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Extended density-matrix model applied to silicon-based terahertz quantum cascade lasers
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Silicon-based terahertz quantum cascade lasers (QCLs) offer potential advantages over existing III-V devices.
Although coherent electron transport effects are known to be important in QCLs, they have never been considered
in Si-based device designs. We describe a density-matrix transport model that is designed to be more general
than those in previous studies and to require less a priori knowledge of electronic band structure, allowing
its use in semiautomated design procedures. The basis of the model includes all states involved in interperiod
transport, and our steady-state solution extends beyond the rotating-wave approximation by including dc and
counterpropagating terms. We simulate the potential performance of bound-to-continuum Ge/SiGe QCLs and
find that devices with 4–5-nm-thick barriers give the highest simulated optical gain. We also examine the effects
of interdiffusion between Ge and SiGe layers; we show that if it is taken into account in the design, interdiffusion
lengths of up to 1.5 nm do not significantly affect the simulated device performance.
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I. INTRODUCTION

Terahertz quantum cascade lasers (THz QCLs) are compact,
coherent radiation sources in which electrons are transported
through a periodic semiconductor heterostructure, with a
radiative transition in each period.1 Silicon-based THz QCLs
may offer significant advantages over the existing III-V de-
vices, including the absence of Reststrahlen absorption, which
may allow emission at frequencies above the current limit
of 4.9 THz in GaAs/AlGaAs QCLs.2 III-V devices require
cryogenic cooling (currently to <200 K; see Ref. 3), but the
high thermal conductivity of Si and the absence of polar LO-
phonon interactions could potentially overcome this limitation.
Additionally, there is the prospect of leveraging the mature Si
process technology to create affordable integrated electrically
driven semiconductor THz lasers. Although midinfrared4 and
THz5 electroluminescence from p-type SiGe/Si quantum
cascade structures has been achieved, lasing has not yet
been demonstrated. In recent years, attention has switched
to n-type devices owing to the simpler electron dispersion.
We recently showed theoretically6 that the low effective mass
and large usable conduction band offsets of the L valleys in
Ge/GeSi heterostructures7,8 could allow significantly higher
gain, operating temperature, and emission frequency range
than equivalent Si/SiGe devices.9–11

Several theoretical studies of Si-based QCLs exist,6–8,10–13

but none have accounted for coherent transport effects (i.e.,
quantum tunneling and interactions with optical fields).
Although semiclassical scattering-transport models can give
good agreement with experimental results,1,14 they neglect
tunneling across barriers and can predict unrealistically large
spikes in current density and gain when electrons scatter
between spatially extended subbands.15 By contrast, simplified
density-matrix (DM) models15–21 account for tunneling in
addition to scattering and include the effect of the optical field
on the electron dynamics. Additionally, DM models are much
faster and less computationally demanding than full quantum-
mechanical simulations based on Green’s functions.22–27 To
our best knowledge, all existing DM models of QCLs consider
coherence between a reduced set of basis states, including a
single “injector” state (adjacent to a thick tunneling barrier)

and a number of states in the next period of the QCL. This
requires the manual selection of the injector state prior to
simulating the device and omits tunneling through the injection
barrier from other states. This approach is not well suited to
semiautomated design procedures6,28 and can be problematic
in bound-to-continuum (BTC) designs, in which multiple
states may contribute to the tunneling current. Furthermore,
these simplified models neglect coherences between the injec-
tor state and other states in the same period. In this work, we
present a generalized DM model that reduces the requirement
for a priori knowledge of the electronic band structure by
including all states involved in interperiod transport and by
including contributions from both the optical field and the
external dc bias in all density terms in our steady-state solution.

Although the thickness of the injection barrier is of great
importance in III-V QCLs,29 it has never been investigated
in Ge/GeSi devices. We therefore use our DM model in
conjunction with a semiautomated design algorithm28 to
investigate the influence of injection barrier thickness upon
the simulated device performance. Ge/GeSi interfaces also
exhibit significantly more elemental interdiffusion than the
GaAs/AlGaAs epitaxy used in existing QCLs. We use our DM
model to assess the effect of interdiffusion on the simulated
population inversion and gain, and we compensate for the gain
reduction through design optimization.

II. THEORETICAL MODEL

A. Band structure calculation

The optically active region of a QCL consists of a
periodic semiconductor heterostructure. In the DM model,
the “injection barrier” that separates periods of the structure
is assumed to be sufficiently thick that interperiod transport
is limited to quantum tunneling only. QCL periods may be
further subdivided into a number of modules that are separated
by thick tunneling barriers.

We used a model-solid approximation to determine
the conduction band profiles for the QCL structures
in our simulations30 with the band structure parame-
ters listed in Ref. 6. A self-consistent one-dimensional
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Poisson-Schrödinger solver was then used to locate the quasi-
bound states within each module of the device, giving a total
of N subbands within each period. Localized wave functions
ψi(z) with energies Ei were obtained, according to a “tight-
binding” scheme, by embedding each module of the structure
between a pair of thick barriers, such that the amplitude of the
evanescent waves decays to zero before reaching the edge of
the simulation domain. Here, the subscript i ∈ [1, . . . ,N] de-
notes the index of each state in the period in ascending order of
energy. Intervalley mixing has previously been shown to yield
negligibly small energy splitting for intersubband transitions
in Si-based heterostructures longer than a few nanometers,31,32

and we therefore omit the effect from our model.
As the QCL is a periodic heterostructure in an electric

field, the states localized in other periods of the device are
obtained by simple translations of these solutions in energy
and space. The pth downstream period of the cascade therefore
has states with energy E

(p)
i = Ei − eFLp, where F is the

applied electric field, e is the unit charge, and L is the length
of a period. The corresponding wave functions are given by
ψ

(p)
i (z) = ψi(z − Lp). The wave function for an electron in

the system is expressed in this basis as

�(z) =
N∑

i=1

P∑
p=0

c
(p)
i ψ

(p)
i (z), (1)

where c
(p)
i is the weighting of each basis state and P is the

number of periods contained in the model.15

B. Density-matrix formulation

Density-matrix calculations rely on the selection of suitable
basis states for coherent transport through the QCL. Conven-
tional approaches use N basis states to model transport across a
single injection barrier. A single “injector” subband is selected
from the period upstream of the barrier. The remaining N − 1
states are then selected from the period after the barrier, and
the coherences between these states and the injector describe
interperiod tunneling transport. Some approaches simplify the
calculation further by selecting only a subset of the states
from the period after the barrier. The manual selection of
an “injector” subband requires a priori knowledge of the
electronic band structure and is therefore incompatible with
semiautomated design optimization techniques. Even with a
priori knowledge, the selection of an injector state may not be
obvious, particularly when the QCL is biased well away from
subband alignment; indeed, multiple channels for interperiod
transport may exist. Also, this limited set of basis states
does not include the injector subband in the second period.
Although the effect on relaxation rates is included implicitly
in the simulation, the calculation still does not account for any
coherent interactions with this subband. Its role in intraperiod
tunneling transport and its contribution to resonant optical
transitions are therefore omitted.

Here we describe a different DM model that uses all the
subbands localized in three adjacent periods of the QCL as
its basis. This method allows coherences to be calculated
between all pairs of states in the central period and allows
interperiod tunneling (both in and out of the central period) to
be determined without the need to select an injector subband

manually. The resulting 3N × 3N density matrix may be
expressed in block form as

ρ =

⎛
⎜⎝

ρCC ρCU ρCD

ρUC ρUU ρUD

ρDC ρDU ρDD

⎞
⎟⎠, (2)

where the subscripts U , C, and D denote the upstream, center,
and downstream periods of the structure, respectively. Each of
these N × N blocks consists of density terms for pairs of states
in the periods denoted by the block subscripts, for example,

ρCC =

⎛
⎜⎜⎝

ρ1,1 . . . ρ1,N

...
. . .

...

ρN,1 . . . ρN,N

⎞
⎟⎟⎠. (3)

The density terms are unknown values to be solved, which
represent the ensemble average of the weightings for the basis
states ρi,j = c∗

i cj .
The Hamiltonian for the three-period system is written in

block form as

H =

⎛
⎜⎝

HCC �CU �CD

�UC HUU �UD

�DC �DU HDD

⎞
⎟⎠. (4)

Here, the off-diagonal blocks contain the Rabi frequency terms
for coupling between states in different periods of the QCL,
which were calculated according to the scheme in Ref. 33.
The diagonal blocks such as HCC denote the Hamiltonian
matrix for a single period of the structure. The elements of
these single-period Hamiltonians are either the basis-state
energies (for diagonal elements), the Rabi frequency terms (for
pairs of states in different modules), or the optical-coupling
terms Hi,j = zi,jAinc for radiative transitions between states
in response to incident light with the electric field Ainc =
A0 exp(iω0t). Here, the dipole matrix element terms are given
by zi,j = 〈ψi |z|ψj 〉.

The time evolution of the density matrix is expressed by
the Liouville equation

∂ρ

∂t
= − i

h̄
[H,ρ] −

(
∂ρ

∂t

)
relax

, (5)

where the last term is the matrix containing all relaxation and
dephasing times.

Although the Liouville equation for our three-period model
contains a total of 9N2 differential equations (compared with
N2 for a single-period model), the translational invariance
of the system simplifies the calculation considerably. First,
the density terms may be translated between blocks of the
matrix, such that ρUU = ρCC = ρDD, ρCD = ρUC, and ρDC =
ρCU. Similar translations may also be applied to the Rabi
frequencies, dipole matrix elements, and relaxation times.
The Liouville equation (5) can therefore be reduced to 3N2

independent differential equations, coming from the three
blocks in the upper left corner of Eqs. (2) and (4). Second,
we apply the nearest-neighbor approximation, so that there
is no coupling or scattering between states spaced by more
than by one period. Therefore, the coupling constants between
the first and third periods �DU are set to zero in Eq. (4), and
the same applies to the coherence and relaxation terms. These
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simplifications reduce the computational complexity of our
model to a level comparable to the single-period model.

The relaxation matrix can be written symbolically in the
form

τ−1 =

⎡
⎢⎣

(1/τCC,1/τ‖ CC) (1/τ‖ CU) −
(1/τ‖ UC) − −
− − −

⎤
⎥⎦ , (6)

where the dashes indicate that the corresponding N × N block
is irrelevant owing to translational invariance. The relaxation
terms in Eq. (6) determine both the linewidths of optical
transitions and tunneling lifetimes. They contain contributions
from the state lifetimes τi,j as well as “pure dephasing” times
τ‖ i,j for intraperiod transitions.15 The off-diagonal blocks in
Eq. (6) (denoted τ‖ UC and so on) describe the pure dephasing
for interperiod interactions.

In this work, subband relaxation rates and tunneling
dephasing rates were calculated by accounting for all relevant
scattering processes:6 acoustic and optical phonon scattering,
intervalley scattering, and ionized impurity and interface
roughness scattering. The pure dephasing contributions are not
straightforward to calculate, and a number of different schemes
for their estimation have been proposed.16,20,21 In the case of
tunneling transitions, the prescription from Refs. 20 and 21
was employed. In the case of optical transitions, however, we
have simply set the linewidths to 2 meV (as is typical for GaAs
THz QCL structures).1

C. Steady-state solution

The harmonic balance method is a convenient approach for
determining a steady-state solution of the Liouville equation.
Here, a simple steady-state functional form is assumed for each
element of the density matrix depending on the states involved.
Under the rotating-wave approximation (RWA), each element
is assumed to contain only a single frequency harmonic.
The diagonal elements of the density matrix ρi,i give the
state populations and are assumed to be constant valued. The
off-diagonal terms ρi,j describe coherences between states.
In the RWA approach, the steady-state forms of these terms
are selected depending on whether they are optically active
or not. It is assumed that pairs of states within the same
period with an energy separation Eij ∼ h̄ω0 ± 	 will interact
strongly with the driving optical field (including a transition
linewidth 	). The density-matrix terms for optical transitions
are assumed to be proportional to exp(iω0t) for Ei < Ej

or exp(−iω0t) for Ei > Ej . All other off-diagonal elements
(i.e., for pairs of states with small energy separations or in
different modules of the structure) are assumed to represent
tunneling transport and are assumed to be constant valued.
With the single dominant harmonic assumed for each ρi,j ,
the Liouville equation becomes a system of 3N2 ordinary
linear equations. One of the equations is then replaced by the
particle conservation law, Tr(ρ) = 1, and the system becomes
inhomogeneous, with a unique solution.

Although the RWA is useful for rapidly calculating the
density matrix for a known system, it is incompatible
with semiautomated design tools where the state energies
are not known a priori. The RWA also potentially omits
multifrequency effects from density-matrix terms. In this

work, therefore, we use an enhanced “non-RWA” solution
method that allows three harmonic terms to be included in
the density-matrix elements such that

ρi,j = ρ+
i,j exp(iω0t) + ρdc

i,j + ρ−
i,j exp(−iω0t), (7)

where ρ±
i,j and ρdc

i,j are unknown amplitudes for each of the
harmonic components. As the Liouville equation is linear,
each harmonic term may be treated independently, resulting
in a system of up to 9N2 linear equations (if every term
contains all three harmonics), which still presents relatively
low computational complexity. Similarly, in the light-field
interaction terms in the Hamiltonian both the exp(±iω0t)
components are retained.

Previous studies indicate that the counterpropagating non-
RWA terms may measurably affect the gain of lasers or the
intensity-induced shift of the resonance frequency in light-
matter interactions but are not very significant in near-resonant
laser operation.34–36 Indeed, in all the cases considered in this
work, we find that only one of the three harmonic amplitudes
is significant in our simulations, which validates the use of the
RWA when a priori knowledge of the state energies exists.

The calculation can include thermal self-consistency (en-
ergy balance) by allowing the electron temperature Te to be
variable and requiring the total energy exchange between the
electron gas and the lattice to equal zero.14 In this work we
did not include a thermal balance within the density-matrix
equations and have instead used the electron temperature
(assumed common to all subbands) as delivered by the
rate equation model.6 This is expected to be a reason-
able approximation since the tunneling contribution37 is not
the major heat-generating process in QCLs.

D. Output parameters

The current is calculated from the density matrix as j =
Tr(ρJ), where

J = e
i

h̄
[H,z]. (8)

The current has both a time-independent (dc) component and
a harmonic (ac) component that is induced by the optical field.
The latter is used to find the complex permittivity ε̃ of the
electron gas of the active medium from

jac = ε̃
d

dt
Ainc, (9)

and then the gain from g ≈ ω0Im(ε̃)/nrc, where nr is the
refractive index and c is the speed of light in vacuum. Using
very small values of Ainc gives the small signal gain of the
QCL active region (i.e., in the absence of gain saturation).

III. SIMULATION RESULTS

We have recently reported the use of a semiautomated
design optimization process to show that THz QCLs in
the (001) Ge/GeSi material configuration yield substantially
higher simulated gain than equivalent (111) and (001) Si/SiGe
designs.6 This method affords a systematic comparison be-
tween different device design schemes and/or material sys-
tems. In this work, we have used our optimization algorithm,
in conjunction with the DM model described above, to identify

235427-3
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FIG. 1. Two periods of the band structure of the six-well BTC
QCL design which serves as a template for our investigations. The
thicknesses of the layers are as follows (starting from the injection
barrier): 4.3/5.0/1.2/14.3/1.3/12.9/1.6/7.9/1.8/7.1/2.5/7.8, where bold
text denotes the Si0.15Ge0.85 barriers and regular text denotes Ge wells.
The underlined layers are doped to provide a sheet doping density of
8 × 1010 cm−2. The upper and lower laser levels in each period of the
structure are shown as thick solid and thick dashed lines, respectively.

viable designs for BTC Ge/SiGe QCLs while accounting
for coherent transport effects. Previous DM models of III-V
BTC QCLs have reproduced experimental results by including
only the upper laser level (ULL) and a subset of miniband
states in their basis set, of which one is designated as
the injector.16 However, in practice multiple subbands may
contribute significantly to interperiod tunneling in BTC QCLs.
Our extended non-RWA DM model avoids the need for
a priori selection of the optically coupled transition and
the injector subband, allowing us to use the semiautomated
design approach described in Ref. 28. Furthermore, our
model explicitly includes all possible interperiod tunneling
pathways.

Figure 1 shows two periods of the band structure of a
4-THz six-well BTC QCL design which serves as a template
for our investigation of device performance. For our DM
simulations, each period of the active-region structure was
modeled as a single module. All the devices simulated in
this work were derived from this template by systematically
adjusting a single element of the structure (i.e., either the

injection barrier thickness or the interdiffusion length). In all
cases, a lattice temperature of 4 K was used. The electron
temperature was fixed at a value of 100 K, which was obtained
from a semiclassical simulation of the design template.

As Si and Ge are not lattice matched, the proposed QCL
structures must be grown on a relaxed buffer or “virtual
substrate.” Such substrates can be achieved either by growth
of a linearly graded alloy layer, from pure silicon up to the
desired buffer composition,38,39 or by growth of a Ge seed
layer directly on a silicon wafer, followed by reverse linear
grading from pure Ge down to the buffer composition.40,41

The relaxed buffer composition is calculated to achieve “strain
symmetrization” throughout the QCL structure,42 whereby
the compressive stress in the Ge wells is balanced by the
tensile stress in the barriers, yielding zero net stress over each
period. For all the cases presented below, the optimum buffer
composition was found to be Ge0.97Si0.03.

A. Injection barrier thickness

The thickness of the injection barrier is known to be an
important parameter in III-V THz QCLs as it can significantly
affect the performance of devices.29 If the injection barrier is
too thin, selectivity of injection into the upper laser level is
poor; if it is too thick, the tunneling rate through the barrier is
small, and efficient injection cannot be achieved. Semiclassical
rate-equation models of charge injection in THz QCLs lack
sensitivity to the injection barrier thickness, and a model that
accounts for coherent effects is therefore required.15 Here, we
systematically vary the thickness of the injection barrier in
the design template and use our DM simulation to determine
the gain and current density. We use the genetic algorithm
described in Ref. 28 to maximize the simulated gain of the
device at 4 THz by varying the thickness of each of the other
layers in the structure and the applied electric field.

In all the cases considered here, the optimized layer widths
(excluding the injection barrier) were found to be identical (to
angstrom precision) to those of the template. This can be un-
derstood by recalling that the decoupled wave functions in the
DM model are found by embedding the active-region module
between thick barriers. Therefore, the layer-width optimization
procedure only directly affects the single-period Hamiltonian
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FIG. 2. (a) Simulated current density and (b) gain spectra of optimized BTC QCLs for different injection barrier thicknesses. An indicative
figure for the lasing threshold is included for reference, based on calculations of the waveguide losses in Ref. 43.
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FIG. 3. Band structure of the six-well BTC QCLs with interdiffusion lengths of (a) Ld = 1 nm and (b) Ld = 2 nm.

and has a very much weaker influence on the interperiod
coupling (by slightly adjusting the Rabi frequencies). As such,
the results below can be seen to solely represent the effect of
the injection barrier thickness upon the device performance
without including any contribution from changes in the band
structure within the period.

Figure 2(a) shows the simulated current density as a func-
tion of applied electric field for optimized devices with 2-, 3-,
4-, 5-, and 6-nm-thick injection barriers. Interperiod scattering
between spatially extended wave functions is avoided in the
DM model, and the simulated current density is therefore a
smoothly varying function of bias in all cases. The alignment
bias for the device is approximately 4 kV/cm for all five
structures, and we see that the current density at this bias
decreases monotonically as the thickness of the injection
barrier increases. The gain spectrum for each structure at the
alignment bias is shown in Fig. 2(b). The variation in the
magnitude of the peak gain with injection barrier thickness is
not monotonic, and there is an optimum thickness at around
4–5 nm, at which a gain of around 90 cm−1 is predicted.
The difference in gain spectrum between the device with
2-nm-thick injection barriers and the other structures is caused
principally by the reduction of injection selectivity into the
ULL. It is important to note, however, that the “injection
barrier” in this structure is thinner than the 2.5-nm-thick
barrier at the end of the module, and the chosen subdivision

of modules for tunneling transport in the DM model is likely
to be unrealistic.

B. Interdiffusion compensation

Epitaxial Ge/SiGe heterostructures have been reported to
show significant interdiffusion between the pure and alloy
semiconductor layers, with typical characteristic interdiffusion
lengths estimated to be of the order of 1–2 nm.44,45 This leads
to significant changes in the band structure and scattering
lifetimes46,47 and can therefore degrade the performance
of devices. In this section, we investigate the impact of
interdiffusion on the QCL gain, and we attempt to recover
the lost performance through design optimization.

We account for the effects of interdiffusion by applying a
Gaussian annealing model to the alloy composition profile,48

such that the alloy fraction across the interface is described by
a Gauss error function with the interdiffusion length Ld as a
size parameter. Figure 3 shows the band structure of the QCL
design template with 1- and 2-nm interdiffusion included. The
interdiffusion causes the barriers to become reduced in height,
and the shape of the quantum wells becomes distorted, with
the tops being widened and the bottoms being narrowed. For
interdiffusion lengths of 2 nm, the thinner barriers near the
optically active wells are significantly reduced in height, and
the ULL is poorly confined.
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FIG. 4. Simulated gain of the QCL for interdiffusion lengths of 1, 1.5, and 2 nm (a) without optimization and (b) where the device structure
was optimized. In each case, the legend of the plot indicates the interdiffusion length.
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Figure 4(a) shows the simulated gain spectra for structures
with Ld in the range 0–2 nm at the respective operating bias
for each device. Here, the interdiffusion has been included
without subsequently optimizing the design. There is no
significant drop in the peak gain when a 1-nm interdiffu-
sion length is included. However, for larger interdiffusion
lengths the simulated peak gain is reduced considerably,
and there is no simulated gain at all for the structure with
Ld = 2 nm.

We applied the design optimization algorithm to each of
the diffuse QCL structures, and the resulting gain spectra are
shown in Fig. 4(b). It can be seen that the gain has been
fully recovered for structures with interdiffusion lengths up
to 1.5 nm. This highlights the importance of being able to
characterize the interdiffusion length in these systems: so long
as this is known and so long as it is 1.5 nm or less, our
results indicate that it can be taken into account in the design
process.

For interdiffusion lengths of 2 nm or more, the gain cannot
be recovered. There are two reasons for this: first, the ULL is
no longer confined by the thin barriers in the structure, which
leads to a large spatial overlap with the miniband states and
hence a loss of population inversion. Second, the interdiffusion
introduces Si into the nominally pure Ge well regions, leading
to a large increase in alloy disorder scattering rates.46 As
such, additional rapid-scattering pathways are introduced to
the system, leading to rapid depopulation of the ULL. By
way of comparison, we have previously shown that the total
scattering rate within a Si/Ge/Si quantum well increases by
50% at an interdiffusion length of 1.21 nm.47

IV. CONCLUSION

We have investigated coherent transport effects in a Si-
based THz QCL through the use of an extended density-matrix
model that includes in its basis all subbands that are involved
in interperiod transport. Our use of the non-rotating-wave
approximation allows a steady-state solution to the Liouville
equation without a priori knowledge of the band structure
of the device. In all cases, the non-RWA solution yielded
a single strongly dominant frequency component in each
density term, indicating that it would be in good agreement
with an equivalent RWA model. Although we have used
our generalized non-RWA model to analyze coherent effects
in Si-based QCLs, it is equally applicable to III-V QCL
structures.

We have coupled our model with a semiautomated QCL
design algorithm and have shown that the optimum injection
barrier thickness for Si-based BTC THz QCL structures is in
the range 4–5 nm, and we predict peak gain values of ∼90 cm−1

at a lattice temperature of 4 K. We have also studied the effect
of interdiffusion between the Ge and GeSi layers and found that
it is possible to compensate for interdiffusion effects through
design optimization up to a limit of Ld ≈ 1.5 nm.
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