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Tubular image states: General formulation and properties for metallic and nonmetallic nanotubes
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In this work we study the existence of image potential states around nanotubes by considering the interaction
between a stationary charged particle and a polarizable cylinder of infinite length. For metallic nanotubes and
wires we obtain the eigenstates and eigenenergies corresponding to nonzero angular momentum states, localized
at a relatively long distance from the surface of the tube. We study the scaling properties of the system in order
to define general conditions for which image states can be supported. We also analyze the case of nonmetallic
carbon nanotubes, for which we do not obtain bound states.

DOI: 10.1103/PhysRevB.85.235441 PACS number(s): 73.21.−b, 61.46.Fg, 73.90.+f

I. INTRODUCTION

Image potential states (IPS) are surface states that result
from the competition between the long-range attractive poten-
tial induced by an external charge interacting with its image
and a shorter-range repulsive surface barrier. Localized outside
the surface, they form Rydberg-like series of states converging
toward the vacuum level.

Due to the fundamental nature of the binding potential,
IPS have been reported on a variety of systems ranging from
clean metallic1,2 and semiconductor3,4 surfaces to more exotic
settings such as metal-supported metallic nanoislands,5 the
interface between certain thick films and a metallic substrate,6

organic films,7,8 and different carbon structures such as
nanotubes,9 fullerenes,10 fullerites,11 and graphene sheets.12

A key ingredient for the efficiency of reaction processes at
surfaces, their extreme sensitivity to any changes in their
environment13–18 makes them a powerful tool for probing a
variety of physical and chemical phenomena at the nanometer
scale.19–21

Among extensive theoretical work devoted to describing the
formation of IPS,22 the article by Granger et al.23 predicting
the existence of tubular image potential states (TIS) around
nanotubes has generated considerable interest in the scientific
community, and a number of papers have been published on
the subject.9,24–28 In contrast with those occurring in planar
geometry, TIS are prepared with nonzero angular momentum.
The resulting centrifugal barrier prevents them from collapsing
into the surface of the tube, hence increasing their lifetime. This
feature, together with the fact that TIS are localized around the
nanotube, may facilitate their detection.

In the present work we give a thorough description of
tubular image states around metallic nanotubes and extend
the study to nonmetallic carbon nanotubes using a realistic
model for their response functions.

The paper is structured as follows: Sec. II is devoted
to describing the image potential generated by a stationary
electron in front of an infinite, perfectly conductive cylinder;
in Sec. III we calculate and analyze the series of bound states
for this system; in Sec. IV we study the scaling properties and
conditions for the formation of image states; Sec. V is focused

on carbon nanotubes, both metallic and nonmetallic; finally,
we summarize our conclusions in Sec. VI.

II. IMAGE POTENTIAL IN METALLIC
NANOTUBES AND WIRES

An electron with charge e29 in the proximity of a metallic
infinite cylinder of radius a polarizes its surface (see Fig. 1),
inducing a scalar potential �ind given by30

�ind(ρ,ϕ,z) = −2e

π

∞∑
m=−∞

∫ ∞

0
dk cos(kz) exp(imϕ)

× Im(ka)

Km(ka)
Km(kρ0)Km(kρ), (1)

where (ρ,ϕ,z) are the usual cylindrical coordinates and Im(x)
and Km(x) are the modified Bessel functions. We assume the
particle to be located at (ρ0,0,0), with ρ0 > a. The perfectly
conducting condition has been included by taking the dielectric
function ε(ω) → ∞ in the general Eq. (14) of Ref. 30. In
this limit, and as long as we remain outside the cylindrical
surface, we can treat hollow tubes as if they were solid wires.
Furthermore, this should be valid for single-walled as well as
multiwalled carbon nanotubes, provided that they are metallic.

The polarized surface acts back on the external charged par-
ticle, which becomes attracted to its image charge distribution
residing on the metallic surface. The “image potential” Vim

seen by the external particle is given in terms of the induced
potential as

Vim(ρ0) = e

2
�ind(ρ0,0,0)

= −e2

π

∞∑
m=−∞

∫ ∞

0

Im(ka)

Km(ka)
K2

m(kρ0) dk. (2)

Figure 2 shows Vim as a function of the radial distance
ρ0 for a metallic, infinite cylinder of radius a = 0.68 nm,
which corresponds to a typical single-walled carbon nanotube
(SWCNT) with chiral vector (10,10). In this graph the potential
(continuous line) has been calculated by adding m terms up
to 10, ensuring a well-converged sum for a wide range of ρ0.
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FIG. 1. (Color online) Polarization of a cylindrical metallic
surface by an electron e placed at a position (ρ0,0,0). The shadowed
surface shows the charge distribution derived from Eq. (1) for
the induced potential. The right panel shows the angular surface
charge-density distribution at z = 0.

Very close to the surface an increasing number of terms were
necessary in order to obtain the correct trend (Vim → −∞ for
ρ → a+). Also included in the figure is the approximation
used by Granger et al.23 (dashed line), given by

Vim(ρ0) ≈ 2

π

e2

a

∑
n=1,3,5,...

li[(a/ρ0)n], (3)

with li(x) the logarithmic integral function.31 This expression,
the authors state, provides the correct behavior of the force
both far and near the surface of the nanotube, where it should
resemble that of a metallic planar surface. It should be noted
that the exact expression of Eq. (2) yields the correct limit
for ρ0 → a, namely, F (ρ0) ≈ 1/|ρ0 − a|2, provided that the
number of terms in the sum is sufficiently large. As can be
seen in the figure, the behaviors of the exact potential and the
approximation are qualitatively similar for distances far from
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FIG. 2. (Color online) Image potential Vim as a function of the
radial distance ρ0 for a nanotube of radius a = 0.68 nm. Continuous
black line, exact potential [Eq. (2)]; dashed red line, Granger’s model
[Eq. (4)]. Inset: a detail of the terms contributing to the sum in Eq. (2)
as a function of m, for a series of values of distances ρ0 relative to the
tube’s radius a.

the metal surface (ρ0/a � 1). Near the surface, however, the
exact potential diverges at a lower rate than the approximation.
Since the tubular image states we are studying are located far
from the surface,23 it might be thought that differences near
the surface should not affect them. Yet, these differences are
large enough to affect the energy levels, as we will see in the
following sections.

III. IMAGE POTENTIAL STATES

We use the exact form of the image potential [Eq. (2)] for a
metallic cylinder to solve the Schrödinger equation and obtain
the eigenvalues and eigenfunctions of the system. Since the
image potential depends only on the radial distance, we can
treat the problem using an effective potential that includes the
repulsive centrifugal term:32

Veff(ρ0) = Vim(ρ0) + l2 − 1
4

2μρ2
0

h̄2. (4)

Here μ is the reduced mass of the charged particle (μ = 1
in atomic units) and l stands for the angular momentum
quantum number. For sufficiently large l, the centrifugal
potential provides a barrier that prevents the external charge
from collapsing into the surface. In Fig. 3 we show the effective
potential for different values of l and the same tube radius used
in Fig. 2. Bound states form in the well between the repulsive
barrier and the long-range image interaction. Our results show
that the minimum l that supports bound states is lmin = 5, in
contrast with Granger’s result of lmin = 6. Furthermore, it is
important to mark that, although our barrier for l = 5 is low
(≈60 meV), the depths of the potential wells we obtain are
quite different from those using the approximation of Eq. (3)
(see Fig. 4), and these differences will affect the binding
energies.
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FIG. 3. (Color online) Effective potential Veff seen by an electron
situated at a radial position ρ0 in front of a metallic nanotube of
0.68-nm radius. The first angular momenta supporting bound states
are shown in red, l = 5,6, . . . 10, for which potential wells are
combined with the centrifugal barriers (shown in detail in the inset).
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FIG. 4. (Color online) Effective potential Veff for the lower
angular momenta that support bound states, compared with Granger’s
results.

We assume that the electron wave function can be written
in a separable form:

�n,l,k(ρ,ϕ,z) = ψn,l(ρ)√
ρ

eilϕ

√
2π

φk(z), (5)

with the motion along the z direction (the tube’s axis)
independent from the transversal motion23,27 in such a way
that the total energy can be written as En,l,k = En,l + Ek . With
this, the radial part of the Schrödinger equation becomes{

h̄2 d2

dρ2
+ 2μ[En,l − Veff(ρ)]

}
ψn,l(ρ) = 0. (6)

We have solved this equation numerically using the Numerov’s
shooting method. Figure 5 shows the wave functions for
the a = 0.68 nm tube, obtained for different values of the
quantum numbers n and l. In the top panel, the first six bound
states (l = 5, . . . ,11) corresponding to n = 1 are displayed
with continuous lines; the functions are normalized with the
condition

∫ |ψn,l(ρ)|2 dρ = 1. We have included the functions
obtained from Granger’s potential for comparison (dashed
lines). As can be seen, the shapes of the wave functions are
very similar but the positions and amplitudes of their maxima
are different. As expected, the lower angular momenta show
the larger differences. In the bottom panel we plot, for l = 6,
the ground n = 1 and first excited n = 2,3,4 states as radial
probability densities |�n,l,k|2 around the tube.

Figure 6 shows a comparison of the binding energies
obtained with the exact potential and with the approximated
potential from Ref. 23. Our results are detailed in Table I.
They still present, for fixed n, the l−3 behavior noticed for
the approximate calculation, but the differences are important
(30–40% for the deeper bound states), especially taking into
account the low energies involved.

IV. SCALING PROPERTIES AND THE l BARRIER

A close inspection of the effective potential Eq. (4) suggests
the exploration of the scaling properties of the system in order
to obtain a general framework for the study of tubular image
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FIG. 5. (Color online) Top: radial wave functions ψn,l(ρ) for n =
1 corresponding to a metallic nanotube with a = 0.68 nm, calculated
with the exact induced potential (continuous line); Granger’s potential
wave functions are included in dashed lines. Bottom: density plots
showing the probability function |�n,l,k|2 around the same nanotube,
for the states with angular momentum l = 6, and principal quantum
number n = 1, 2, 3, and 4.

states. Equation (2) for the image potential can be rewritten as
a function of ρ0/a:

Vim(ρ0) = 1

2
e�ind(ρ0,0,0)

= −e2

a

1

π

∞∑
m=−∞

∫ ∞

0
dζ

Im(ζ )

Km(ζ )

[
Km

(
ζ

ρ0

a

)]2

, (7)

where we have replaced k by the dimensionless variable
ζ = ka inside the integral. We can then define x = ρ0/a and
write the image potential in terms of a dimensionless potential
Ṽim(x):

Vim(ρ0) = e2

a
Ṽim(x), (8)
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FIG. 6. (Color online) Binding energies En,l obtained for a
0.68-nm-radius metallic nanotube for the exact image potential
[Eq. (2)] (crosses); included are states with principal quantum number
n up to eight, with different colors representing the different series of
angular momenta l. Results using the approximated potential [Eq. (3)]
are represented by dashes.

with

Ṽim(x) = − 1

π

∞∑
m=−∞

∫ ∞

0
dζ

Im(ζ )

Km(ζ )
[Km(ζx)]2. (9)

In the same way, the effective potential Eq. (4) can be
written in terms of a dimensionless effective potential Ṽeff(x)
as

Veff(ρ0) = e2

a
Ṽeff(x), (10)

with

Ṽeff(x) = Ṽim(x) + λl

x2
. (11)

Here the parameter λl is given by

λl =
(
l2 − 1

4

)
2μe2a

h̄2. (12)

Using the variable x, we can rewrite the Schrödinger
equation for the image states in terms of this parameterized
potential as

d2ψ

dx2
− Ṽred(x)ψ + Ẽn,lψ = 0, (13)

TABLE I. Binding energies (in meV) for a 0.68-nm-radius
nanotube obtained with the exact image potential given in Eq. (2).

l

n 5 6 7 8

1 – 14.005 – 7.651 – 4.845 – 3.294
2 – 8.731 – 5.189 – 3.438 – 2.33
3 – 5.861 – 3.652 – 2.415 – 1.715
4 – 4.149 – 2.562 – 1.794 – 1.29
5 – 3.060 – 1.899 – 1.353 – 0.989
6 – 2.331 – 1.432 – 1.036 – 0.768
7 – 1.823 – 1.097 – 0.803 – 0.601

with the reduced potential and energies (in units of length−2)

Ṽred(x) = β

[
Ṽim(x) + λl

x2

]
, (14)

Ẽn,l = 2ma2

h̄2 En,l = a2

a2
0

En,l

Ry
. (15)

Here a0 = h̄2/me2 is the Bohr radius and Ry = e2/2a0 is the
Rydberg unit (13.6 eV). β is, in terms of the parameters,

β = 2me2

h̄2 a = 2a

a0
, (16)

while λl can also be written as

λl = (l2 − 1/4)
a0

2a
. (17)

Hence, the Schrödinger equation takes the form of Eq. (13)
and the reduced potential Ṽred(x) Eq. (14) has two parameters,
β and λl, which depend only on the angular momentum
number l and the reduced radius a/a0. This yields the desired
general framework to study the image state wave functions
and energies and to determine the range of values of the
parameters where convergent solutions exist. For instance, we
can study the conditions for which the competition between
the centrifugal barrier and the attractive image potential will
allow for the appearance of bound states detached from the
surface. Figure 7 shows the dimensionless potential Ṽeff as a
function of the reduced variable x for different values of λl ,
spanning the range where the potential well and the positive
barrier appear. As can be seen, this happens around λl ≈ 0.9
(though the relative width and height of the barrier at this point
may still be too low to ensure that the transmission through it is
negligible). For the typical radius a = 0.68 nm, the condition
λl � 0.9 yields a minimum value of l = 5, which is what we
have obtained in the preceding sections. For different values
of the radius a, the corresponding minimum value of l may be
determined in the same way using the scaling parameter λl of
Eq. (17).
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FIG. 7. (Color online) Reduced effective potential for different
values of λl , from λl = 0.7 (bottom curve) to λl = 5 (top curve). The
change of regime, with the formation of a positive centrifugal barrier,
is observed to occur around λl = 0.9.
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V. CARBON NANOTUBES

The preceding description is valid for infinite metallic
cylindrical structures, either wires or nanotubes, with ε → ∞.
However, it is known that certain carbon nanotubes are not
metallic but semiconducting, with energy gaps depending on
their geometry.33 For example, band-structure calculations for
zig-zag nanotubes [characterized by a chiral vector (n,0)] show
a zero energy gap when n is a multiple of three, while there is a
finite gap otherwise. Also, metallicity depends on the diameter
of the tube: curvature effects may give place to a secondary gap
for sufficiently small diameters in (n,0) and (n,m) nanotubes.34

Within the dielectric formulation, the image potential
Eq. (2) for finite dielectric function ε scales as 1/ε30 (or
1/

√
εiεj for the anisotropic case of graphite). Hence, a

nonmetallic tube will support image states only if ε is large
enough. Unfortunately there are no reliable data for the value
of the dielectric function of nanotubes in the static limit.
Though data for the dielectric tensor of bulk graphite have been
often used to evaluate the response function of nanotubes,35,36

a macroscopically defined dielectric function ε may not be
adequate for describing the response of an atomic-scaled
structure such as a carbon nanotube.

An alternative, microscopic description of the behavior of
valence electrons in a carbon nanotube is given by Mowbray
et al.37 Their two-fluid hydrodynamical model has been
successfully applied to the description of plasmon excitations
in a single-walled carbon nanotube.

This model describes the valence σ and π electrons in the
nanotube as a superposition of two fluids with different den-
sities, coupled through a Coulombic interaction. Following a
(classical) hydrodynamical formulation, the potential induced
at a position r by a charge e traveling parallel to the tube’s axis
at a distance ρ0 (>a) with velocity v is obtained as

�ind(r,t) = −4πe
∑
m

∫
dk

π
ei{m[ϕ−ϕ0(t)]+k[z−z0(t)−vt]}

× Im(kρ<)Km(kρ>)Im(ka)Km(kρ0)

a−1χ−1
0 (m,ka,kv) + 4πIm(ka)Km(ka)

. (18)
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FIG. 8. (Color online) Effective potential Veff as a function of the
external charge position ρ0 for the two-fluid hydrodynamic model
in a metallic SWCNT of radius a = 0.68 nm. Also included are the
results for a metallic tube using the image potential from Eq. (2).

Notice that it is evaluated at the resonant condition ω = kv

for a parallel trajectory. Here, χ0(m,κ,ω) is the sum of the
response functions of each fluid on the nanotube:

χ0(m,κ,ω) = χ0
σ (m,κ,ω) + χ0

π (m,κ,ω), (19)

with

χ0
ν (m,k,ω) =

n0
ν

m∗
ν
(k2 + m2/a2)

s2
ν (k2 + m2/a2) + ω2

νr − ω(ω + iην)
, (20)

where, for each fluid, n0
ν and m∗

ν are the electron density and
effective mass, ην is a damping constant, ων,r is a restoring
frequency, and sν is the speed of propagation of density
disturbances (see Ref. 37).

To obtain the image potential, analogous to Eq. (2), we
evaluate the induced potential of Eq. (18) for a stationary
electron situated at (ρ0,0,0) with v = 0. Hence we have

V CN
im (ρ0) = −4πe2

∑
m

∫
dk

π

× I 2
m(ka)K2

m(kρ0)

a−1χ−1
0 (m,ka,0) + 4πIm(ka)Km(ka)

. (21)

This expression reduces to Eq. (2) for χ−1
0 → 0.

The metallic character of a nanotube is given here through
the values of the restoring frequencies ων,r , which are directly
related to the energy band gap for the corresponding valence
electrons. In general, we can consider that the σ electrons
behave as in a semiconductor, with a band gap of about 12 eV.
In turn, the energy bands for π electrons may present finite
or null gaps, depending on the geometry or, more specifically,
the way the tube is rolled up.33,38 In Ref. 37, the σ electrons
were modeled with a restoring force ωσ,r = 16 eV, while for π

electrons the authors took a semimetal approach, with ωπ,r =
0 eV. Using these values, we calculated the effective potential
as Veff = V CN

im + (l2 − 1/4)/(2μρ2
0 ).

Figure 8 shows a comparison of the effective potential
curves for different angular momenta, compared with the
results corresponding to metallic tubes. The differences are
found to be negligible, especially in the region of the potential
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FIG. 9. (Color online) Effective potential for a SWCNT of radius
a = 3.96 Å [zig-zag nanotube with chiral vector (10,0)] with ωσ,r =
13.06 eV and ωπ,r = 4.08 eV.
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FIG. 10. (Color online) Effective potential for a SWCNT of radius
a = 0.4 nm for angular momentum l = 6 and ωσ,r = 13.08 eV; ωπ,r

is varied from 0 to 1 eV.

wells that support the bound states. Larger differences are
observed near the nanotube (see inset), but these would not
directly affect the bound states. This agreement is easily
explained by inspecting the structure of the response function
χ0 and the two-fluid model. By using a value of ωπ,r = 0,
the (semi)metallic character of the π electrons prevails in the
optical limit ω → 0 and is equivalent to the results obtained
with ε → ∞ for ideal metallic tubes in the preceding sections.

On the other hand, nonmetallic nanotubes can be charac-
terized using finite values of the restoring frequencies of both
fluids, in correspondence to band gaps for each geometric
configuration yielding different chiralities. In order to have an
estimation of how this would affect image potential states, we
have calculated Veff using the values given by Jovanović et al.39

in their study of plasmon excitations in graphene mono- and
multilayers. They have found that electron energy loss spectra
recorded for energetic electrons are well reproduced by taking
ωσ,r = 13.06 eV and ωπ,r = 4.08 eV. These values are close to
those used for C60 studies and are consistent with the calculated
gaps for π bands in nanotubes.38 Preliminary results also show
that similar values should be used for carbon nanotubes in
order to better reproduce energy loss experiments. With these
values for restoring frequencies, we have obtained the curves
shown in Fig. 9 for the effective potential. In order to study a
representative case, these values were calculated for a (10,0)
zig-zag nanotube, with radius a = 0.396 nm. As can be seen,
the potential wells disappear and bound image states would
not be supported. Of course, these values correspond to ε far
from the “large enough” condition stated by Granger et al.23

However, the approach presented here allows us to quantify
this condition with realistic values of the response function

for nonmetallic nanotubes. In order to have the potential well
that gives rise to TIS, the π electrons restoring frequencies
(and hence energy band gaps) should be as small as 10−2 eV;
Fig. 10 shows the variation of the effective potential for l = 6
and different values of ωπr , from 0 to 1 eV, for a = 0.4 nm.

VI. CONCLUSIONS

In this work we have addressed the subject of tubular image
potential states around metallic and nonmetallic nanotubes.
Starting from the potential induced by a charged particle in
front of a metallic cylindrical surface30 we have solved the
radial Schrödinger equation for the bound-state wave functions
and obtained the energy series in analogy to Rydberg states
in front of planar surfaces. Our results present significant
differences from those presented by Granger et al. in Ref. 23,
who used an approximate expression to account for the
image potential. Although the largest differences between our
formulation and Granger’s occur in the region close to the
cylinder’s surface, these prove to be significant for the values of
the binding energies, with differences up to 30–40%. We mark
the sensitiveness of both eigenfunctions and eigenenergies
to the image potential. Particularly, we stress the fact that
differences between the asymptotic approximation and the
exact potential in the region near the surface of the tube result
in important corrections on bound states residing relatively far
from it. An example of this is the l = 5 bound state which
is suppressed in the approximate calculation. In this regard,
we have also studied the scaling properties of the effective
potential and the Schrödinger equation, providing a general
way to assess the l barrier, i.e., the minimum value of angular
momentum for which extended bound states can exist.

We have also presented a realistic formulation for eval-
uating the image potential in nonmetallic cases for carbon
nanotubes, based on the hydrodynamical model for the
response function of the π and σ electrons. This allows us to
postulate that this kind of tubular image state will not appear
in front of dielectric or semiconducting nanotubes with band
gaps over 0.1 eV.

We expect that these results may be useful as a guide
for the detection of these tubular image states and for the
determination of their properties in different experimental
conditions.
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