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Fractional Chern insulators and the W∞ algebra
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A set of recent results indicates that fractionally filled bands of Chern insulators in two dimensions support
fractional quantum Hall states analogous to those found in fractionally filled Landau levels. We provide an
understanding of these results by examining the algebra of Chern band projected density operators. We find that
this algebra closes at long wavelengths and for constant Berry curvature, whereupon it is isomorphic to the W∞
algebra of lowest Landau level projected densities first identified by Girvin, MacDonald, and Platzman [Phys.
Rev. B 33, 2481 (1986)]. For Hamiltonians projected to the Chern band this provides a route to replicating lowest
Landau level physics on the lattice.

DOI: 10.1103/PhysRevB.85.241308 PACS number(s): 73.43.−f, 03.65.Vf, 02.20.Sv

Introduction. Much of the theory of the quantum Hall
effect is tied to the celebrated Landau levels (LLs)—the
nondispersing energy states of free electrons in a uniform
magnetic field. A fruitful line of inquiry has focused on
separating quantum Hall physics from this weak lattice limit.
In the case of the integer quantum Hall effect (IQHE), Thouless
and co-workers1 showed that the Hall conductance is quantized
even in the presence of a strong periodic potential, where
the energy bands are no longer flat, as long as the chemical
potential lies in a gap between the bands. They did so by
relating the conductance to a mathematical invariant, the first
Chern number, associated with the filled bands. Subsequently,
Haldane2 showed, through an explicit construction of a tight-
binding model of a “Chern band insulator” (CBI), that a
quantized Hall conductance could be obtained even in the
absence of a net magnetic field as long as the filled bands still
came with nontrivial topology, i.e., nonzero Chern numbers.
This thus established an equivalence between filled CBs and
filled LLs. A natural question that then arises is whether such
an equivalence also holds for partially filled CBs and partially
filled LLs—specifically, whether the fractional quantum Hall
effect (FQHE) arises in a partially filled CB in a lattice system.

A flurry of recent work has shed much light on this question.
Several authors3–6 have constructed models with nearly flat
(nondispersing) Chern bands which allow interactions to
dominate at partial fillings while leaving the gap to neighboring
bands open. References 5,7, and 8 and, most convincingly,
Regnault and Bernevig9 have reported evidence for FQH states
at ν = 1/3, 1/5, and (for bosons) 1/2 in finite-size studies of
short-ranged interactions projected to these bands. A partial
understanding of these numerical results is already available:
Applying a generalized Pauli principle familiar from the lowest
Landau level (LLL) FQHE rationalizes some aspects of the
results,9 while Qi10 has constructed a fairly general recipe for
translating familiar model wave functions and Hamiltonians
from the LLL to CBs on cylinders by elegantly mapping
Landau gauge eigenfunctions to particular Wannier functions.

In this Rapid Communication, we offer a complementary
perspective on the CB-LLL equivalence. As in the earlier
work we start by distinguishing the kinematical and dynamical
aspects of obtaining QH physics in a CB. The latter involve
an appropriate choice of band structure and interaction Hamil-
tonian but the former requires an appropriate identification

of the algebra of operators in the two systems. Specifically,
in both the CB and the LLL, the projected Hamiltonians
that include interactions and scalar disorder involve only the
projected particle density operators and thus the nontriviality
of the physics enters precisely through the nontriviality of the
algebraic relations between the different Fourier components
of the densities. For the LLL the density operators obey the
so-called W∞ algebra first constructed by Girvin, Macdonald,
and Platzman.11 We show that at long wavelengths and in
a natural limit (constant Berry curvature) densities projected
to the CB obey the same algebra. This implies that mutatis
mutandis LLL physics can be transported to the CB. We also
note that this implies that the Cartesian components of the
particle positions projected to the CB fail to commute, much
as guiding center coordinates in the LLL. In what follows we
review the W∞ algebra for the LLL, show how it arises in a
CB in d = 2, argue that it allows LLL physics (impurity and
FQHE) to be translated to the CB, and discuss generalization
of the density algebra to other topological insulators, which
appears to us to be a promising route to understanding their
fractional physics.

Projection to the lowest Landau level. We begin by recalling
some details of the projection to the LLL12 which captures
the essential features of the FQHE in the high field limit.13

Consider an electron in an external magnetic field B = −B ẑ,
described by the Hamiltonian H = 1

2m
(p + e

c
A)2. The motion

of the electron can be separated into the fast cyclotron motion
and the slower drift of the guiding center of its orbit. Working
in symmetric gauge and with h̄ = 1, this can be implemented
by decomposing its position r into two parts, r = ( 1

2 r +
ẑ × p) + ( 1

2 r − ẑ × p) ≡ η + R, which obey the commutation
relations [ηx,ηy] = i�2

B,[Rx,Ry] = −i�2
B,[ηi,Rj ] = 0, where

�B = (c/eB)1/2 is the magnetic length. In terms of these
variables, the Hamiltonian depends purely on the cyclotron
coordinates η, H = η2

2m�4
B

, which (owing to the fact that the
components of η are conjugate) has the familiar oscillator
spectrum of a series of Landau levels, with En = (n + 1

2 )ωc,
where ωc = eB/mc is the cyclotron frequency. Since H

commutes with the guiding center coordinates R, each
energy level is extensively degenerate with a degeneracy
given by N�, the number of flux quanta threading the
sample.
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When the number of electrons N is smaller than N�,
we have a partially filled n = 0 LL massively degenerate
in the kinetic energy; we must therefore include the effect
of interactions. A reasonable starting point is to project the
interactions into the degenerate subspace; the effect of the
projection is to replace η-dependent expressions by their LLL
expectation values, e.g., 〈η2〉LLL = �2

B . The density operator
ρq = eiq·r̂ is projected asPρqP = e−q2�2

B/4eiq·R ≡ e−q2�2
B/4ρq,

where we have factored out a q-dependent constant in the
definition of the projected density.14 Since [Rx,Ry] = −i�2

B ,
we can show that the ρq satisfy the W∞/Girvin-MacDonald-
Platzman algebra11

[
ρq1

,ρq2

] = 2i sin

(
q1 ∧ q2�

2
B

2

)
ρq1+q2

, (1)

where q1 ∧ q2 ≡ ẑ · (q1 × q2). This algebra arises in several
contexts and has the interpretation of a quantum deformation
of the algebra of area-preserving diffeomorphisms on the plane
as well as that of magnetic translations in a uniform field as
discussed, e.g., in Ref. 15.

Along with the above commutation relations, the
Hamiltonian

HLLL = 1

2

∑
q

V (q)e−q2�2
B/2ρqρ−q

+
∑

q

Vimp(q)e−q2�2
B/4ρ−q , (2)

which is the projection of a density-density interaction and
an impurity potential into the LLL, completes the low-energy
description of the fractional quantum Hall effect. [In passing
from (1) to (2) we reinterpret ρq as the density of a many
electron system. As the latter is additive over the individual
particle densities, it also obeys the algebra (1).] While still
formidable, the LLL problem has been tackled by a variety
of different approaches, most notably by guessing trial wave
functions for FQH states in the clean limit. The essential point
for this Rapid Communication is that if we can construct a
similar low-energy description for a Chern insulator, then some
aspects16 of the familiar fractional quantum Hall technology
can be applied—with suitable modifications to account for the
different nature of the single-particle states—to the problem
of interacting Chern insulators.

Projection to the Chern band. We begin by fixing no-
tation and recalling some basic facts. An insulator with
N bands is described by the single-particle Hamiltonian
H = ∑

k,a,b c
†
k,ahab(k)ck,b, where a,b = 1,2, . . . ,N are sub-

lattice/spin indices, and k is the crystal momentum restricted
to the first Brillouin zone (BZ). (Here and below, we will ex-
plicitly indicate when repeated indices are summed over.) The
solution of theN × N eigenvalue problem

∑
b hab(k)uα

b (k) =
εα(k)uα

a (k) defines the energy bands and we will take the eigen-
vectors to be normalized,

∑
a |uα

a (k)|2 = 1. The corresponding
eigenstates are given by

|k,α〉 = γ
†
k,α|0〉 ≡

∑
a

uα
a (k)c†k,a|0〉. (3)

Specializing to two dimensions, the Chern number of a given
band α is computed as

Cα = 1

2π

∫
BZ

d2k Bα(k). (4)

Here,Bα(k) is the Chern flux density (Berry curvature), defined
as the curl of the Berry connection (Berry gauge potential),
Bα(k) = ∇k × Aα(k). In terms of the eigenstates, we have

Aα(k) = i

N∑
b=1

uα∗
b (k)∇ku

α
b (k). (5)

A filled band with Chern number Cα yields a Hall conductance
σH = Cαe2/h regardless of whether it arises in a system with
a net magnetic field1 (“Hofstadter band”) or zero net magnetic
field2 (“Haldane band”). We shall refer to both as Chern bands.

As announced, we are interested in the restriction of the
kinematics to a single CB which can be implemented by use
of the projection operator Pα = |k,α〉〈k,α|. It follows that the
density operator ρq = eiq·r̂ when projected onto the CB takes
the form

ρq ≡ Pαρ(q)Pα

=
∑

k

[∑
b

uα∗
b

(
k + q

2

)
uα

b

(
k − q

2

)]
γ
†
k+ q

2 ,α
γk− q

2 ,α

(6)

At long wavelengths qa � 1, we may expand∑
b uα∗

b (k + q
2 )uα

b (k − q
2 ) ≈ 1 − iq · ∑

b uα∗
b (k) ∇k

i
uα

b (k)≈
e
i
∫ k+q/2

k−q/2 dk′ ·Aα (k′), so that

ρq|k,α〉 ≈ ei
∫ k+q

k dk′ ·Aα(k′)|k + q,α〉. (7)

In other words, for small q, ρ(q) implements parallel transport
described by the Berry connection Aα(k). Either from this
observation or via a gradient expansion, we may show that
at long wavelengths, the commutator of projected density
operators at different wave vectors is[

ρq1
,ρq2

]
≈ i q1 ∧ q2

∑
k

[
Bα(k)

∑
b

uα∗
b (k+)uα

b (k−)γ †
k+,αγk−,α

]

(8)

where we define k± = k ± q1+q2

2 . Finally, let us assume that
the local Berry curvature Bα(k) can be replaced by its average

Bα =
∫

BZ dkBα(k)∫
BZ dk

= 2πCα

ABZ
(9)

over the BZ; here ABZ = c2
0/a

2 is the area of the BZ, with a

the lattice spacing and c0 a numerical constant depending on
the unit cell symmetry. This yields[

ρq1
,ρq2

] ≈ iq1 ∧ q2Bα ρq1+q2
, (10)

which is identical to the long-wavelength limit of the density

algebra (1) for the LLL, with Bα

1/2 =
√

2πCα

c0
a playing the role

of the magnetic length �B .
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Equation (10) is our central result and various remarks are
in order concerning it:

(1) We can define a coarse grained, projected, position
operator as rcg ≡ xcgx̂ + ycgŷ = limq→0

∇q

i
ρq. It follows from

Eq. (10) that

[xcg,ycg] = −iBα. (11)

which identifies the rcg with the guiding center position
operator in the LLL.

(2) For a system of N unit cells there are N points in the
BZ. If Bα(k) is truly constant we can define a set of N parallel
translation operators Tq for which (7) holds exactly:

Tq|k,α〉 = ei
∫ k+q

k dk′ ·Aα (k′)|k + q,α〉. (12)

The algebra of the Tq is thus exactly of the W∞ form (1)
without a long-wavelength restriction. We note that the Tq
are trivially isomorphic to magnetic translation operators for
a system with N sites and flux 1/N per unit cell and it is
straightforward to check that the states in the band form an
N dimensional irreducible representation of their algebra.17

From this perspective the idealization of a constant curvature
CB hosts a W∞ algebra whose long-wavelength generators
coincide with the physical density operators.

(3) Alternatively, if the deviation of the Berry curvature
from its average value is bounded, |Bα(k) − Bα| < |Bα| − ε,
we may define a “smoothed” density operator which may be
regarded as the projection of an operator ρs(r) local in position
space; for qa � 1 this gives a modified form of (7):

ρs
q|k,α〉 = Bα

Bα(k)
ei

∫ k+q
k dk′ ·Aα (k′)|k + q,α〉. (13)

At long wavelengths, the algebra of smoothed densities closes,
and in this limit (10) is an exact equality when ρq is replaced
by ρs

q.
(4) Both the “Hofstadter” and “Haldane” problems give rise

to (10), which unifies earlier lattice FQHE studies18,19 with the
ones considered here.

(5) This last observation can be used to get nearly constant
curvature bands by approaching the Landau level limit on the
lattice, i.e., by picking flux 1/q per plaquette and working
the lowest subband at large q. While it is impossible to find
a constant-curvature CB in models of Chern insulators with
N = 2 bands, it is possible to construct models with N > 2
which host a CB with nearly constant Berry curvature.20,21

(6) Finally, readers familiar with the LLL problem will
note that there the W∞ algebra in a system with N states is
generated by N2 density operators while in the CB there are
only N densities (or Tq if one wishes to work with a closed
algebra). This distinction arises as the LLL is formally defined
on a continuous space but is without fundamental dynamical
significance as the relevant momenta q�B < 1 are O(N ) in
the LLL as well. For example, it was shown in Ref. 22 that
keeping only this set of momenta keeps the entire physics of
the quantum Hall localization transition in the LLL. However,
this counting discrepancy does have the consequence that the
algebra of the densities themselves must close in the LLL at
all q which is not the case in the CB.

Interactions and disorder. We have argued above that it
is possible to construct lattice models with nearly constant

curvature for which the algebra (10) is realized to an excellent
approximation. Evidently if we can ignore the variations in
curvature and replace the ρq by Tq in the Hamiltonian (2),
we will have mapped accurately between the LLL and CB
problems at the same fractional filling. Our remaining task
is to argue that we can often ignore the residual variations
anyway. For a problem with sufficient disorder, most notably
the problem of localization within the CB, we expect that
impurity scattering will effectively lead to an averaging of
the curvature over the band. This is consistent with what is
known about the QH transition in Chern insulators,23 although
a direct test in the projected CB would be desirable. A simple
estimate for the requisite strength of disorder can be made by
comparing the inverse mean free path l−1

MF to the characteristic
momentum-space scale kσ ∼ |∇B|/B for variations of the
Berry curvature; for disorder sufficiently strong that l−1

MF ∼ kσ ,
the random potential will scatter between points in the BZ
that are kσ apart, and thereby average their Berry curvature.
For the formation of FQH states we appeal to the stability
of topologically ordered states to arbitrary perturbations.
Intuitively, we expect to be able to trade the extra pieces in
the density commutators for terms in the Hamiltonian. For
sufficiently constant curvature bands and sufficiently strong
quantum Hall states, these extra terms should not destabilize
the FQHE; numerical studies are in striking accord with this
observation.21,24

Concluding remarks. This Rapid Communication has been
concerned with establishing a correspondence between a CB
and the LLL; the existence of QH physics in both problems
is traced to a common source in the nontrivial, W∞, algebra
of long-wavelength densities. Intuitively, the nontriviality of
the algebra is needed for the densities to do something
other than simply condense and break translational symmetry
when an interaction is introduced into a flattened band. This
suggests that a program of identifying density algebras for
other topologically nontrivial bands (sets of bands) in various
dimensions could be fruitful in generating new physics upon
inclusion of interactions when such bands are partially filled.
Here we make a few comments in that direction.

Consider projecting onto a set of bands. For an interesting
dynamical problem to arise it will be necessary for these
bands to be nearly degenerate (possibly exactly on account
of symmetry) and nearly flat, but we are again interested in
the kinematics of projection. The projected density operator
ρ̄q now has a nontrivial structure in the band index, so that the
analog of (7) is

ρq|k,α〉 ≈
∑

β

[
ei

∫ k+q
k dk′ ·A(k′)]

βα
|β,k + q〉, (14)

whereAαβ(k) ≡ ∑
b uα∗

b (k)∇k
i

u
β

b (k) is the non-Abelian vector
potential, and the term in square brackets is understood as a
matrix exponential. At long wavelengths,

[
ρq1

,ρq2

]
≈ i q1 ∧ q2

∑
k,α,σ,β

Fασ (k)

[ ∑
b

uσ∗
b (k+)uβ

b (k−)γ †
k+,σ γk−,β

]
,

(15)
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where F = dA − i[A,A] is the non-Abelian Berry curvature.
Let us specialize to cases where F is nearly constant up to
a gauge transformation. It can then be replaced by its BZ
average F , and the long-wavelength algebra simplifies to an
intertwined generalization of W∞:[

ρq1
,ρq2

] ≈ iq1 ∧ q2F · ρq1+q2
, (16)

where we have assumed a matrix product in the band indices.
In two dimensions, A(k) and F can always be globally

diagonalized by gauge transformation. Hence in the long-
wavelength limit, the density operators can be labeled by a new
“band” index, such that densities with different indices always
commute while those with the same index exhibit the standard
W∞ commutators. If the interactions are chosen to respect
this structure, one obtains a mapping to a multicomponent
quantum Hall system with different components potentially
experiencing different strength magnetic fields. For exam-
ple, in the case of topological insulators with time-reversal

symmetry in two dimensions, a basis of time-reversal conju-
gate bands may always be found25 where the two bands have
odd Chern numbers, which are the same in magnitude and
opposite in sign and this leads to the fractional quantum spin
Hall effect.26 We note though that generic interactions will not
decompose naturally in such a basis. For d > 2, it is not in
general possible to globally diagonalize the Berry connection
and now the problem is intrinsically non-Abelian and worthy
of further study. We conjecture that in d = 4 this approach
will lead to fractional states for bands with a nonzero second
Chern number, possibly related to the ones studied in Ref. 27.
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