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Typology for quantum Hall liquids

S. A. Parameswaran,1,2,* S. A. Kivelson,3,† E. H. Rezayi,4,‡ S. H. Simon,5,§ S. L. Sondhi,1,‖ and B. Z. Spivak6,¶
1Department of Physics, Princeton University, Princeton, New Jersey 08544, USA

2Department of Physics, University of California, Berkeley, California 94720, USA
3Department of Physics, Stanford University, Stanford, California 94305, USA

4Department of Physics, California State University, Los Angeles, California 90032, USA
5Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford University, OX1 3NP, UK

6Department of Physics, University of Washington, Seattle, Washington 98195, USA
(Received 10 August 2011; published 20 June 2012)

There is a close analogy between the response of a quantum Hall liquid (QHL) to a small change in the
electron density and the response of a superconductor to an externally applied magnetic flux—an analogy which
is made concrete in the Chern-Simons Landau-Ginzburg (CSLG) formulation of the problem. As the types of
superconductors are distinguished by this response, so too for QHLs: A typology can be introduced which is,
however, richer than that in superconductors owing to the lack of any time-reversal symmetry relating positive
and negative fluxes. At the boundary between type I and type II behavior, the CSLG action has a “Bogomol’nyi
point,” where the quasiholes (vortices) are noninteracting—at the microscopic level, this corresponds to the
behavior of systems governed by a set of model Hamiltonians which have been constructed to render exact a
large class of QHL wave functions. All types of QHLs are capable of giving rise to quantized Hall plateaux.
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A transparent way in which to understand many properties
of different quantum Hall phases is via the field theory of
a two-dimensional charged superfluid coupled to a fictitious
Chern-Simons (CS) gauge field.1–3 A consequence of CS elec-
trodynamics is that charges are bound to a fixed number of flux
quanta. This equivalence of flux and charge implies that the
condensed state—which exhibits the Meissner effect, perfect
conductivity, and quantized vortex excitations—corresponds
to an incompressible phase with a quantized Hall conductance,
whose quasiparticles carry fractional electric charge and
statistics. While the original Chern-Simons Landau-Ginzburg
(CSLG) theory provides a convenient description of the
Laughlin states and the Haldane-Halperin hierarchy4,5 as
condensates of composite bosons,1 a parallel treatment in
terms of composite fermions6 extends the CS approach to
describe fractional quantum Hall (FQH) phases seen in the
vicinity of even-denominator filling factors as condensates of
fermion pairs.7,8 Additional results, such as a global phase
diagram in which the plateau transitions are related to an
underlying superconductor to insulator transition,9 can also
be derived within the CSLG formalism. There is thus a useful
mapping between superconductivity and the FQHE.

Superconductors famously come in two varieties, which
differ in their response to external magnetic fields: Type I
superconductors phase separate into superconducting and
normal regions, with flux concentrated in the latter, while
type II superconductors form an Abrikosov lattice of vortices,
each carrying a single flux quantum. The analogy between
superconductors and FQH phases suggests that there is a
similar distinction between type I and type II QH liquids,
manifested in dramatically different patterns of charge orga-
nization upon doping. While in the clean limit, type II QH
liquids exhibit Wigner crystallization of fractionally charged
excitations, their type I cousins would exhibit phase separation.
This quite general dichotomy was pointed out only recently,
when it was argued that type I behavior occurs in paired QH

states when the pairing scale is weak.10 While the focus of
that work was the Pfaffian phase in the vicinity of filling
factor ν = 5/2, the results generalize implicitly to all paired
states.

In this Rapid Communication, we expand significantly
on this work. First, we identify a class of “Bogomol’nyi
points” of the CSLG theory which occur at the seperatrix
between type I and type II behavior where the quasiholes are
noninteracting even while the charged excitation spectrum is
gapped. (Such field theories are also referred to as “self-dual”
points, for reasons we will discuss below.) In the microscopic,
lowest Landau level (LLL) formulation they correspond to
special Hamiltonians introduced with the purpose of rendering
particular model wave functions exact ground states. While
some of what we say in both settings is not new, their
connection has not been discussed before. Second, we observe
that such self-dual points can be weakly perturbed to yield
various types of QHLs. These include the traditional type I and
II liquids, frustrated type I liquids, which exhibit short-distance
phase separation frustrated by long-range repulsion,10 and
others which we will discuss below. Especially striking are
type I-II QHLs which exhibit type I behavior for one sign of
doping and type II for the other—this type might generalize
to time-reversal (T) breaking superconductors as well. Note
that all types of QHLs exhibit quantized transport plateaux as
a function of magnetic field or density, at least upon including
weak disorder.

Chern-Simons Landau-Ginzburg theory. Near ν = 1/k, the
description of QHLs as superconducting states of flux-charge
composites is formalized in terms of a (bosonic) composite
field φ that binds k flux quanta to an electron and interacts with
a CS gauge field (a0,a) which encodes the electron statistics,
as captured by the (gauge-fixed) Euclidean Lagrangian density

L = φ̄Dτφ + |Dφ|2
2m

+ λ(|φ|2 − ρ)2 + ia0
∇ × a
k�0

, (1)
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where D0 = ∂τ − ia0 and Dμ = ∂μ − i(a + A)μ are the co-
variant derivatives, the external field B = ∇ × A, the filling
is ν ≡ ρ�0

B
= 1

k
, with �0 = hc/e the quantum of flux, and a0

is a nondynamical field which enforces the flux attachment
constraint

b ≡ ∇ × a = −k�0|φ|2. (2)

The static extrema of (1) satisfy (2) and the CSLG equations
of motion

−D2φ

2m
+ 2λ(|φ(r)|2 − ρ)φ = 0, (3a)

e ≡ −∇a0 = k�0ẑ × j, (3b)

where j = 1
m

Im[φ̄Dφ] is the current density. The integral of
L over space gives the energy of this state. Precisely at ν =
1/k—corresponding to the pristine QHL—these are solved by
the uniform condensate configuration φ = √

ρeiθ , a = −A,
and a0 = 0, which yields a state with zero energy.

The Bogomol’nyi point. In search of vortex excitations
we employ the Bogomol’nyi trick, |Dφ|2 = |D±φ|2 ∓ (b +
B)|φ|2 ± m∇ × j (where D± ≡ Dx ± iDy) to express L in
(1) for any time-independent field configuration subject to the
constraint (2) as

L = |D±φ|2
2m

+
(

λ ± k�0

2m

)
(|φ|2 − ρ)2

∓ (B − B∗)|φ|2 + B∗(ρ − |φ|2)

2m
, (4)

where B∗ ≡ k�0ρ. Since the total charge is the integral over
space of |φ|2, and is a conserved quantity, the term on the
second line makes a configuration-independent contribution
to the energy. Thus, the optimal vortex solutions are those
that minimize the first two terms. At the Bogomol’nyi point,11

λ = λB ≡ k�0/2m, the quartic term cancels for the lower sign
in Eq. (4), so this reduces to finding solutions to the first-order
equation

D−φ ≡ (Dx − iDy)φ = 0, (5)

along with the constraint (2).12 Equation (5) represents a form
of self-duality as it can be rewritten as Daφ = iεabDbφ.

In Eq. (1), ρ is formally related to the zero of energy which
we are free to choose so that ρ is equal to the average charge
density. In this case, such a solution has an energy density
E = (B−B∗)ρ

2m
. From Eq. (5) it is straightforward to show that

j = 1
2m

ẑ × ∇|φ|2. Thus, the final extremal condition, Eq. (3b),
is solved by a0 = λB|φ|2 + const where the constant is related
to the chemical potential.

The energy of the self-dual solutions of a specified vorticity
is independent of the spatial distribution of that vorticity. As
our signs correspond to vortices being quasiholes, it follows
that such self-dual quasiholes do not interact at λ = λB. The
quasielectron (antivortex) solutions are not self-dual. These
interactions have not been studied in detail although it is
clear that they have a range of order the magnetic length,
�B = (2π�0/B

∗)1/2 and, from Ref. 13, that they are repulsive
at very short distances and in their tails. However, as their
order parameter (density) profile is radially nonmonotone, one
cannot at present rule out an intermediate regime of attraction.
We will assume that the quasielectrons at the self-dual point

repel at all distances, although almost nothing that we say will
depend on this assumption as we will clarify below. Finally,
the gap to qh-qe pairs is positive13 and the quadratic mode
frequencies are all positive, whence the self-dual point is
stable.

Perturbing the Bogomol’nyi points. It follows from the
above that at the Bogomol’nyi points, QHLs are type II for
quasielectron doping and agnostic for quasihole doping. We
now study the effect of small perturbations.

(1) If we change decrease/increase λ by a small amount δλ,
the quasiholes now experience an attractive/repulsive interac-
tion resulting in a type I/type II QHL for hole doping. The
quasielectron interaction will not change sign for sufficiently
small δλ of either sign. The result is a symmetric type II QHL
for δλ > 0 and an asymmetric type I-II QHL for δλ < 0 (i.e.,
type I for quasihole and type II for quasielectron doping14).

(2) While the restriction to a local scalar self-interaction
is natural in a superconductor, a more general nonlocal
density-density interaction δL = 1

2

∫
dr′(|φ(r)|2 − ρ)v(r −

r′)(|φ(r′)|2 − ρ) is natural in the context of the Hall effect.
Perturbing the Bogomol’nyi point with a long-range repulsive
interaction (e.g., Coulomb) clearly results in a symmetric
type II QHL.

(3) Let us perturb the self-dual model with a term of this
form in which v(r) is (a) attractive, (b) weak enough to not
close the gap to making a quasielectron-quasihole pair, and
(c) has a range ��B . Now the quasiholes and quasielectrons
attract at long distances which is sufficient for both to phase
separate at finite densities and thus to exhibit (macroscopic)
type I behavior for both signs of doping. However, for
quasielectron doping, this macroscopic type I behavior hides
the competition between the short-ranged repulsion at the self-
dual point and the longer ranged attraction. If the attraction is
sufficiently weak, then within the quasiparticle-rich region, the
quasiparticles still form a Wigner crystal, a behavior analogous
to what has been called type 1.5 in the superconducting context
in Ref. 15.

(4) More generally, perturbing with additional, nonmono-
tone interactions can generate various forms of charge order
upon doping.

Analogy with superconductors. As noted previously, in
superconductors the Bogomol’nyi point marks the boundary
between type I and II behavior. The key difference from
the QH case is that both D± can be used to obtain vortex
and antivortex solutions which are, naturally, related to each
other simply by time-reversal conjugation. Thus near the
Bogomol’nyi point and indeed more generally, T-invariant
superconductors exhibit a symmetric response to flux doping.
This raises the interesting question of whether T-breaking
superconductors can exhibit asymmetric flux doping—for
instance, type I-II behavior. Conversely, we note that weakly
coupled paired QH states give rise to a LG theory of essentially
the superconducting form10 where the symmetry in doping
can be traced to the particle-hole symmetry about the Fermi
surface of the parent composite Fermi liquid. In this limit the
paired states exhibit two different length scales—the pairing
(coherence) length and the screening length (penetration
depth)—and thus exhibit symmetric frustrated type I behavior
at weak coupling where the coherence length greatly exceeds
the penetration depth.
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Microscopic models. We now turn to a large class of
microscopic models for FQH states which realize the key
properties of the Bogomol’nyi point of the CSLG theory
and thus can be perturbed to yield type I QH fluids in
exactly the same fashion. These are not new models—they
have been constructed historically to render various desirable
wave functions exact ground states, starting with the work of
Refs. 4 and 16. However, the connection of these models to
Bogomol’nyi points in the CSLG theory has not been made
before to our knowledge.

An illustrative example of how this works is the ν = 1/3
state, in many ways the prototypical FQH state. At this
filling the ideal Laughlin state is the (essentially) unique17

ground state of the model “hard core” or “pseudopotential”
Hamiltonian4,16 H1/3 = ∑

i<j ∇2δ(2)(ri − rj ). All available
evidence is consistent with the proposition that at exactly
ν = 1/3 the ground state is separated from all excited states
by a gap that remains nonzero in the thermodynamic limit.
Further, all states with a given number of quasiholes are
degenerate, or in other words, the quasiholes do not interact.
Quasielectrons on the other hand do interact, although their
interaction has not been analytically computed. We have
numerically evaluated the energy spectrum of a system of
12 electrons on a sphere, at a flux density corresponding
to two quasielectrons; the results are shown in Fig. 1.
Looking at the lowest energy states as a function of total
angular momentum—which is inversely proportional to the
distance between quasielectrons—we see that they exhibit
a short-ranged interaction consistent with a hard core, an
intermediate attraction, and an asymptotic repulsion. We note
that Beran and Morf18 have also studied the quasiparticle
interactions in the 1/3 state for pseudopotentials tuned near the
Coulomb point, which also exhibits nonmonotonic features.
These features of the model Hamiltonian clearly parallel those
of the Bogomol’nyi point of the CSLG theory; it follows that
the model Hamiltonian is on the border between type I and
II for hole doping and is type II/type 1.5 for electron doping.
Therefore, we may follow the strategy adopted previously: By
perturbing about H1/3 with a weak, longer ranged interaction,
we can make the quasiparticles either attract or repel without

FIG. 1. (Color online) Eigenvalues of H1/3 for N = 12 electrons
on a sphere and flux corresponding to ν = 1/3 + two quasielectrons.
Two-quasielectron states have total angular momentum L (0 � L �
12), upon which their separation depends inversely. The “hard-core”
L = 12 energy merges with the continuum.

closing the gap and destabilizing the ground state. We have
thus replicated our perturbative construction of various types
of QH liquids at ν = 1/3 within a LLL treatment.

The 1/3 Laughlin state is just one example of a much
larger (indeed, infinite) class of microscopic wave functions
inspired by conformal field theory which are gapped and
exact ground states of short-range Hamiltonians. It is believed
that these criteria are satisfied by all states belonging to the
so-called Read-Rezayi (RR) sequence19 and their particle-hole
conjugates. The RR states have filling νk,m = k/(km + 2),
where k is a nonzero positive integer, and m is odd for QH
states of fermions; their wave functions obey a generalized
Pauli principle, and they can be obtained as the densest zero-
energy states of k + 1 body model Hamiltonians. The k = 1
case corresponds to the Laughlin states, while k = 2, m = 1
corresponds to the Moore-Read (Pfaffian) state.20

All these model Hamiltonians have noninteracting quasi-
holes and weakly (dominantly repulsively) interacting quasi-
electrons and thus exhibit the characteristics of a Bogomol’nyi
point. It follows that by perturbing them we can find various
members of our doping typology.

Plateau formation. Plateau formation in a QHL refers to the
invariance of the T → 0 conductivity tensor as the density is
varied (“doped”) over a nonzero range about the commensurate
density, ρ∗ = B/k�0. For this to occur, the doped charge must
be pinned, so it does not contribute to the dc transport. For
macroscopically type II fluids this localization can arise from
disorder as commonly assumed in the theory of the QHE but
potentially also from interactions alone.21 For type I fluids with
no disorder, the transport properties of the macroscopically
phase separated state can depend on details of geometry
and the nature of the boundary conditions. However in two
dimensions arbitrarily weak disorder prevents macroscopic
phase separation22 and leads to plateau formation as discussed
on phenomenological grounds in Ref. 23. We note that as the
charge of the minimum deconfined charged excitation is the
same for all fluids derived from the same parent state, all of
them will exhibit a combination of activated and variable range
hopping transport at low temperatures.

Experimental realizations. Thus far, we have been primarily
concerned with a point of principle—establishing a doping
typology of QH fluids. To this end, we have mostly considered
model interactions which differ substantially from those in
typical experimental systems. We now comment briefly on the
prospects for experimental realizations of the new members of
this typology: (1) Apart from potential cold-atom realizations,
experimental systems involve repulsive Coulomb (1/r) or (in
the presence of a nearby conducting plane) dipolar (1/r3)
interactions which limits the likely types to type II, or frustrated
type I (which are thus macroscopically type II) QHLs.
(2) Paired QHLs currently appear to be the most promising
candidates for states which exhibit quasiparticle clumping, as
they generically exhibit (frustrated) type I behavior at weak
pairing.10,24

The prototypical paired state, the Pfaffian, can be tuned to
weak coupling either by changing quantum well thickness25

or using graphene samples with a screening plane.26 Another
example is a bilayer system, with each layer at ν = 1/2. For
large layer separation d � �B , the ground state is simply two
decoupled composite Fermi liquids and hence compressible,

241307-3



RAPID COMMUNICATIONS

S. A. PARAMESWARAN et al. PHYSICAL REVIEW B 85, 241307(R) (2012)

but pairing of composite fermions between layers becomes
increasingly favored as d is decreased; for d → 0 the ground
state is an interlayer paired QH liquid.27 At intermediate
d � �B , the pairing gap will be small reflecting weak coupling
so the resulting paired state must be type I. This is an example
of a paired state that does not have a model microscopic
Hamiltonian but nevertheless shows type I behavior in the
appropriate limit.

Concluding remarks. In this Rapid Communication, we
have established a typology for doped QH liquids by perturbing
about special points where the quasiholes are noninteract-
ing/weakly interacting and yet the QH state is protected by
a gap. Conversely, we have identified these special points
as poised on the boundary of type I/II behavior. For the

CSLG theory this is tied to the mathematics of self-duality.
It is interesting to ask whether the self-dual equations have
meaning for model Hamiltonians such as H1/3. It may be
useful to note that at the self-dual point, j is the purely
diamagnetic LLL current which does correctly yield the
current in quasihole states, and that the band mass m drops
out of the remaining equations consistent with purely LLL
physics.28
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