is, of course, simplified, but
it clearly shows how much many-body tails in momentum
distributions may depend on details of the electronic structure
of a given element.

IV. SENSITIVITY OF p™(p) TO VARIOUS
APPROXIMATIONS OF THE ELECTRON AND
POSITRON WAVE FUNCTIONS

When comparing theory with experimental results, one
must be sure that all differences observed are connected with
various models for many-body effects, not to uncertainties
due to approximations of e-p wave functions or to various
band-structure methods—this is the topic of this section.

It is well known that many of the Fourier coefficients
of ¥, (r) are remarkably sensitive to approximations of
both various potentials and the positron wave function.?$-3
Nevertheless, according to a finding for the alkalis, Cu, and
Pd,*® the high-momentum components of the e-p density
close to the central Brillouin zone—or, in the case when the
FS extends over more than one band, close to the Brillouin
zone containing the leading term of density—are not very
sensitive to details in the shape of . (r). A similar effect
for total annihilation rates has been observed by the authors
of Ref. 40. A theoretical explanation of these effects, based
on general considerations, has been given in Ref. 41: In
each metal, there are some components of pPM(p), which
are largely independent of uncertainties arising from different
approximations of . (r). Moreover, such stable densities
mainly correspond to densities of high values (leading term
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FIG. 5. (Color online) Relative changes in Ap'™ and Ag™ [in
percentages of their values for the L model] for the leading terms
of density in Pd for: pure s, pure d, dominant d (spd*), and mixed
s + p + d (spd) electron states.

of the density and the highest Umklapp components), which
can easily be studied in the experiment. This statement is
strongly supported by our numerical tests (Figs. 5-7) based
on APW calculations where the notations L, Lp, and HM
refer to different models of the positron wave function: L
means the muffin-tin approximation proposed by Loucks,?’ Lp
corresponds to a perturbed Loucks positron wave function,?!
and HM is a more realistic description of i, (r) as established
by Hubbard and Mijnarends.?> Second, in order to check how
oM (p) reacts to changes in both the electron and the positron
wave functions obtained by quite different band-structure
methods as well as by different crystal potentials, we also
used the FP-LAPW program WIEN2K (Ref. 23), including
the following potentials: W1—nonrelativistic LDA; W2—
nonrelativistic generalized gradient approximation (GGA);
W3—scalar-relativistic GGA. Results concerning the leading
terms of densities of various electronic states in Pd are
presented in Fig. 5 where it is shown that the sensitivity of these
terms, with respect to changes in the positron wave function
(compare results for L, Lp, and HM), is very small—less
than 2% for all examples investigated. When both electron
and positron wave-function calculations are performed using
essentially different band-structure methods (e.g., the FP-
LAPW instead of the APW), the Ap™ values may be
somewhat higher. However, when scalar-relativistic potential
(W3)is used, differences become much greater, in particular, in
metals, as, e.g., in Pd where relativistic effects play a significant
role. Fortunately, corresponding changes in the enhancement
factor & are not so large (in the case of Pd and used models
Ae < 4%) because ¢ is the ratio of two densities (without and
with correlations), which have been calculated within the same
formalism.

InFigs. 6 and 7, we present results for Umklapp components
of various electronic states of Al and Pd, respectively,
depending on their distance from the leading term of the
density, given by G; where index i = 0 means the leading
term and i = 1, 1’ or 1” denotes various reciprocal-lattice
vectors with the lowest (i.e., first) distance from the leading
terms, i = 2, 2/, or 2"—second distance, etc.
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FIG. 6. (Color online) p™(k + G) and ¢™(k + G) in Al vs
the reciprocal-lattice vector G for various electron states and two
models (L and W2) of electron and positron wave functions. sp(d)
means s + p with a small d contribution, and sp*d means p dominant
s + p + d mixture.
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FIG. 7. (Color online) The same as in Fig. 6 but for Pd and three
models (L, W2, and W3) of electron and positron wave functions.
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In the case of Al, relativistic effects are negligible, so we
restrict our investigations to the L and W2 “models.” Taking
into account that maximal values of Umklapp components
are lower than 1% of p™(p = 0), differences between
densities for these two models can be neglected in relation
to the experimental accuracy. Compared to that, one observes
rather large changes concerning the absolute values of the
enhancement factors ¢'™(p). However, we should take into
account that, in ACAR experiments, one studies only the
relative values of densities. Therefore, we are more interested
in the momentum dependence [i.e., the shape of 8IPM(p)],
which is almost the same for both models L and W2. Of
course, a problem could arise if we would like to consider
such subtle effects as, e.g., overenhancement of the second
Umklapp components. However, this refers to very small
densities [lower than 1% of p™(p = 0)], too small for
experimental investigations.

The results for Pd, displayed in Fig. 7, differ signifi-
cantly from those for Al: the Umklapp components in Pd
are essentially larger what is typical for transition metals.
Taking into account that the two models L and W3 are
substantially different, the disagreement of the corresponding
results—especially as it concerns the Umklapp components—
is surprisingly small.

So, one could expect that theoretically obtained values of
o"™M(p) (provided, of course, that a powerful band-structure
code is used) can be used as a quality test of different
theoretical descriptions of many-body effects, provided the
following limits are taken into account:

(1) Due to the limited reliability of the calculated p (k + G)
and ¢ (k + G), a reliable interpretation of the absolute values
of these quantities is hardly possible; it is more realistic to
interpret their momentum dependence (even if the spectra are
normalized to the total annihilation data).

(2) Especially, the relative enhancement factor in the higher-
momentum region, e(k + G) will be of limited reliability
in the case when either densities are small or values of the
enhancement are close to unity—then resolving whether there
is overenhancement or deenhancement does not make sense,
the more so, as there is outside of the limit of the experimental
possibilities.

(3) Could we compare total annihilation rates?—probably
yes because both positron and electron wave functions are
normalized to unity. So, for two different approximations,
p™(p) as a function of p fluctuates around some fixed
value (the true value is always unknown). Here, one should
remember the Bunikowski-Schwarz inequality—for each of
the IPM models, this norm ||/ @l < [[¥41] |¢x;]] could
have some other value. However, one could expect that relative
differences for total annihilation rates would be smaller than
for the corresponding values of p(p).

V. EXPERIMENTAL e-p MOMENTUM DENSITIES

In ACAR experiments, one measures line or plane projec-
tions of the e-p momentum densities in the extended p space,
so-called 2D or one-dimensional (1D) spectra. Usually, the
experimental results are interpreted from the point of view of
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FIG. 8. (Color online) Three-dimensional densities p(p) recon-
structed from 2D ACAR data for hcp Mg, Cd, and Y along the
I'M direction* (and references therein) and for cubic metals AL*
Cu,* and ErGa; (Ref. 47) along [111] (Al), [100] (Cu), and isotropic
average over the 3D p space in the case of ErGas.

the FS studies, so their analysis is limited to the reduced k
space where the FS breaks are better marked. In most cases,
they are sufficiently intense to reveal the FS topology,***
although sometimes a presence of the positron does not
allow for a proper interpretation of experimental p(k) without
corresponding theoretical calculations.** In part (b) of Fig. 2 in
Ref. 44, itis shown that, in the case when 5 f electrons in UGas
are treated as a valence ones, there is a very large difference
between electron occupancy and theoretical e-p densities p(Kk)
(not only can some FS breaks be completely distorted, but
also very strong enhancement of some delocalized states can
simulate nonexisting FS elements).

Of course, to get reliable physical information about
correlation effects, one should perform the analysis in the
extended zone p [as well as for three-dimensional (3D)
densities, not for 2D ACAR data, to have separated states
k and k 4+ G], even if the analysis is restricted to momenta
inside the central FS. In Fig. 8, we show some examples of
3D densities reconstructed from experimental 2D ACAR data
for hep Mg, Cd, and Y (Ref. 4 and references therein) and
for cubic metals AL* Cu,* and ErGas (Ref. 47) where (1)
Mg and Al are “jellium-like” metals with four and three s
electrons (per unit cell), respectively; (2) Cd with ten very
flat 4d bands lying below the bottom of the 5s conduction
bands and Cu with five 3d bands lying closer to the FS (but
also without any direct influence on the FS); (3) Y and ErGas,
“real” transition metals with six (s + d = 4 + 2) and twelve
(s+ p+d=8+4+3+1) valence electrons in Y and ErGas,
respectively.

As follows from the experimental data, there is typical
Kahana-like enhancement in simple metals as, e.g., Al, Mg,
and Cu (see also results: A1,>>*® Cu,*->! K, Na, Mg, and Al
in Ref. 52), a significantly weaker effect for Cd, whereas, e.g.,
Y and ErGas, there is no increase in the enhancement with
increasing momentum. Only the BML theory'* is able to de-
scribe such different types of enhancement within one theory,
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which indicates that a proper description of e-p correlations in
crystals has to include periodic lattice potentials. Such a finding
is important because all other theories ignore the influence of
the lattice potential on the e-p interaction. Of course, as we
pointed out before, the BML theory has several shortcomings
as well as it includes some approximations, which give strong
deenhancement in the high-momentum region, up to now not
confirmed by the experiment. Similarly, as in the case of Mg,*
a very detailed interpretation of the 1D ACAR data in Cu
(Ref. 49) as well as in Na (Ref. 53) points out that there is
no deenhancement of the Umklapp components. Due to this
reason, efforts to develop model functions, including empirical
enhancement factors as proposed lately by Laverock et al.,"
might be useful. However, it should be performed in the p
space, and such enhancements cannot be treated as a correction
to the theory of the e-p interaction alone but to the theory of
both e-p and e-e correlations.

Our explanation is the following. Assume that ¢“P? in
Fig. 3 represents the ratio of experimental-to-theoretical [IPM
densities. We can try to fit, to the experimental densities, a
function simply written in the form [1 + AE(k)], where A
is a fitting parameter and E(k) is the energy for the upper
band. Since A should describe the dependence on the energy,
which is the same in each of the states k, k + G, and k
+ G», such a procedure would make sense when, for each
of these states, we obtained the same parameter A. However,
performing this for "PA (the results of the theory where only
energy-dependent enhancement was applied,**~* although in a
local way?’), we get different A(G) parameters for the leading
term and each of the Umklapp components of momentum
densities.

When performing such a fitting in the k space (in the
reduced zone), one gets some effective parameter A that is an
average of A(G) with weights depending on the contribution
of particular density components to the total density. What is
the physical meaning of such a parameter? If it had to show
a dependence on the energy, it would make sense only for the
leading term of the density.

This feature could also be understood if looking at &
Fig. 3. For each of the Umklapp components, it is strongly
momentum dependent, and this is not the case for the leading
term of the density. What does it mean? The momentum
dependence of the leading term is weakly (compared with
Umklapp components) influenced by the r dependence of
various physical effects, in this case, the positron wave
function, i.e., the repulsion of the positron from the positive
ions. So, when the energy-dependent enhancement is fitted
to the leading term of the density (this is possible only in
the p space), then it could describe the dependence on the
energy.

IPM in
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VI. CONCLUSIONS

It is demonstrated that, in the periodic lattice, the shape
of the positron distribution and the locality of the correlation
effects have a crucial influence on the momentum dependence
of the e-p densities. It is shown that the positron generally
reduces the intensity of electron Umklapp components. The
strength of this effect depends on the character of the bands
being stronger for localized states. Due to this fact, p(p),
folded into the first Brillouin zone, does not resemble the
steplike function as in the case of electronic densities, and
its momentum dependence does not necessarily reflect the
dependence of the correlation factor on the momentum or
energy. This is, to a large extent, caused by a dependence
of the correlation function on the electron density and on
the lattice effects (inter- or intraband transitions as in BML
theory).

We also showed that, in real metals, due to various effects
connected with the spatial inhomogeneities of the materials—
static and dynamic lattice effects—many-body tails may be
significantly less suppressed than in the jellium. We expect
that, due to the same reasons, the momentum densities for p <
pr are decreased. This should, in total, lead to a smoothing
out of the momentum density distribution. Such an effect,
similar to e-e correlations observed in Compton-scattering
measurements, was lately found in new ACAR experiments.*™
Such a finding is important because almost all theories dealing
with the e-p enhancements assume, according to Carbotte
and Kahana,® that high-momentum tails are, in practice, to
be negligible.

When investigating correlation effects, we have had to
ascertain that the momentum dependence of p™(p) can be
estimated with sufficiently high accuracy, largely independent
of approximations of both electron and positron wave func-
tions. We showed that, in the case of “stable” densities (i.e.,
densities which could be properly estimated from experimental
data), the momentum dependence of theoretical IPM densities
are only weakly (or, at least, not significantly) dependent
on different band-structure calculations. In fact, we do not
consider such different band-structure calculations as in the
paper.’® We assume that their level is adequately high to
describe the FS properly; if not, one cannot perform any
analysis of p(p). But even when the band-structure method
allows for obtaining the proper FS, one cannot go into such
subtle details as the absolute values of densities. Therefore,
one should restrict the analysis to relative changes in p(p) as
well as to such regions where p(p) could be estimated with
sufficiently high accuracy [more details are points (1)—(3) at
the end of Sec. IV]. Then, one could devote all differences,
arising in various theoretical results, to different models for
many-body effects.
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