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Conductance of one-dimensional quantum wires with anomalous electron wave-function localization
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We study the statistics of the conductance g through one-dimensional disordered systems where electron wave
functions decay spatially as |ψ | ∼ exp(−λrα) for 0 < α < 1, λ being a constant. In contrast to the conventional
Anderson localization where |ψ | ∼ exp(−λr) and the conductance statistics is determined by a single parameter,
the mean free path, here we show that when the wave function is anomalously localized (α < 1), the full statistics
of the conductance is determined by the average 〈ln g〉 and the power α. Our theoretical predictions are verified
numerically by using a random hopping tight-binding model at zero energy, where due to the presence of chiral
symmetry in the lattice there exists an anomalous localization; this case corresponds to the particular value
α = 1/2. To test our theory for other values of α, we introduce a statistical model for random hopping in the
tight-binding Hamiltonian.
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I. INTRODUCTION

The phenomena of electron wave-function localization—
Anderson localization—in a disordered media has captured
the attention of physicists for several decades.1–3 Nowadays
signatures of localization have been found in different physical
systems. For instance, experiments with light, acoustic waves,
microwaves, and cold atoms have reported evidence of
localization.4,5

In the standard Anderson localization problem, electron
wave functions are localized exponentially in space:

|ψ | ∼ exp (−λr), (1)

where λ can be identified as the inverse of the localization
length. For practical purposes, it is more convenient to
define the localization length through measurable transport
quantities; for a system of length L, the localization length
is defined by the exponential decay of the dimensionless
conductance g, or transmission. Since g ∝ |ψ(L)/ψ(0)|2 we
have that g ∝ exp (−2λL). Thus, the inverse localization
length λ is usually estimated by the relation

〈− ln g〉 = 2λL, (2)

i.e., the average 〈ln g〉 is a linear function of L in the standard
electron localization problem. Within a noninteracting electron
model, a scaling approach of localization has successfully
described the statistical properties of electronic transport.6–9

Within this approach and assuming weak disorder (mean free
path much larger than the Fermi wavelength), it has been
found that the complete distribution of the dimensionless
conductance is determined by a single parameter: the inverse
localization length,10 given by Eq. (2). In general, one might
say that there is a good understanding of the statistical prop-
erties of the transport in the Anderson localization problem in
one-dimensional (1D) and quasi-one-dimensional disordered
systems.

On the other hand, anomalous localization of electron
wave functions has been found in 1D disordered systems,11–14

against the general idea that in 1D systems all the electronic
eigenstates are always exponentially localized. This problem
has been much less studied than the above standard localization
phenomena. For instance, a disordered system described by a
random hopping tight-binding model was studied in Ref. 11,
where it was found that the typical conductance (exp 〈ln g〉)
behaves as

gtyp ∝ exp(−λL1/2). (3)

This unconventional localization of electrons (also named
delocalization14) can be explained by the presence of a sym-
metry in the lattice, the so-called chiral symmetry,13,14 which
makes the energy spectrum symmetric around zero energy.11

The effects of the chiral symmetry in a disordered system were
studied also within a scaling approach to localization.15,16 It
was found that there is no exponential localization of the
conductance and the logarithm of g is not self-averaging, while
the ensemble average 〈ln g〉 is not proportional to L, as in
the standard Anderson localization, but to L1/2, i.e., 〈ln g〉 ∝
L1/2. A similar delocalization has been found in disordered
superconducting wires,16–20 where the Bogoliubov–de Gennes
Hamiltonian has additional symmetries.21 Delocalization at
zero energy has been also studied using tight-binding models
of spinless fermions with particle-hole symmetric disorder22

and in 1D systems in the context of phase transitions in
random XY spin chains,23 which is mapped onto the so-called
random mass Dirac model; within this model, it was also
found24,25 that 〈ln g〉 ∝ L1/2. In addition, statistical properties
of the conductance in two-dimensional (2D) systems under the
presence of chiral symmetry has been studied in Ref. 26.

In the present paper we show that the complete distribution
of the conductance for anomalous transport (nonstandard
exponential localization) can be determined by the value of
the average 〈ln g〉 and the power α of its dependence on length
L, i.e., 〈ln g〉 ∝ Lα . Thus, within a model of noninteracting
electrons, the microscopic details of the systems (Hamiltonian)
do not enter into the description of the statistical properties
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of the transport, in this sense, the description is universal.
Our theoretical model is based on a previous study of
the conductance statistics of 1D disordered quantum wires
where the random configuration of potential scatterers along
the wire follows a distribution with a long tail (Levy-type
distribution).27 However, in that paper, the analysis of the
transport was restricted to disordered wires where information
on the Lévy-type distribution was explicitly introduced into the
disorder configuration of the scatterers. Here, we do not need a
Lévy-type disorder configuration but a mechanism to produce
anomalous localization of the electron wave function, within
a single-electron model, e.g., the chiral symmetry. Thus, as
we show in this work, the results in Ref. 27 can be applied
in general to disordered systems where electron anomalous
localization is present. This larger scope of such statistical
analysis was overlooked in Ref. 27.

The remainder of this paper is as follows: After presenting a
brief review of the results for wires with a Lévy-type disorder,
we introduce the random hopping tight-binding model where at
zero energy anomalous localization is present. The numerical
results of this model will be compared with our theoretical
predictions; in particular, we are interested in the conductance
distribution. The numerical results from the random hopping
tight-binding model at zero energy corresponds to a special
case of our theory (α = 1/2). To go further and verify our
results in a more general way, we introduce a statistical model
for the random hopping which allows to study different degrees
of localization characterized by the value of α. We finally
summarize our results and give some conclusions in the last
part of the paper.

II. THEORETICAL MODEL

As we have mentioned, our theoretical model of this work
is based on a study of coherent transport in the presence
of Lévy-type disorder.27 We briefly mention that Lévy-type
random processes are described by a density probability qα,c(x)
with a long tail: for large x, qα,c(x) ∼ c/x1+α with 0 < α < 2
and c being a constant. These kinds of distributions are
also known by mathematicians as α-stable distributions.28–31

Notice that the first and second moments diverge for 0 < α <

1. Motivated by the realization of experimentally controlled
Lévy processes in the so-called Lévy glasses,32 in Ref. 27 a
model was developed to describe the statistical properties of
the conductance through a 1D quantum wire where electrons
suffer multiple scattering due to scatterers placed along the
wire in a random way according to a Lévy-type distribution
(see Refs. 33–37 for other examples where Lévy processes
have been studied in connection to transport problems). It was
found in Ref. 27 that the full statistics of the conductance
is determined by the average 〈ln g〉 and the exponent α of
the power-law tail in the macroscopic limit (L � c1/α). In
particular, it was shown that the complete distribution of
conductances Pξ (g), with ξ = 〈ln g〉, is given by

Pξ (g) =
∫ ∞

0
ps(α,ξ,z)(g)qα,1(z)dz, (4)

for α < 1, where qα,c is the probability density function of
the Lévy-type distribution supported in the positive semiaxis,

s(α,ξ,z) = ξ/(2zαIα),Iα = 1/2
∫ ∞

0 z−αqα,1dz, and

ps(g) = s− 3
2√

2π

e− s
4

g2

∫ ∞

y0

dy
ye− y2

4s√
cosh y + 1 − 2/g

, (5)

where y0 = arcosh(2/g − 1). Also, it was shown that the
average of the logarithm of the conductance depends on L

as

〈ln g〉 ∝ Lα, (6)

for 0 < α < 1, while for values 1 � α < 2 the linear behavior
(〈ln g〉 ∝ L) is recovered. From the same model one can also
find that the conductance average behaves as

〈g〉 ∝ L−α, (7)

for 0 < α < 1, in contrast to the exponential dependence with
L in the standard localized regime. The most interesting effects
of anomalous localization are seen for values 0 < α < 1, so
we concentrate in this region, although the case 1 � α < 2 can
be analyzed within the same theoretical framework.

III. ANOMALOUS LOCALIZATION: α = 1/2

Next we consider the tight-binding model with nearest-
neighbor random hopping, at zero energy, described by the
Hamiltonian

H =
∑

n

tn(c†ncn+1 + c
†
n+1cn), (8)

where c
†
n and cn are creation and annihilation operators

for spinless fermions, and tn(> 0) are the random hopping
elements sampled from a distribution of the form P (t) = 1/wt ,
exp(−w/2) � t � exp(w/2), where w denotes the strength of
the disorder. This is the so-called logarithmic off-diagonal
disorder.11 As we have mentioned, the model described by
Eq. (8) has been found to present unconventional localized
states at zero energy,11–14,22,24,25 whereas for nonzero energy
standard localized states are present. To illustrate this fact, we
have calculated the conductance within the Landauer-Büttiker
approach. In Fig. 1 we show the ensemble average 〈ln g〉 as
a function of the length of the system (in units of the lattice
constant) at zero and nonzero energies. As we can observe
〈ln g〉 ∝ L1/2 at zero energy (main frame), while a linear
dependence on L is obtained at finite energy (lower inset),
restoring the standard Anderson localization. Additionally,
in the upper inset of Fig. 1 we show the average of the
conductance 〈g〉 at zero energy, which depends on the length
as L−1/2, as given by Eq. (7).

We now show that the complete distribution of conductance
is described by Eq. (4). As we have claimed, in order to
compare the theoretical and numerical results, we only need
the information of the value 〈ln g〉 and its power dependence
on L, which are taken from the numerical simulation; thus,
there are no free parameters in our theory. In Figs. 2 and 3
we show the distribution of the conductance obtained from the
numerical simulations (histograms) for two different strengths
of disorder and the corresponding theoretical distributions
(solid lines) accordingly to Eq. (4). Note that we plot P (ln g)
in the main frames, instead of P (g), since for very insulating
cases the details of the distributions are better seen in this
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FIG. 1. (Color online) 〈− ln g〉 as a function of the length L at
energy E = 0 for strength of disorder w = 2.5. The solid line is
obtained by fitting the data (dots) according to Eq. (6) with α = 1/2.
Upper inset: 〈g〉 as a function of the length L (for the same parameters
in the main frame). The solid line is fitted to the numerical data
assuming that 〈g〉 ∝ L−1/2. A good agreement is seen. Lower inset:
〈− ln g〉 for a linear chain with off-diagonal logarithmic disorder as
a function L at energy E = 0.1 and strength of disorder w = 2.5
(50 000 realizations). As expected, a linear behavior is observed,
indicating Anderson localization.

way. For the smaller case of strength disorder (w = 0.35) in
Fig. 2 we have included P (g) in an inset. Here we can observe
two peaks at g = 0 and g = 1, which is due to the existence
of strong sample-to-sample conductance fluctuations, i.e., in
our ensemble a considerable amount of samples behaves as
insultors (g 	 1), whereas another important amount of them
behaves as ballistic samples (g ≈ 1). This behavior is very
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FIG. 2. The distribution of ln g for a system of length L = 400
with off-diagonal logarithmic disorder, at energy E = 0 and strength
of disorder w = 0.35 (50 000 realizations). From the numerical data
〈− ln g〉 = 2.1. Using this information the theoretical distribution
(solid line) is calculated with α = 1/2, Eqs. (4) and (5). Inset: P (g)
for the same case as in the main frame. The coexistence of insulating
and ballistic regimes are manifested by the presence of two peaks at
g = 0 and 1. As we can see, the theory (solid line) gives correctly the
trend of the numerical results (histograms).
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FIG. 3. The distribution of ln g for strength of disorder w = 1.2.
〈− ln g〉 = 9.7 corresponds to a more insulating case than the previous
one (Fig. 2), while the power-law dependence on L remains 1/2
(Fig. 1). A good agreement is seen between the numerical histogram
and the corresponding theoretical distribution (solid line).

robust in the sense that if we increase the length of the system or
the disorder degree, the peak at g = 1 survives. This is not seen
in the conventional 1D electron localization problem. In Fig. 3
we increase the strength of disorder to w = 1.2. Thus, for both
strengths of disorder, Figs. 2 and 3 show that our theory gives
correctly the trend of the numerical distribution. We might see
a small difference between numerics and theory in the inset
of Fig. 2 at g ≈ 1, but we would like to remark that there
is no free parameter in our theory. Therefore our model with
α = 1/2 describes correctly the statistics of the conductance
when anomalous localization of the wave function is of the
form |ψ | ∼ exp (−λL1/2). However, this is a special case for
our model. We would like to explore different exponential
power decays α of the wave function.

IV. ANOMALOUS LOCALIZATION: ARBITARY α

In order to investigate different anomalous-localization
degrees of the wave function, we introduce a statistical model
for the nearest-neighbor random hopping model, Eq. (8). In
fact, what we need is a model that will induce large fluctuations
of the conductance. A way to introduce such large fluctuations
is to consider the hopping tn as a random variable that follows
a distribution with a long tail, i.e., a Lévy-type distribution,
and keeping fixed the total sum of the hopping elements:
T = ∑

n tn. By varying the value of T we can change the
degree of the localization of the disordered samples. We have
verified numerically that T acts similarly to the length L in the
Lévy-type configurational disorder used in Ref. 27. However,
the tight-binding model is more appropriate for numerical
simulations. The study is carried out at nonzero energies in
order to get rid of the effects of chiral symmetry.

With the above statistical model for the random hopping
tight-binding Hamiltonian, we calculate the statistics of the
conductance. The data are collected over an ensemble of
50 000 realizations of disorder. In Figs. 4 and 5 we show first
the results for the average 〈ln g〉 and 〈g〉 (insets) as a function
of T where the random hopping elements are generated from
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FIG. 4. (Color online) 〈− ln g〉 and 〈g〉 (inset) as a function of the
variable T for α = 1/3 in the statistical model for the tight-binding
Hamiltonian (see text). 50 000 realizations are considered and energy
E = 0.1. The solid lines are obtained by fitting the power dependence
T 1/3 and T −1/3 for 〈− ln g〉 and 〈g〉, respectively, as predicted by the
theoretical model.

two different Lévy-type distributions with tail decay exponents
α = 1/3 and 3/4. We can see that indeed 〈ln g〉 ∝ T α and
〈g〉 ∝ T −α , for both values of α. Keeping in mind that T plays
a similar role as L in our configurational disorder model,27

we expect that the wave function is anomalously localized
as |ψ | ∼ exp (−λL1/3) and |ψ | ∼ exp (−λL3/4), for α = 1/3
and 3/4, respectively.

We now show that the distribution of the conductance is
described by Eq. (4). For α = 3/4 and two different values
of T , in Figs. 6 and 7 we compare the numerical simulations
(histograms) and the corresponding theoretical results (solid
line). The case in Fig. 6 is less insulating than the one in Fig. 7,
so we plot in an inset the distribution P (g). For the more
insulating case (Fig. 7), we can observe a nonconventional
shape of the distribution P (ln g). By nonconventional shape
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FIG. 5. (Color online) Numerical data (dots) of 〈− ln g〉 and 〈g〉
(inset) from the tight-binding model at energy E = 0.1 and α = 3/4.
The solid lines are fitted assuming that 〈− ln g〉 ∝ T 3/4 and 〈g〉 ∝
T −3/4, in agreement with the model, Eqs. (6) and (7).
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FIG. 6. The numerical distribution P (ln g) (histograms) for α =
3/4 with E = 0.1, T = 35, and 〈− ln g〉 = 2.0. Inset: P (g) for the
same parameters of the main frame. The solid line is obtained
accordingly to Eq. (4). A good agreement between numerical and
theoretical (solid line) results is seen.

we mean the non-Gaussian shape of the distribution; we
recall that for the standard Anderson localization a log-normal
distribution is expected in the insulating regime. Thus, from
both Figs. 6 and 7 we can see that the trend of the numerical
distributions is well described by our theory. Finally in
Fig. 8 we show the distribution P (ln g) for α = 1/3. Here
we also note the nonconventional shape of the distribution,
which is a consequence of the anomalously large conductance
fluctuations.

V. CONCLUSIONS

To conclude, in this work we have shown that the complete
statistics of the conductance of a 1D disordered system,
when electron wave functions are anomalously localized
(ψ ∼ exp (−λrα), 0 < α < 1), is determined by the exponent
α and the average 〈ln g〉. In contrast, in the standard Anderson
localization, the knowledge of 〈ln g〉 is enough to describe
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FIG. 7. The distribution of ln g for α = 3/4, T = 250 and E =
0.1. For this case 〈− ln g〉 = 9.3. We can see that the theoretical result
(solid line) describes correctly the numerical distribution.
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FIG. 8. The distribution of ln g for α = 1/3, T = 100, and
energy E = 0.1. 〈− ln g〉 = 9.4 for this case. Comparison with the
corresponding theoretical distributions is shown. A good agreement
between theory and numerics is seen.

the statistical properties of the conductance. We have verified
our results for different values of α. For the particular case
of α = 1/2, we have used a random hopping tight-binding
Hamiltonian at zero energy to verify our predictions since
it is well known that nonexponential localization in this
model is present due to the existence of a chiral symmetry

on the lattice. In order to study other degrees of anomalous
localization (different values of α) we have introduced a
statistical model for the hopping in a tight-binding Hamiltonian
that promotes the presence of large fluctuations of the
conductance. We remark that our theoretical model does not
make any reference to a specific Hamiltonian system and
there is no free parameter; the information needed in our
theoretical model (α and 〈ln g〉) is extracted from the numerical
simulation. On the other hand, as we have restricted our
study to 1D systems (one channel), we think an extension
to multichannel systems is of interest since other regimes of
transport, e.g., the diffusive regime, can be analyzed. Finally,
the conductance statistics in the conventional Anderson local-
ization problem has been extensively studied, and we hope
this work helps in the understanding of a much less studied
topic in quantum transport: the statistical properties of the
conductance when electron wave functions are anomalously
localized.
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34D. Boosé and J. M. Luck, J. Phys. A: Math. Theor. 40, 140405
(2007).

35R. Burioni, L. Caniparoli, and A. Vezzani, Phys. Rev. E 81,
060101(R) (2010).

36C. W. J. Beenakker, C. W. Groth, and A. R. Akhmerov, Phys. Rev.
B 79, 024204 (2009).

37A. A. Fernández-Marı́n, J. A. Méndez-Bermúdez, and V. A. Gopar,
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