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Electrostatic control over polarized currents through the spin-orbital Kondo effect
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Numerical calculations indicate that by suitably controlling the individual gate voltages of a capacitively
coupled parallel double quantum dot, with each quantum dot coupled to one of two independent nonmagnetic
channels, this system can be set into a spin-orbital Kondo state by applying a magnetic field. This Kondo regime,
closely related to the SU(4) Kondo, flips spin from 1 to 0 through cotunneling processes that generate almost
totally spin-polarized currents with opposite spin orientation along the two channels. Moreover, by appropriately
changing the gate voltages of both quantum dots, one can simultaneously flip the spin polarization of the currents
in each channel. As a similar zero magnetic field Kondo effect has been recently observed by Okazaki et al. [Phys.
Rev. B 84, 161305(R) (2011)], we analyze a range of magnetic field values where this polarization effect seems
robust, suggesting that the setup may be used as an efficient bipolar spin filter, which can generate electrostatically
reversible spatially separated spin currents with opposite polarizations.
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Introduction. Traditional spintronic devices rely on the use
of ferromagnetic source and drain leads to produce and detect
polarized spin currents, like, for example, the Datta-Das spin
field-effect transistor.1 More recently, the manipulation of
single spins has become one of the paradigms for quantum
information.2 To achieve easier integration with current tech-
nology, the use of semiconducting lateral single quantum dots
(QDs) has been suggested as a means to produce spin filtering
and spin memory devices,3 which can be controlled through
the use of electrostatic gates, without the need of ferromagnetic
contacts4 or highly inhomogeneous static magnetic fields or
ac fields. Its experimental realization,5 using a single QD
and a large magnetic field to produce a bipolar electrically
tunable spin filter, has spurred a multitude of proposals, e.g.,
two QDs embedded in an Aharonov-Bohm ring,6 a double
QD (DQD) in parallel,7 or in a T-shape geometry,8 to cite a
few. More related to the results presented here, Borda et al.9

suggested the possibility of spin filtering in a DQD device
at quarter filling, by exploiting spin and orbital degrees of
freedom simultaneously through an SU(4) Kondo state. Right
after that, Feinberg and Simon,10 by extending the ideas
described in Ref. 9 to a similar DQD device, suggested the
interesting possibility of a “Stern-Gerlach” spin filter effect at
half filling. In this work we use two fully independent channels,
and present detailed numerical results confirming the high
efficiency of the spin filtering effect and suggest experimental
ways of observing it.

The utilization of the Kondo effect11 in a single QD12 has
the potential to add an extra dimension to spintronics, as now
the localized moment in a QD participates in a many-body state
that may provide new functionalities to spintronic devices.13

More complex Kondo-like regimes, like the so-called SU(4)
Kondo state,14,15 may provide even additional latitude to
create, manipulate, and explore spintronic devices using QDs.
In this work, we extend a recently observed variant of the
SU(4) Kondo effect16 (dubbed the spin-orbital Kondo effect) to
propose a device based on a capacitively coupled parallel DQD
which, when in the Kondo regime (through the application
of a magnetic field—see below), functions as a bipolar

spin filter that can produce currents with opposite polarities
simultaneously (one in each channel of the DQD system). In
addition, their polarities can be reversed by tuning the gate
voltages of the QDs, i.e., the proposed bipolar spin filter is
electrically tunable. As mentioned above, a similar device had
been suggested before.10 Here, we provide extensive numerical
results to stimulate experimental groups to try and observe this
effect.

Device and Hamiltonian. The proposed setup is that of
capacitively coupled parallel DQDs16,17 connected to com-
pletely independent metallic leads [see Fig. 1(a)].18 Through
an even-odd transformation, two leads decouple from the DQD
and the system is reduced to that shown in Fig. 1(b). Note that
this transformation does not involve the QDs, therefore the
interacting part of the Hamiltonian [(Eq. (2) below] remains
unchanged. Then, the two-impurity Anderson Hamiltonian
modeling our system is

Htot = HDQD + Hband + Hhyb, (1)

HDQD =
∑

λ=1,2;σ

[
U

2
nλσnλσ̄ + (Vgλ − σH )nλσ

]

+U ′ ∑
σσ ′

n1σ n2σ ′ , (2)

Hband = t
∑
λ=1,2

∞∑
i=1;σ

(c†λiσ cλi+1σ + H.c.), (3)

Hhyb =
∑

σ ;λ=1,2

tλ[d†
λσ cλ1σ + H.c.]. (4)

The operator d
†
λσ (dλσ ) creates (destroys) an electron in

QD λ = 1,2 with spin σ = ±, while operator c
†
λiσ (cλi+1σ )

does the same at site i (i + 1) in a noninteracting semi-infinite
chain λ = 1,2; nλσ = d

†
λσ dλσ is the charge per spin at each

QD, and both QDs have the same charging energy U . We
include the effect of a magnetic field H acting just on the
QDs,3 and coupling just to the spin degree of freedom.19 For
simplicity, we take the hybridization parameters t1 = t2 = t ′.
It is important to note that, contrary to Ref. 10, the only
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FIG. 1. (Color online) (a) DQD connected to four metallic leads
so that conductance through them can be measured independently.
The QDs are subjected to an inter-(intra-)QD Coulomb repulsion U ′

(U ). (b) After an even-odd transformation, two of the leads decouple
and the system is reduced to just two leads coupled only through U ′.

interaction between electrons in different channels λ = 1,2
is the interdot capacitive coupling U ′. Finally, as our setup
consists of semiconducting lateral QDs, each of them can
have different gate potentials Vg1 and Vg2,16,18 and we will
concentrate on the experimentally relevant regime U ′/U <

1.0 [the so-called SU(2) ⊗ SU(2) regime].14 All results shown
were calculated using U as our unit of energy. The width of the
one-body resonance for each QD is given by � = πt ′2ρ0(EF ),
where ρ0(EF ) is the density of states of the leads at the Fermi
energy EF . Throughout the paper t = 1.0 and all the other
parameter values are indicated in the figures or in the text.

This model has been studied extensively in previous works,
and it is well known that for U ′/U = 1.0 and zero-field it
has an SU(4) Kondo fixed point14, experimentally observed
in Refs. 20 and 21. Here, we want to address a com-
pletely different regime, although we will also show that our
density-matrix renormalization-group (DMRG)22 calculations
faithfully describe the SU(4) Kondo regime as well.

Density matrix elements. The results presented in this work
were calculated using the DMRG23 and the Friedel sum rule
(FSR).11,24–26 The validity of the FSR for the system studied
here is discussed in the supplemental material.27 In order to
characterize and identify different regimes, we use the reduced
density-matrix elements (DMEs), calculated with the DMRG.
The ground-state wave function can be written as

|�0〉 =
∑
γ,δ

ψγ,δ|γ 〉|δ〉, (5)

where γ stands for the 16 possible DQD configurations (0-0,
σ -0, 0-σ , σ -σ ′, 2-0, 0-2, σ -2, 2-σ , and 2-2), while δ represents
the states associated with the Fermi sea. Summing over the
band states δ we obtain the weight projection of the different
DQD configurations in the ground state,

ργ,γ ′ =
∑

δ

ψγ,δψ
∗
γ ′,δ. (6)

As will be shown in Fig. 4, the diagonal DME can be used
as a “proxy order parameter” for the typical correlations that
characterize a many-body state like, for example, the Kondo
state. This is very useful in the case of an unusual (or exotic)
Kondo effect, where it may not be clear at first what the
relevant correlations are that one should look for (from now
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FIG. 2. (Color online) Conductance (in units of G0) for U ′ =
0.5, � = 0.02, H = 0.0 (a) and H = 0.05 (b). (n1,n2) specifies the
occupancies of each QD [same values apply to (b)]. (b) H = 0.05
suppresses the spin Kondo effect (note that color scales in each panel
are different). We show that the bright (yellow) lines intercepted by
the (white) dashed line, where G = G0, correspond to a peculiar
Kondo effect. Points α and β are discussed in detail in Figs. 3 and 4.

on we generally refer to the diagonal matrix elements as DME
weight, or simply DME).

Numerical results. Figure 2(a) shows the conductance G =
G1 + G2 (G1,2 is the conductance for each channel) obtained
through the FSR27 in the Vg1-Vg2 plane for U ′ = 0.5 at zero
magnetic field. The different QD occupancies are indicated by
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FIG. 3. (Color online) Effect of magnetic field over conductance
along the (white) dashed line in Fig. 2(b). U ′ = 0.5, and � = 0.02,
0.0 � H � 0.04 (field increases in steps of 0.0025). Half filling
conductance (around Vg1 ∼ −1.0) in the SU(2) ⊗ SU(2) regime is
suppressed faster than in the SU(4) regime (not shown). The dashed
(red) line (H = 0.04) reaches unitary conductance G = G0 at values
of Vg1 corresponding to the points α and β in Fig. 2(b).
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FIG. 4. (Color online) (a) DME vs Vg1 for Vg2 = −Vg1 − (1 +
2U ′), � = 0.02, U ′ = 1.0, and H = 0.0. At the p-h symmetric
point (Vg1/U = −1.5), we have a half filling SU(4) Kondo regime,
characterized by the entanglement of spin and “orbital” degrees of
freedom, translated here into the equality of all the two-electron DME
DQD configurations at Vg1/U = −1.5. (b) Same as in (a), but now for
U ′ = 0.5 [SU(2) ⊗ SU(2) regime] and H = 0.04, corresponding to
the situation shown for the (red) dashed curve in Fig. 3. Note that the
DME of the spin configuration ↑-↑ [(black) dotted curve] is the same
as the orbital configuration 2-0 [(red) solid curve] for Vg1 = −1.29
(α point), as well as for the configuration 0-2 [(blue) dashed curve]
for Vg1 = −0.71 (β point).

the notation (n1,n2). In Fig. 2(b) we present the conductance
results for finite field H = 0.05, where the suppression of
spin SU(2) Kondo in each channel can be clearly observed
[color scales are not the same for panels (a) and (b)]. The
(white) dashed line is the region of gate voltage variation
in the Vg1-Vg2 plane that interests us. It is parametrized by
the expression Vg2 = −Vg1 − (1 + 2U ′). Conductance results
along this line for 0.0 � H � 0.04 are shown in Fig. 3, where
the (black) solid line shows results at zero magnetic field, with
a well defined plateau around Vg1 = −1.0 [it corresponds to
a cross section of the bright (yellow) region in Fig. 2(a)]. As
the field increases, in steps of 
H = 0.025 (dotted lines), the
conductance at (and around) the particle-hole (p-h) symmetric
point (Vg1 = −1.0) is suppressed very quickly, while narrow
peaks start to form close to the charge degeneracy points
[(red) dashed line], denoted α [(2,0)-(1,1)] and β [(0,2)-(1,1)]
points in Fig. 2(b), where G = G0. Note that these peaks are
narrow along the (white) dashed line in Fig. 2(b), but along the
charge degeneracy lines [the diagonal (yellow) bright lines in
Fig. 2(b)] they present a clear plateau structure.

Now, in Fig. 4 we present one of the central results in
this work. As an illustration of the use of DMEs to trace
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FIG. 5. (Color online) Top: Schematic representation of the four
possible processes that flip the total spin from Sz = 1 to Sz = 0, and
back to Sz = 1, when the singlet state is in channel 1 (α point). The
net effect is the transport of a spin down (up) in channel 1 (2). The
coherent superposition of these processes leads to Kondo screening
of the pseudospin associated to the two degenerate states with Sz = 1
and Sz = 0, and the consequent generation of a spin down (up) current
in channel 1 (2). Bottom: Equivalent processes for the configuration
where the singlet state is in channel 2 (β point). In this case, the
polarity of the currents in channels 1 and 2 (when compared to top
panel) is reversed.

the possible existence of a Kondo regime, panel (a) shows
the DME for half filling (n1 + n2 = 2) configurations of the
DQD for U ′ = 1.0 and zero magnetic field [SU(4) fixed point],
as a function of Vg1 for Vg2 = −Vg1 − (1 + 2U ′) [equivalent
to the dashed (white) line in Fig. 2(b), but for U ′ = 1.0 (see
Supplemental Material)27]. At the p-h symmetric point (Vg1 =
Vg2 = −U ′ − U/2 = −1.5) in Fig. 4(a), i.e., at the half filled
SU(4) fixed point, one sees that the six possible two-electron
configurations have all the same DME weight in the ground
state, highlighting the fact that orbital and spin degrees of
freedom are perfectly equivalent in the half filled SU(4) Kondo
state, i.e., spin and orbital degrees of freedom are maximally
entangled.21 This result is well known, but it serves to illustrate
the use of the DME calculation to “look for” possible Kondo
states. This is what is done in panel (b), where we present
the DME results for U ′ = 0.5 and finite field H = 0.04 [same
parameters as the ones for the (red) dashed line in Fig. 3]. In
this case, we have two different values of Vg1 for which we have
two half filling configurations with the same DME weight (the
same Vg1 values as the α and β points in Fig. 3). The crossing
in the α (β) point in panel (b) is between configurations ↑-↑
and 2-0 (0-2). The important fact to note is that exactly at these
crossings G = G0 (see Fig. 3), indicating the possibility of a
Kondo effect.

Indeed, in Fig. 5 we show eight cotunneling processes (four
in the upper panel and four in the lower) that shift the total Sz

spin of the DQD from Sz = 1 to Sz = 0 (and vice versa). The
top processes correspond to the degenerate states ↑-↑ and 2-0
[α point in Fig. 4(b)], while the bottom processes correspond
to the degenerate states ↑-↑ and 0-2 (β point). The virtual
states contain either one or three electrons. The remarkable
fact about these cotunneling processes is that they generate spin
polarized currents in each channel, with opposite polarizations.
In addition, once one sweeps Vg1 from α to β, the polarization
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FIG. 6. (Color online) (a) Channel conductance per spin vs Vg1

[same interval as in Figs. 3 and 4(b)], for H = 0.04 and � = 0.2: at
point α channel 1 (2) is polarized down (up), and at point β channel
1 (2) is polarized up (down). (b) Polarization Pλ for each channel
calculated using data from (a). (c), (d) Polarization vs Vg1 (0.0025 �
H � 0.04) for channels 1 and 2, respectively. Panel (c) also shows
that for H/U = 0.025 there is a substantial range 
Vg1 ≈ 0.045
for which the spin polarization varies between ≈70% and ≈90%,
indicating that the effect should be experimentally observable.

direction of the spin filtered current in each right-side lead is
reversed: ↓ (↑) and ↑ (↓) in channels 1 and 2, respectively, for
the upper (lower) processes. Note that no other virtual states
are connected (by t ′) to any of the degenerate states [↑-↑ and
2-0 (0-2)] in the α (β) point.28 There are similarities between
the Kondo effect described here and the one in Ref. 16: from
the lower inset in their Fig. 2 we see that the magnetic field
raises (lowers) the energy of the configuration ↓-↓ (↑-↑), while
maintaining the configurations ↑↓-0, ↑-↓, and ↓-↑ degenerate
(to zero order in t ′). By adjusting the gate potentials Vg1 and
Vg2, the configurations ↑↓-0 and ↑-↑ can be made degenerate
(α point). Then, the coherent superposition of the cotunneling

processes in Fig. 5 give origin to the Kondo effect discussed
here.29

In Fig. 6(a), we show conductance per spin type as a func-
tion of Vg1 [the same parameters as Fig. 3, (red) dashed curve]
for channels 1 and 2 (see legend). These results confirm that the
conductance at points α and β are almost perfectly polarized, in
accordance with the cotunneling processes described in Fig. 5.
Figure 6(b) shows the conductance polarization Pλ = (Gλ↑ −
Gλ↓)/(Gλ↑ + Gλ↓) for channels λ = 1,2. Panels (c) and (d)
show polarization results for channels 1 and 2, respectively,
for 0.0025 � H � 0.04 [other parameters as in panels (a) and
(b)]. The results clearly indicate that the polarization effect is
robust and does not require a high value of magnetic field.
Indeed, as indicated in Fig. 6(c), a polarization of almost 90%
can be achieved for H/U = 0.025. Taking U ≈ 1.0 meV for
a GaAs QD18 results in H � 1.0T around the α point. As
indicated by the double-head white arrow in Fig. 6(c), a range
of 
Vg1 ≈ 0.045, at H/U = 0.025, has a polarization varying
from ≈70% to ≈90%. This indicates that there is enough range
in the parameter space to allow for experimental observation of
very high polarizations without the need of very high magnetic
fields.

Conclusions. In summary, we have presented a peculiar
Kondo effect involving a capacitively coupled parallel DQD,
connected to two independent channels. To achieve this effect
it is necessary to apply a moderate magnetic field and adjust
the gate potential of each QD to take the DQD to a half
filling charge degeneracy point. The cotunneling processes
in this Kondo effect are such that spin polarized currents are
generated in each channel, with opposite polarities. The results
in Fig. 6 indicate that the effect should be experimentally
observable.
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