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Adler-Bell-Jackiw anomaly in Weyl semimetals: Application to pyrochlore iridates
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Weyl semimetals are three-dimensional analogs of graphene where the energy of the excitations is a linear
function of their momentum. Pyrochlore iridates (A2Ir2O7 with A yttrium or a lanthanide element) are conjectured
to be examples of such a system, with the low-energy physics described by 24 Weyl nodes. An intriguing
possibility is that these materials provide a physical realization of the Adler-Bell-Jackiw anomaly. In this Rapid
Communication we investigate the properties of pyrochlore iridates in an applied magnetic field. We find that
the dispersion of the lowest Landau level depends on the direction of the applied magnetic field. Consequently,
the velocity at low energies can be manipulated by changing the direction of the applied field. The resulting
anisotropy in longitudinal conductivity is investigated.
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Graphene1 and topological insulators2–4 have provided the
venue for condensed matter realizations, outside of liquid
helium,5 of nontrivial phenomena originally in the realm of
high-energy physics. Massless relativistic fermions,6 Klein
tunneling,6 Theta vacuum (i.e., axion electrodynamics),7 and
Majorana modes7,8 are a few examples. A common feature
of these systems is that the low-energy physics is described
by a two-component Dirac Hamiltonian with the fermionic
momentum confined to two dimensions. Recently it has been
conjectured that pyrochlore iridates realize the Adler-Bell-
Jackiw9,10 (ABJ) chiral anomaly, adding another example to
the growing list.

Wan et al.11 explored the possibility of the three-
dimensional analog of graphene being realized in the py-
rochlore iridates. These materials have large spin-orbit (SO)
coupling and are in a regime of intermediate correlations,
making them promising candidates to realize topological
insulators.12,13 They have a magnetic ground state14,15 and,
within a local spin density (LSDA) + U + SO calculation, are
conjectured to be semimetals. Most strikingly the low-energy
physics is described by the Weyl equation, which is the
two-component version of the Dirac equation. There are 24
Weyl nodes, three around each L point ([111] and equivalent
directions) in the Brilloiun zone (see Fig. 1). Nodes related by
either inversion or reflection about the {xy,yz,zx} planes have
opposite chirality. Consequently the material is expected to
have an anomalous Hall response to applied uniaxial pressure
and is susceptible to charge ordering in large magnetic fields.16

In a quantizing magnetic field, the lowest Landau level
(LLL) is a linear function of the magnitude of the momentum,
with the sign determined by the band structure. If an electric
field is applied parallel to the magnetic field, the Adler-Bell-
Jackiw9,10 axial anomaly leads to an anomalous magnetocon-
ductance. The origin of this effect is in the production of Weyl
fermions of a given chirality and an equivalent annihilation
of the opposite chirality.17 This translates to a transfer of
particles from one Weyl node to another of opposite chirality
at a constant rate. To reach a steady state, this is balanced by
internode scattering due to impurities.

In the absence of a magnetic field, the intranode scattering
is quite effective in relaxing the momentum. In the presence
of a large field, such that only the LLL is occupied, intranode

scattering is suppressed due to a lack of phase space. The only
scattering mechanisms available are processes that involve
different nodes of opposite chirality. Since these nodes are
located at different points in the Brillouin zone, Nielsen and
Ninomeya17 argued that the corresponding scattering rate is
much smaller, implying a large magnetoconductivity.

In this Rapid Communication we focus on the anomalous
magnetoconductivity expected in Weyl semimetals.11,17 In
general the Hamiltonian takes the form ±�q · V · �σ where �q is
the momentum, V is a real matrix, ± label right-handed (RH)
and left-handed (LH) chirality, and �σ = {σx,σy,σz}. We first
address the question of the dispersion of the LLL for arbitrary
V. We find that the energy is determined by the component of
the momentum parallel to the applied field. Rather surprisingly,
the velocity of the mode depends on the direction of the
magnetic field. This implies that the low-energy dispersion and
density of states can be manipulated by varying the direction
of the magnetic field.

The low-energy Hamiltonian in the vicinity of the Weyl
nodes of the proposed topological semimetal state is

H (�q) =
(

� + q2
z

2m1
− q2

⊥
2m2

)
σz + [βqz + c1q

3
⊥ cos(3θ )]σy

+ c2q
3
⊥ sin(3θ )σx, (1)

where the local z axis is taken along the �-L direction and
the local x axis along the L-K direction in the Brillouin
zone. Notice that these directions rotate with respect to the
global coordinates from one L point to another. At the Weyl
nodes, there is a degeneracy among two states with opposite
symmetry under inversion. The physics of the two-state system
is captured by the σ matrices. Define q0z and �q0⊥ as the
displacements of the node away from the L point parallel
and perpendicular to the �-L line, respectively. θ is defined
as the angle �q0⊥ makes with the x axis. The nodes are located
at θ = pπ/3, q0z = ±c1q

3
0⊥/β [positive (negative) for odd

(even) values of p], and q0⊥ satisfies the equation � +q2
0z/2m1

−q2
0⊥/2m2 = 0.
In the vicinity of these nodes the Hamiltonian can be

expanded and written as

Hi(δ�q) ≈ δ�q · Vi · �σ (2)
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FIG. 1. (Color online) The low-energy physics of pyrochlore
iridates is described by linearly dispersing fermionic modes near
nodes in the band structure. The position of Weyl nodes in the
Brillouin zone is shown in the figure. There are three nodes, with
the same chirality, located in the vicinity of the L points, and nodes
related by inversion have opposite chirality.

where δ�q = �q − �q0, and Vi is a real matrix whose entries
depend on the node index i. For the Hamiltonian in Eq. (1) the
matrix V is generically not symmetric and does not have all
real eigenvalues. This is quite unlike the case considered in the
context of the ABJ anomaly17 or the anomalous Hall effect.16

For a diagonal V matrix, the direction of the momentum, whose
magnitude determines the energy of the lowest Landau level, is
parallel to the applied magnetic field. The facts that momentum
does not commute with the electromagnetic vector potential
and the latter is always transverse to the �B field suggest that
this property is generally valid. To understand the nature of
the ABJ anomaly in iridates, we first verify that this conjecture
holds for arbitrary V matrices.

The procedure for computing the energy is sketched out
here (details are provided elsewhere18). Consider a single
Weyl node in an applied magnetic field �B. We can always
rotate the coordinate system so that �B lies in the xz plane.
In this reference frame �B = B{sin(θ ),0, cos(θ )}. Using a
Landau gauge we write the corresponding vector potential
as B{− cos(θ )y,0, sin(θ )y}. Given this choice, the system is
translationally invariant in the x and z directions. The wave
function of the LLL has the form {u,v}φ(y)e−iδkxx−iδkzz, where
u and v are constants. Rather remarkably, the energy ε0,
calculated with this choice of gauge, can be written in a
gauge-invariant form as

ε0 = − Det[V]

‖adj[V] · �B‖δ�q · �B
(3)

= −sgn(Det[V])
δ�q · �B

‖V−1 · �B‖ ,

where Det[V] and adj[V] are the determinant and adjugate of
the matrix [V]. The sign of the dispersion, and hence the
chirality, is determined by the determinant. The energy is

inversely proportional to the projection of the deviation of
the momentum in the direction of the applied field.

The result in Eq. (3) is the key result and we will explore
the consequences in the rest of the paper. The most important
feature of the dispersion is the dependence of the velocity
of the low-energy excitations on the direction of the applied
field. This anisotropy is inherited from the underlying band
structure. While most systems have inherent anisotropies,
what makes Weyl semimetals unique is that they have linearly
dispersing modes, the left-handed and right-handed branches
of which are located at distinct points in the Brillouin zone.
All small-momentum scattering is suppressed, leading to a
large magnetoconductivity. Furthermore the ability to change
the velocity implies that the low-energy density of states can
also be manipulated. As such all thermodynamic and transport
properties are sensitive to the direction of the applied field.
Here we focus on the ABJ anomaly.

Let us now consider the case of the pyrochlore iridates.
Given the Hamiltonian [Eq. (1)] we construct the relevant
matrices. To make further progress we use parameters that
best fit the LSDA + U + SO calculations:11,16 m1 = m2 =
0.5 eV−1, c1 = c2 = 1.0 eV, β = 0.5 eV, � = 0.18 eV (�q
is dimensionless). These parameters give q0⊥ = 0.48 and
q0z = ±0.22.

To get insight into the general properties, let us look at the
nodes near [111]. The matrices for θ = {0,2π/3, − 2π/3} are

Vθ=0 =

⎛
⎜⎝

0 3q2
0⊥ −2q0⊥

3q2
0⊥ 0 0

0 1
2 2q0z

⎞
⎟⎠ ,

(4)

Vθ=±2π/3 =

⎛
⎜⎝

∓ 3
√

3
2 q2

0⊥ − 3
2q2

0⊥ q0⊥

− 3
2q2

0⊥ ± 3
√

3
2 q2

0⊥ ∓√
3q0⊥

0 1
2 2q0z

⎞
⎟⎠ .

The system possesses threefold rotation symmetry about the
�-L axis and the three matrices are related by a 120◦ rotation
about the z axis. If U is a rotation matrix for 2π/3 rotation
about the local z axis, then UVθ=0 = Vθ=2π/3, UVθ=2π/3 =
Vθ=−2π/3, and UVθ=−2π/3 = Vθ=0. In other words, knowing
one is sufficient to generate the others. The determinants of
these three matrices are all equal and given by Det[V]i =
−3q3

0⊥ − 18q4
0⊥q0z.

Since V−1 = adj[V]/Det[V], the adjugate matrices have the
same transformation properties as the inverse matrix. Given
the three matrices near the [111] point, all others can be
constructed by symmetry. The matrices for the Weyl points
related by inversion to those near [111] are obtained by
changing the sign of the third column or equivalently the sign
of σz. This remains true for all nodes related by inversion as the
local z axis changes sign. The nodes near [1̄1̄1] have the same
structure as those near [111] while those near [1̄11] have the
sign of the first column changed. This ensures the geometry
and helicity obtained within LSDA + U + SO calculations.11

Pyrochlore iridates have cubic symmetry. Thus the anoma-
lous Hall coefficient is zero unless a uniaxial pressure is
applied to break the symmetry.16 The same property leads to
an isotropic density of states as a function of the direction
of the magnetic field. To get an anomalous response in
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thermodynamic properties from the lowest Landau level, one
needs to have Weyl nodes in systems that are inherently
anisotropic. The layered heterostructures of normal and topo-
logical insulators19 is one example of such systems. Remark-
ably, even for an isotropic system the transport properties can
be anisotropic as we show below.

Since the dispersion of the LLL is in the direction of
the applied magnetic field, only the response to an electric
field �E = E0B̂ applied parallel to the magnetic field will be
considered. We will assume that the magnetic field is strong
enough so that only the LLL is occupied. The dispersion being
linear, elastic scattering within a single node is suppressed due
to the lack of phase space. Stated differently, no momentum
relaxation is possible within a node as states with opposite
velocities do not exist. However, the scattering between two
nodes cannot be ignored. In the presence of the electric field,
there is a generation of RH particles and annihilation of
LH particles. The rate of production is given by the rate of
change of energy vδq̇ times the density of states eB/vh̄. Since
δq̇ = eE0, we get Ṅ|| = δq̇eB/h̄ = e2E0B/h̄. This rate has to
be balanced by the scattering between nodes with the opposite
chirality to maintain a steady state.

Weyl nodes always come in pairs with opposite chirality.
Before considering all 24 Weyl nodes, we first look at a
single pair whose energies are given by ε0 = ±vδq||. For
impurity scatterers, where the transition probability between
states with different momenta is independent of their momenta,
the scattering rate τ−1 is proportional to the density of states
and is given by

1

τ
= C

eB

vh̄
, (5)

where C is a constant determined by the strength of the
scattering potential. We will comment on more general forms
of scattering later. The ABJ anomaly requires an imbalance in
particle number at the RH and LH Weyl nodes. If the difference
in chemical potential between the RH and LH nodes is �μ,
then energy balance requires

�μ = eE0vτ. (6)

This is because over the scattering time τ , the momentum
changes by eE0τ . Since the change in energy is v times the
change in momentum, the net energy transferred from one
cone to the other is eE0τv. A steady state is achieved if this
transfer is balanced by the difference in chemical potential.

The difference in chemical potential leads to a current given
by

JA = nev,

JA = eB

vh̄
�μev (7)

= e(eB/h̄)eE0vτ

= C−1e2v2E0.

The subscript A refers to the anomalous response. So far we
have considered only the momentum-independent scattering
rate. Let us look at the response in the presence of screened
charged impurities characterized by matrix elements of the
form 1/(q2 + κ2). The internode scattering probes intermedi-
ate to large momenta, as the nodes are physically separated
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FIG. 2. (Color online) Top: The variation of the conductivity,
for scattering potentials that only couple nodes that are related by
inversion, as a function of the direction of magnetic field as a three-
dimensional spherical plot. The radial distance of a point on the figure
from the origin is a measure of the conductivity for the magnetic field
along that direction. Bottom: A cut along the Z-K direction.

in the Brillouin zone. The transition probabilities, which are
proportional to the squares of the matrix elements, fall off as
1/|�q|4, giving a large τ . In contrast, the conductivity in zero
magnetic field is much smaller as it is dominated by intranode
scattering (∼1/κ4). Thus the conductivity in the presence of
a magnetic field can be much larger than that in zero field.
The results in Eqs. (6) and (7), and the argument of large
magnetoconductance, are the main conclusions of Nielsen and
Ninomeya.17

Having reviewed the expected nature of the magnetocon-
ductance, we return to the discussion of the iridates. The
key feature of Eq. (7) is its dependence on the velocity v.
As we have seen in our discussion of the dispersion of the
LLL, the velocity can be tuned by changing the direction
of the applied field. Moreover, the different Weyl nodes
have different Fermi wave vectors and different densities of
states. Since the longitudinal conductivity depends on the
scattering rate, we study two cases. We focus on momentum-
independent processes which scatter either only between nodes
with opposite velocities or only between nodes of opposite
chiralities. Detailed studies of how various scattering processes
will reveal the underlying anisotropy will be part of future
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FIG. 3. (Color online) Top: The variation of the conductivity,
for scattering potentials that couple all nodes, as a function of the
direction of magnetic field as a three-dimensional spherical plot. The
radial distance of a point on the figure from the origin is a measure of
the conductivity for the magnetic field along that direction. Bottom:
A cut along the Z-K direction.

efforts, but all of them are sensitive to the underlying dispersion
which is the source of the phenomenon.

Weyl nodes related by time reversal have opposite veloc-
ities and the bands are related by inversion. For scattering
processes that conserve the corresponding quantum numbers,
scattering between these nodes dominates. The scattering rate

is proportional to the density of states of the nodes and the total
conductivity is σ = ∑

i C
−1e2v2

i . In Fig. 2 the conductivity is
plotted as a function of the magnetic field and a cut along
the Z-K direction, where both the maximum and minimum
values are obtained, is shown. The anisotropy, defined as
(σmax − σmin)/(σmax + σmin) is ∼50%.

For scattering processes that do not preserve any of
the lattice symmetries, all nodes participate in momentum
relaxation of a given node. In this case the scattering rate will
be proportional to one-half of the total density of states. The
factor of 1/2 accounts for the fact that only half of the nodes
have opposite velocities and can contribute to momentum re-
laxation. In Fig. 3 the results for the anisotropy of conductivity
are presented for this case. The anisotropy is ∼17%.

We note that the direction dependence in transport is ob-
tained even in a system that has cubic symmetry. For a topolog-
ical/normal insulator heterostructure where [V] is diagonal, but
has different velocities in plane as opposed to perpendicular to
the plane, the density of states is also anisotropic. In such sys-
tems even the low-energy thermodynamics will depend on the
direction of the applied field. A more general study of the low-
energy behavior of specific heat, susceptibility, and the effect
of momentum-dependent scattering will be part of a future
effort to characterize the novel behavior of Weyl semimetals
due to their unique zero-Landau-level dispersion.

In this Rapid Communication we have considered the nature
of magnetoconducatnce in Weyl semimetals. In the presence
of an applied field the energy of the LLL is obtained. We find
that the level always disperses linearly with respect to the
momenta parallel to the applied field. This result is general
and holds even for systems with arbitrary Weyl Hamiltonians.
The velocity of the low-energy modes depends on the direction
of the applied field. This feature is exploited in the context of
the pyrochlore iridates. Using the symmetries of the crystal,
we derive the Weyl equation at the 24 nodes. Applying
magnetic fields in different directions allows us to manipu-
late the low-energy physics, leading to anisotropic transport
properties.
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