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We address spin polarization dependence of graphene’s Fermi liquid properties quantitatively using a
microscopic random phase approximation theory in an interacting spin-polarized Dirac electron system. We
show an enhancement of the minority-spin many-body velocity renormalization at fully spin polarization due
to reduction in the electron density and consequently increase in the interaction between electrons near the
Fermi surface. We also show that the spin dependence of the Fermi velocity in the chiral Fermi systems is
different than that in a conventional two-dimensional electron liquid. In addition, we show that the ratio of
the majority-to-minority-spin lifetime is smaller than unity and related directly to the polarization and electron
energy. The spin-polarization dependence of the carrier Fermi velocity is of significance in various spintronic
applications.

DOI: 10.1103/PhysRevB.85.235428 PACS number(s): 71.10.Ay, 72.25.Dc, 73.21.−b, 71.10.−w

I. INTRODUCTION

Graphene is a two-dimensional crystal of carbon atoms,
which has been recently discovered.1 This stable crystal
has attracted considerable attention2 because of its unusual
effective many-body properties3–8 that follow from chiral band
states and because of potential applications. The low-energy
quasiparticle excitation energies in graphene are linearly
dispersing, described by Dirac cones at the edges of the first
Brillouin zone.

Stable nonreactive graphene layers on top of ferromagnetic
materials9 might be used as sources of spin-polarized elec-
trons. Electron sources are used in all domains ranging from
technical devices like cathode-ray tubes to large scale scientific
experiments like electron accelerators. This is of great interest
for studies of magnetic systems in condensed matter physics,
including the field of spintronics.

Graphene’s spin-transport properties are expected to be
particularly interesting, with predictions for extremely long
coherence times and intrinsic spin-polarized states at zero
field.10 Spin-polarized electron emission from the graphene/Ni
system before and after exposure to oxygen has been recently
studied11 and the study of spin polarization of secondary
electrons obtained from this system upon photoemission
suggested the use of passivated Ni surfaces as a source of
spin-polarized electrons, since it is stable against adsorption
of reactive gases. The spin-resolved transport has already been
measured from conductance features by means of quantum
interference.12 These features split visibly in an in-plane
magnetic field, similar to Zeeman splitting in atomic and
quantum-dot systems. As a result, spin-up and spin-down
conductance contributions at finite field are offset in gate
voltage, leading to Zeeman splitting of interference features in
a gate voltage.12

Many electronic and optical properties of graphene could
be explained within a single-particle picture in which electron-
electron interactions are completely neglected. The discovery
of the fractional quantum Hall effect in graphene13 represents
an important hallmark in this context. By now, there is a large
body of experimental work8,14,15 showing the relevance of

electron-electron interactions in a number of key properties
of graphene samples of sufficiently high quality.

Conventional two-dimensional electron gas (2DEG), on
the other hand, has been a fertile source of surprising new
physics for more than four decades. Although graphene was
only isolated for the first time in 2004 and it is still at an early
stage, it is already clear16 that the strong-field properties of
Dirac electrons in graphene are different from and as rich as
those of a semiconductor heterojunction 2DEG. The Fermi
liquid phenomenology of Dirac electrons in graphene4,5 and
conventional 2DEG17 have the same structure, since both
systems are isotropic and have a single circular Fermi surface.
The strength of interaction effects in a conventional 2DEG
increases with decreasing carrier density. At low densities, the
quasiparticle weight Z is small, the velocity is suppressed,17

the charge compressibility changes sign from positive to
negative, and the spin-susceptibility is strongly enhanced.18

These effects emerge from an interplay between exchange
interactions and quantum fluctuations of charge and spin in
the 2DEG.

In addition, effective mass, or effective Fermi velocity, is
an important concept in Landau’s Fermi liquid theory since it
provides a direct measure of the many-body interactions in the
electron system. In the highly interacting, dilute, paramagnetic
regime in the 2DEG the effective Fermi velocity, which is
defined by the effective mass as v∗ = h̄kF/m∗, is significantly
diminished compared to its band value and tends to decrease
with increasing rs ,17–20 the so-called Wigner-Seitz radius.
Recent measurements of the effective mass for electrons in
two dimensions confined to AlAs quantum wells revealed that,
when the 2DES is fully valley- and spin-polarized, the effective
mass is suppressed down to values near or even slightly below
the band mass.19,21–23 A sophisticated theoretical calculation
has been shown24 that in an interacting, fully spin-polarized
2DES the absence (freezing out) of spin fluctuations reduces
the effective mass below its band value, in agreement with
experimental data. Furthermore, the spin-up and spin-down
effective masses from magnetotransport measurements at
different temperatures for a 2DEG and the effective hole mass
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measurements through analyzing the temperature dependence
of Shubnikov-de Haas oscillations in dilute 2D hole systems
have been recently reported.25

In the Dirac electrons in graphene, it was shown3–5,26 that
interaction effects also become noticeable with decreasing
density in that the quasiparticle weight Z tends to larger
values, the velocity is enhanced rather than suppressed, and
the influence of interactions on the compressibility and the
spin susceptibility changes sign. These qualitative differences
are due to exchange interactions between electrons near the
Fermi surface and electrons in the negative energy sea and
to interband contributions to Dirac electrons from charge and
spin fluctuations.

Our aim in this work is to study the spin polarization de-
pendence of quasiparticle properties in graphene, particulary,
the renormalized velocity and inelastic scattering lifetime of
quasiparticles within the leading-order single-loop self-energy
expansion. Our theory for spin polarization dependence of
quasiparticle velocity renormalization in interacting Dirac
electron systems is motivated not only by fundamental
many-body considerations, but also by the possibility to
improve high-speed operation in spintronic devices27 and
potential future experiments. By chemical doping in graphene,
spin polarization effects are predicted for some adsorption
configurations.28 Remarkably, the studies of spin polarization
dependence of quasiparticle properties should help to under-
stand spin valve physics and recent measurements of electronic
spin transport in graphene,29 and the possibility of magnetism
in graphene induced by single carbon atom defects.30

The paper is organized as the following. In Sec. II,
we introduce a formalism that will be used in calculating
spin-polarization quasiparticle properties, which includes the
many-body effects by suing RPA. In Sec. III, we present
our analytical and numerical results for the self-energy and
renormalized Fermi velocity in doped graphene sheets. Section
IV contains discussions and conclusions.

II. METHOD AND THEORY

We consider the long-range Coulomb electron-electron
interaction. We left out the intervalley scattering and use the
two-component Dirac Fermion model. Accordingly, the total
interacting Hamiltonian in a continuum model at K+ point is
expressed as31

Ĥ = −ih̄v
∑

i

�σ · ∇ i + 1

2

∑
i �=j

V (ri − rj ), (1)

where �σ are Pauli matrices and v = 3ta/2h̄ � 106 m/s is the
Fermi velocity with a � 1.42 Å is the carbon-carbon distance
in honeycomb lattice. Here, pi = −ih̄∇i is the canonical
momentum of the ith electron and vq = 2πe2/εq is the
Fourier transform of the bare Coulomb interaction where ε

is an average dielectric constant of the surrounding medium.
The coupling constant in graphene or graphene’s fine-structure
constant is αee = e2/εh̄v. The coupling constant in graphene
depends only on the substrate dielectric constant while in
the conventional 2D electron systems is density dependent.
The typical value of dimensionless coupling constant is 0.25 or
0.5 for graphene supported on a substrate such as SiC or SiO2.

As it is clearly seen from the first term of Eq. (1),
the spectrum is unbounded from below and it implies that
the Hamiltonian has to be accompanied by an ultraviolet
cutoff, which is defined by kc and it should be assigned a
value corresponding to the wave-vector range over which the
continuum model (1) describes graphene. For definiteness,
we take kc to be such that πk2

c = 2(2π )2/A0, where A0 =
3
√

3a2
0/2 is the area of the unit cell in the honeycomb lattice.

With this choice, the energy h̄vkc = 7 eV and

� = kc

kF
=

√
2gv

nA0
. (2)

The continuum model is useful when kc � kF, i.e., when
� � 1. Note that, for instance, electron densities n = 0.36 ×
1012 and 0.36 × 1014 cm−2 correspond to � = 100 and 10,
respectively.

The spin-polarization dependence of dynamical polariz-
ability tensor in terms of one-body noninteracting Green’s
function is written as32

χ (0)
σ (q,�,μ) = −i

∫
d2k

(2π )2

∫
dω

2π

Tr
[
iγ0G

(0)
σ (k + q,ω + �,μ)iγ0G

(0)
σ (k,ω,μ)

]
, (3)

where σ refers to the spin-direction, ↑ or ↓. After implement-
ing G(0)

σ (k,ω,μ) in Eq. (3) and calculating the integral, the
results end up to be3

χ (0)
σ (q,i�,μ) = −gv

μσ

2πv2
− gvπB/2

+ gvB�e[arcsin(C) + C
√

1 − C2], (4)

where gv = 2 is valley degeneracy. μσ is the spin depen-
dence chemical potential, B = q2/(8π

√
�2 + v2q2), and C =

(2μσ + i�)/(vq).
The technical calculation32 on which our conclusions are

based is an evaluation of the spin-polarization dependence
electron self-energy �σ

s (k,ω) of the Dirac fermion near the
quasiparticle pole. �σ

s (k,ω) describes the interaction of a
single Dirac electron with spin σ near the 2D Fermi surface
with all states inside the Fermi sea, and with virtual particle-
hole and collective excitations of the entire Fermi sea. A direct
expansion of electron self-energy in powers of the Coulomb
interaction is never possible in a 2D electron liquid because
of the long-range of the Coulomb interaction. Our results
for the Dirac electron gas are based on the random phase
approximation (RPA) in which the self-energy is expanded to
the first order in the dynamically screened Coulomb interaction
(setting h̄ = 1):

�σ
s (k,iωn)

= − 1

β

∑
s ′

∫
d2q

(2π )2

+∞∑
m=−∞

vq

ε(q,i�m,ζ )

×
[

1 + ss ′ cos (θk,k+q)

2

]
G0σ

s ′ (k + q,iωn + i�m) , (5)

where s = + for electron-doped systems and s = − for hole-
doped systems, ζ is the spin polarization parameter, ζ = |n↑ −
n↓|/n, β = 1/(kBT ), and ε(q,i�m,ζ ) is the RPA dielectric
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function. nσ is the spin-polarized density and n is the total
density of the system. The RPA dielectric function is given by

ε(q,i�,ζ ) = 1 − vq[χ (0)
↑ (q,i�,ζ ) + χ

(0)
↓ (q,i�,ζ )]. (6)

In the Dirac 2D electron system, dielectric-function con-
tributions from intraband and interband excitations are subtly
interrelated. The two contributions must be included on an
equal footing in order to describe the Dirac fermion physics
correctly. For example, one key property, that the static
dielectric function is independent of q at small q, requires
intraband and interband contributions to be summed.

For definiteness, we limit our discussion to an electron-
doped system with spin polarization dependence of chemical
potential μσ . In Eq. (5), ωn = (2n + 1)π/β is a fermionic
Matsubara frequency, the sum runs over all the bosonic
Matsubara frequencies �m = 2mπ/β. The factor in square
brackets in Eq. (5), which depends on the angle θk,k+q between
k and k + q, captures the dependence of Coulomb scattering
on the relative chirality ss ′ of the interacting electrons. The
Green’s function G0σ

s (k,iω) = 1/[iω − ξσ
s (k)] describes the

free propagation of states with wave vector k, Dirac energy
ξσ
s (k) = svk − μσ (relative to the chemical potential) and

chirality s = ±. The quasiparticle excitation energy measured
from the chemical potential can be given by Dyson equation
Eσ

s (k) = ξσ
s (k) + �e�(ret,σ )

s (k,ω) evaluated at ω = Eσ
s (k).

After continuation from imaginary to real frequencies, iω →
ω + iη and using the Dyson equation, the spin-dependent
renormalized Fermi velocity can be expressed32 in terms of
the wave vector and frequency derivatives of the retarded
self-energy �

(ret,σ )
+ (k,ω) evaluated at the spin-dependent Fermi

surface, which is kσ
F = (1 + σζ )1/2kF , where kF is the Fermi

momentum:

v
�(Dyson)
σ

v
= dEσ

+(k)

dk

= 1 + (v)−1∂k�e�
(ret,σ )
+ (k,ω)|k=kσ

F ,ω=0

1 − ∂ω�e�
(ret,σ )
+ (k,ω)|k=kσ

F ,ω=0

. (7)

In the on-shell approximation (OSA), on the other hand,
the renormalized velocity is given by

v�(OSA)
σ

v
= 1 + (v)−1∂k�e[�(ret,σ )

+ (k,ω)]|ω=0,k=kσ
F

+ ∂ω�e[�(ret,σ )
+ (k,ω)]|ω=0,k=kσ

F
. (8)

This expression can also be obtained from the formal definition
of v∗ given in the first equality in Eq. (7) when the second term
in the Dyson equation, �e�

(ret,σ )
+ (k,ω), is evaluated at the bare

pole, ω = ξσ
+(k). The OSA thus gives the quasiparticle velocity

to the first order in the retarded self-energy. The renormalized
velocity in this approximation demonstrates qualitatively the
same behavior obtained by the Dyson equation, Eq. (7), but its
magnitude is larger than the one calculated within the Dyson
scheme.

The quasiparticle weight factor Zσ evaluated at the
spin-dependent Fermi surface and given by Z−1

σ = 1 −
∂ω�e�

(ret,σ )
+ (k,ω)|k=kσ

F ,ω=0. In the up-spin case, the majority-

spin, Z↑ value is a bit smaller and the down-spin case, the
minority spin, Z↓ value is bigger than the results of Z(ζ = 0).

III. NUMERICAL RESULTS

Since the single-particle self-energy, the density of states,
the dynamical screening, the Fermi momentum, and the Fermi
energy in the chiral Dirac fermion are all affected by spin polar-
ization, we expect all Fermi liquid parameters to be strongly
dependent on the spin-polarization parameter. An important
thermodynamic quantity is the system compressibility, which
has been already studied by two of us.33

Our results for the spin-polarization dependence of the
Dirac electron velocity v�

σ /v at fixed electron density value
in the up- and down-spin, the majority- and minority-spin as
a function of the ζ are summarized in Fig. 1 for different
values of the dimensionless coupling constant αee. For the
up-spin Dirac electron, the renormalized velocity decreases
with increasing spin-polarization degree of freedom. However,
the down-spin electron renormalized velocity increases by
increasing spin-polarization. These behaviors are based on the
effect of the exchange energy in the spin channels between
electrons near the Fermi surface. Since the electron density
in the down-spin channel, n↓ = n(1 − ζ )/2 is less than the
electron density in the up-spin channel n↑ = n(1 + ζ )/2, and
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FIG. 1. (Color online) Spin-polarization dependence of the
renormalized velocity, in the Dyson scheme, scaled by that of a
noninteracting velocity as a function of the degree of spin polarization
ζ for cutoff value � = 100 (n = 0.36 × 1012 cm−2) in (a) the
down-spin, where 0 < n↓ < 0.18 × 1012 cm−2, and (b) the up-spin,
where 0.18 × 1012 < n↑ < 0.36 × 1012 cm−2, for different coupling
constant values. The spin polarization dependence of the up- and
down-spin velocity behaves differently as ζ increases.
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n↓ decreases, however, n↑ increases by increasing ζ , therefore
the exchange contribution of the down-spin is dominated
and results in increasing the renormalized velocity in the
spin-down channel and decreasing the renormalized velocity
in the spin-up channel. In contrast, the 2DEG where the
down-spin mass increases with spin-polarization first and as ζ

approaches near to one, it decreases sharply, the spin-polarized
down-spin velocity tends to a constant when ζ reaches to
unity.34 It should be noticed that the up- and down-spin Fermi
velocities have the same value at ζ = 0.

As it has been discussed previously,3–5 graphene’s Fermi
liquid properties depend only weakly on the carrier density,
which is expressed in terms of the cutoff parameter �. The
trends exhibited in Fig. 1 can be understood by considering
the limits of small αee and the limit of large q at all values
of αee. In the former limit, screening is weak except at
extremely small q. The self-energy can be decomposed as the
sum of a contribution from the interaction of quasiparticles
at the Fermi energy, the residue contribution �(res,σ ), and a
contribution from interactions with quasiparticles far from the
Fermi energy and via both exchange and virtual fluctuations,
the line contribution �(line,σ ). In ∂ω�

(res,σ )
+ (k,ω), for example,

the integral over q diverges logarithmically at small q when
ε(q,ω = 0) is set equal to one, i.e., when screening is
neglected. Accordingly, screening cuts off this logarithmic
divergence at a wave vector. More precisely, we have

∂

∂ω
�

(res,σ )
+ (k,ω)|k=kσ

F ,ω=0

= αee

2π

∫ 2
√

1+σζ

0
dx

1

xε(x,0)

4 − x2/(1 + σζ )√
4 − x2/(1 + σζ )

, (9)

and notice that ∂ω�e�
(res,σ )
+ (kF,0) = 0 for a case that σζ =

−1. Because ε(q,ω = 0) happens to be independent of q for
transitions between Fermi surface points, it is possible to eval-
uate ∂ω�

(res,σ )
+ (k,ω) for the case that σζ �= −1 analytically.

We find that

∂

∂ω
�e�

(res,σ )
+ (kF,ω = 0)

= αee

2π

[√
4 − η2

σ ln

(
2 + √

4 − η2
σ

ησ

)
− 1

2
(4 − ησπ )

]
, (10)

where ησ = gvαee(
√

1 + ζ + √
1 − ζ )/

√
1 + σζ . It should be

worthwhile mentioning that for ησ > 2 we use an equality in
which −i ln(x + i

√
1 − x2) = arccos(x) when x � 1. Impor-

tantly, similar ζ dependence appears in the v∗
σ at small αee.

More precisely, the ζ dependence of v∗
σ (ζ ), both in the Dyson

and OSA schemes, in the αee → 0 limit, for ζ < 1, is given by

v∗
σ (ζ )

v
− 1 = αee

π

[
ln(gvαee) + ln

(
ησ

2αee

)]
. (11)

This analytical expression shows that the renormalized veloc-
ity in the down-spin enhances while it decreases in the up-spin
channel. In the limit of small ζ , Eq. (11) is simplified and
v∗

↑↓(ζ )/v − 1 = αee[ln(gvαee) ∓ ζ/2]/π . All these behaviors
are very familiar from the case of the effective mass or
the effective Fermi velocity in a normal 2DES but more
significantly, the spin-polarization term is different than that
of the 2DEG.34,35 The discrepancy is due to the nature of the
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FIG. 2. (Color online) Renormalized velocity of the down-spin
scaled by that of a noninteracting velocity, v∗

↓/v, as a function of
the coupling constant αee for cutoff value � = 100 (n = 0.36 ×
1012 cm−2) in (a) Dyson and (b) OSA approximations given by Eqs.
(7) and (8), respectively.

chiral Dirac electron behavior in graphene flake having the
linear dispersion relation.

In Fig. 2, we show the down-spin renormalized velocity
scaled by that of a noninteracting velocity as a function of the
coupling constant in both the Dyson and OSA approximations,
which are defined by Eqs. (7) and (8), respectively. Clearly,
the velocity values increase significantly when ζ approaches to
unity. Despite the strong down-spin velocity dependence of the
spin degree of freedom, the up-spin velocity becomes smoothly
smaller with ζ as it is shown in Fig. 3. Notice that v∗(OSA)

σ

is always larger than v
∗(Dyson)
σ . Moreover, the ζ dependence

of the renormalized velocity is opposite with respect to the
spin direction. It would be worthwhile finding the asymptotic
behavior of v∗

σ at some conditions. At large q, interband
charge fluctuations dominate ε(q,ω) − 1, which approaches
its simple undoped system form. It becomes especially clear
when ω is expressed in units of vq that the typical value
of ε(q,ω) at large q is ∼1 with a nontrivial dependence on
αee. The q integrals all vary as q−1, requiring that the Dirac
electrons model be accompanied by an ultraviolet cutoff. Since
the crossover between intraband and interband screenings
occurs for q ∼ kF, it follows that ∂k�

res and ∂ω�res have
contributions that are analytic in αee and vary as ln(�) when
� is large. To leading order in ln(�), we find that v�/v − 1 =
αee[1 − 2gvαeeg(2gvαee)] ln (�)/4, which is σ independent
and g(x) is defined in Ref. 4.

In Fig. 4, we show the down-spin renormalized velocity
as a function of the electron density (in units of 1012 cm2).
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FIG. 3. (Color online) Renormalized velocity of the up-spin
scaled by that of a noninteracting velocity, v∗

↑/v, as a function of
the coupling constant αee for cutoff value � = 100 (n = 0.36 ×
1012 cm−2) in (a) Dyson and (b) OSA approximations given by
Eqs. (7) and (8), respectively.

In contrast to the 2DEG, the renormalized velocity increases
by decreasing the electron density and indicates no Wigner
crystallization32 occurs in pristine Dirac fermion systems.36

Note that at very small n, the system is highly correlated and
a model going beyond the RPA is necessary to account for
increasing correlation effects at low density.37 Our theoretical
calculations show that, even at moderately low densities, the
velocity enhancement in a supported graphene sheet can vary
a lot in qualitatively good agreement with measured data in a
suspended graphene sheet.26
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FIG. 4. (Color online) Renormalized velocity of the down-spin,
in the Dyson scheme, scaled by that of a noninteracting velocity as a
function of the electron density (in units of 1012 cm−2) for different ζ

values at αee = 0.5.
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FIG. 5. (Color online) Renormalized constant Zσ for (a) the down
spin and (b) the up spin as a function of the coupling constant αee for
cutoff value � = 100 (n = 0.36 × 1012 cm−2).

We have also calculated the renormalization factor
Zσ (αee,ζ ), which is equal to the discontinuity in the momen-
tum distribution at kσ

F . The effect of ζ is to make the Z↓ values
larger at large αee compared to the case when ζ is not included
as shown in Fig. 5. The nonzero values of Zσ , shows the Fermi
liquid picture in the whole range of αee and ζ . When n → 0 the
Zσ factor drops to zero logarithmically. Notice that in leading
order of ln �, the renormalization factor is independent of
σ and behaves like Z−1 − 1 = αeeλ(2gvαee) ln (�)/6 where
λ(x) is defined in Ref. 4.

Finally, we compute the inelastic scattering lifetime of
quasiparticles due to carriers-carriers interactions at zero
temperature for different ζ values. This is obtained through the
imaginary part of the self-energy when the frequency evaluated
at the on-shell energy,

τσ
in

−1(k) = �σ
in(k) = −2

h̄
�m�

(ret,σ )
+ (k,ξσ

+(k/h̄)), (12)

where �σ
in(k) is the quantum level broadening of the mo-

mentum with eigenstate |k〉. It is worthwhile to note that
the expression of τσ

in
−1(k) is identical with a result obtained

by the Fermi’s golden rule summing the scattering rate of
electron and hole contributions at wave vector k.32 Figure 6
shows the behavior of the spin polarization dependence of the
inverse inelastic scattering lifetime for n = 5 × 1012 cm−2 and
αee = 0.25. The imaginary part of the self-energy evaluated
at the on-shell energy starts from ξσ

+(k) = −εσ
F , exhibits a

minimum at zero energy and then grows up. The scattering
rate in graphene is a smooth function, which is in contrast with
the conventional 2D semiconductors and 2D electron liquids
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FIG. 6. (Color online) Inverse inelastic scattering lifetime of
quasiparticle, �σ

in(k) (in units of psec−1) in graphene as a function
of the on-shell energy, ξσ

+(k) for different spin polarization values.
The data in this figure refer to n = 5 × 1012 cm−2 and αee = 0.25.

because of the absence of both plasmon emission and interband
processes.38 We also see in Fig. 6 that the scattering rate is quite
sensitive to the spin polarization and the inelastic lifetime
for minority spins is larger evidently than the majority spin
lifetime. The ratio of the majority- to minority-spin lifetime is
smaller than unity and related directly to the polarization and
electron energy.

IV. CONCLUSIONS

In summary, we have calculated the spin-polarized depen-
dence of the quasiparticle in graphene sheets and they could

be strongly spin-polarization dependent and substantially
different than the usual unpolarized paramagnetic values.
Similar to a two-dimensional paramagnetic diluted magnetic
semiconductor electron gas,39 the Dirac electron Fermi ve-
locity is highly spin dependent even if the spin polarization
of the carrier population is negligibly small. Therefore, the
spin-polarization dependence of chiral carrier transports can be
observed experimentally nearly full spin polarization regimes.
The majority-spin electron renormalized velocity decreases
with increasing spin-polarization degree of freedom. However,
the minority-spin electron renormalized velocity increases by
increasing spin polarization due to reduction in the electron
density and consequently increase in the interaction between
electrons near the Fermi surface. We show that the ratio of
the lifetimes of majority- to minority-spin electrons is smaller
than unity and related to the polarization and electron energy.
It has important implications for the interpretation of many
types of spin-polarized experiments. Our results might be
used in calculating the effective density of states in graphene
spintronic systems. The spin-polarized features that are the
subject of this work may, in the future, lead to the development
of graphene devices incorporating interference-based spin
filters.
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