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Perturbative regimes in central spin models
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Central spin models describe several types of solid state nanostructures which are presently considered as
possible building blocks of future quantum information processing hardware. From a theoretical point of view,
a key issue remains the treatment of the flip-flop terms in the Hamiltonian in the presence of a magnetic field.
We consider homogeneous hyperfine and exchange coupling constants (which are different from each other)
and systematically study the influence of these terms, both as a function of the field strength and the size of
the spin baths. We find crucial differences between initial states with central spin configurations of high and
low polarizations. This has strong implications with respect to the influence of a magnetic field on the flip-flop
terms in central spin models of a single central spin and in those of more than one central spin. Furthermore, the
dependencies on bath size and field differ from those anticipated so far. Our results might open the route for the
systematic search for more efficient perturbative treatments of central spin problems.
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I. INTRODUCTION

Central spin models are the generic theoretical description
for several solid state nanostructures which are presently under
intensive experimental and theoretical study in the context
of quantum information processing.1 Important examples
include semiconductor2–5 and carbon nanotube6 quantum dots,
phosphorus donors in silicon,7 nitrogen vacancy centers in
diamond,8–10 and molecular magnets.11 The typical Hamilto-
nian is given by

H =
Nc∑
i=1

A
(i)
j

�Si

N∑
j=1

�Ij +
Nc∑

i<j=1

Jij
�Si

�Sj + B

Nc∑
i=1

Sz
i (1)

and describes the interaction of Nc central spins �Si with N

bath spins �Ij characterized by coupling parameters A
(i)
j with

an overall coupling strength A := (1/Nc)
∑Nc

i=1

∑N
j=1 A

(i)
j . In

semiconductor quantum dots, for example, the role of the cen-
tral spins is played by the confined electron spins interacting
with the nuclear spins of the host material via the hyperfine
contact interaction. Here the coupling constants A

(i)
j are

proportional to the square modulus of the respective electronic
wave function at the sites of the nuclear spins and therefore
are clearly not equal to each other (“inhomogeneous”). The
parameters Jij in the second term of Eq. (1) account for an
exchange coupling between the different electron spins, where
we assume Jij =: Jex in the following, and the third term
describes a magnetic field applied to the electron spins. For
reviews concerning the hyperfine interaction in semiconductor
quantum dots the reader is referred to Refs. 12–16.

An important ingredient in the Hamiltonian (1) is the so-
called flip-flop terms,

Hff = 1

2

Nc∑
i=1

N∑
j=1

A
(i)
j (S+

i I−
j + S−

i I+
j ), (2)

which are off-diagonal in the basis with the field direction as
the quantization axis. Theoretical treatments of Eq. (1) so far
have usually distinguished between (i) the case of a strong
magnetic field, as compared to the overall coupling strength,

B � A, and (ii) the case of a weak magnetic field, B < A.
In particular, for the most intensively studied situation of a
single central spin, Nc = 1, the flip-flop terms have in case
(i) been treated as a perturbation with A/B being a small
parameter,17–22 whereas in the opposite case (ii) it is commonly
accepted that nonperturbative methods are required.15,23–28

However, very recently it was shown in Refs. 29 and 30,
again for Nc = 1, that surprisingly there is a well-controlled
perturbative treatment in A(B

√
N )−1, meaning that, for large

enough systems, also the case of a weak magnetic field can
be treated perturbatively. This approach was motivated by the
statement that the “smallness of the longitudinal spin decay is
controlled by the parameter A(�

√
N )−1” (see Ref. 29), where

� denotes the electron spin Zeeman splitting. It is the purpose
of the present paper to give a systematic and unbiased analysis
of the scaling properties regarding the flip-flop contributions
to the dynamics and hence the perturbative regimes.

II. MODEL AND METHODS

We want to investigate, in particular, the dependence on
the bath size N so that we can-not make use of exact
numerical diagonalization. For Nc = 1 and if A

(k)
j = A

(l)
j

also for arbitrary values of Nc, a natural alternative would
be to choose an approach based on the Bethe ansatz.31,32

This, however, leads to sets of algebraic equations which
are extremely difficult to treat. Therefore, we have to focus
on the case of homogeneous couplings, A

(i)
j = A/N := A′

(see Refs. 24, 28, and 32). The Hamiltonian (1) generally
conserves the total spin �J = �S + �I , where �S := ∑Nc

i=1
�Si and

�I := ∑N
j=1

�Ij . For homogeneous couplings it, in addition,

commutes with the square of the total bath spin �I ,

[H, �J ] = [H, �I 2] = 0 . (3)

In what follows, we restrict ourselves to the spin length
Si = Ij = 1/2. We calculate the central spin dynamics by
decomposing the initial state |α〉 into eigenstates |ψi〉 of the
Hamiltonian (1),

|α〉 =
∑

i

αi |ψi〉, (4)
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and applying the time evolution operator.24,28 We focus on
initial states with fixed J z quantum number m so that only
the expectation values of the z components of the spin
operators will show nontrivial dynamics. Moreover, due to the
homogeneity of the couplings, the dynamics of the different
central spins can be read off from each other and we therefore
concentrate on the time evolution 〈Sz

1(t)〉.
A state which is a simple product of spin states with

definite z component is, for vanishing Jex , an eigenstate of
the Hamiltonian (1) except for the flip-flop terms. Thus, for
such an initial state all dynamics is due to Hff . Therefore, in
order to isolate the effect of the flip-flop terms we consider
initial states of this type,

|α〉 = |⇓ · · · ⇓︸ ︷︷ ︸
ND

c

⇑ · · · ⇑〉 ⊗ | ↓ · · · ↓︸ ︷︷ ︸
ND

b

↑ · · · ↑〉 , (5)

so that

m = Nc

2
+ N

2
− ND

c − ND
b . (6)

Note that for homogeneous couplings the order of the spin
states within the two subsystems is of no importance.

Since the 2N dimensional bath Hilbert space is spanned by
the eigenstates of �I 2, every product state can be written in
terms of these eigenstates:

| ↓ · · · ↓︸ ︷︷ ︸
ND

b

↑ · · · ↑〉 =
ND

b∑
k=0

∑
{Si }

c
{Si }
k

∣∣∣∣∣ N

2
− k︸ ︷︷ ︸
I

,
N

2
− ND

b︸ ︷︷ ︸
m+Nc/2+ND

c

,{Si}
〉
.

(7)

Here the quantum numbers {Si} describe a certain Clebsch-
Gordan decomposition of the bath. Because of Eq. (3),
the Hamiltonian (1) does not couple states from different
multiplets so that 〈Sz

1(t)〉 decomposes into a sum of dynamics
on the multiplets given in Eq. (7). These contributions are
weighted by24,28

dk =
∑
{Si }

(
c
{Si }
k

)2 = ND
b !

(
N − ND

b

)
!(N − 2k + 1)

(N − k + 1)!k!
, (8)

with k = 0, . . . ,ND
b . In order to compute the dynamics, one

still needs to perform a diagonalization within the 2Nc × 2Nc

dimensional Hilbert space of the central spins for any value of
k in Eq. (7). This diagonalization as well as the sum according
to Eq. (7) are performed numerically.

In the following we focus on a weak but finite exchange
coupling Jex = (1/800)A if not stated otherwise. The precise
value of Jex is not of significance; similar exchange couplings
of the same order yield qualitatively the same results. However,
below we also briefly comment on the special case Jex = 0.
The polarization of the central spin system or the bath,
respectively, is defined by

pc =
∣∣∣∣Nc − 2ND

c

Nc

∣∣∣∣, (9)

pb =
∣∣∣∣N − 2ND

b

N

∣∣∣∣. (10)

FIG. 1. Spin dynamics for Nc = 1,2,3 and N = 401. We choose
an exchange coupling of Jex = (1/800)A. The magnetic field is fixed
to A/B = 4. We consider initial product states with |αc〉 = |⇓〉,|⇓⇑〉,
|⇓⇓⇑〉 and a very low bath polarization of pb = (1/N ). In all cases,
Nc = 1,2,3, the amplitude of the oscillation is decaying to zero
(followed by a series of revivals on longer time scales not shown).
The influence of the magnetic field manifests itself in a decrease of
the magnitude of the spin decay and an increase of the decoherence
time as measured by the decay of the amplitude of the oscillation.
The two quantities, denoted by μ and τ , are depicted in the first panel
and the second panel, respectively. We investigate the scaling of the
decoherence time by analyzing from which time on the amplitude of
the oscillation falls under a threshold level. The concrete value is of
no importance, as long as the amplitude is larger than the threshold
level before the onset of the decay. For high values of pc the quantity
τ remains unaffected by the magnetic field and μ is the relevant
perturbative measure, whereas for small pc it is τ which quantifies
the influence of the flip-flop terms.

It is well-known that the bath polarization influences the central
spin dynamics in a way very similar to a magnetic field.12,23,28

In the present paper, we restrict our discussions to a very
low bath polarization of pb = (1/N ), corresponding to N =
2ND

b + 1. This is a particularly interesting special case because
any effects of the polarization are excluded. However, the
results presented below are clearly not generic with respect
to other values of pb.

III. THE PERTURBATIVE MEASURES

In Fig. 1 we give examples of the dynamics for Nc = 1,2,3
with the initial states of the central spin system, |αc〉, given
by |αc〉 = |⇓〉,|⇓⇑〉,|⇓⇓⇑〉. In all cases, the amplitude of the
oscillation is decaying to zero (followed by a series of revivals
on longer time scales not shown in the figures).28 The influence
of the magnetic field on the flip-flop terms manifests itself
in two effects so that there are two different “perturbative
measures.” On the one hand, the spin is fixed in its initial
direction, in Fig. 1 given by 〈Sz

1(0)〉 = −0.5. This means that
the magnitude (“smallness”) of the spin decay, denoted by μ

from now on, is decreasing with increasing magnetic field. Let
us further clarify to what extent quantifications of these two
effects allow one to judge the applicability of perturbative
treatments. As explained above, perturbative treatments of
central spin problems typically consider a magnetic field and
treat Hff as a small perturbation. Clearly, this approach is
justified only if the influence of Hff on the central spin
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dynamics is indeed sufficiently small. In other words, a
perturbative treatment becomes more adequate the stronger
Hff is suppressed.

The quantity μ can be calculated as

μ =
∣∣∣∣ − 0.5 − (1/T )

∫ T

0
dt

〈
Sz

1(t)
〉∣∣∣∣, (11)

which becomes independent of T for T � (h̄/A). This
measure is illustrated in the first panel of Fig. 1. On the other
hand, the decoherence time, denoted by τ , as measured by
the decay of the amplitude of the oscillation, increases with
increasing field strength. In order to calculate the scaling of τ ,
we fix some adequate “threshold level” 〈Sz

1〉 and analyze after
which time the amplitude falls under this value. The procedure
is indicated in the second panel of Fig. 1. Note that the concrete
value of the threshold level is of no importance. It only has
to be chosen in a way that the amplitude of 〈Sz

1(t)〉 is larger
than the threshold level before the onset of the decay. This
procedure has been used already in Ref. 28. Furthermore, a
very similar approach has been chosen in Ref. 24.

In Fig. 1 we see that for magnetic fields of identical
strengths, the value of μ is much smaller for Nc = 1 and a
central spin polarization of pc = 1 than the value of μ for
Nc = 2,3 with pc = 0, 1

3 . Indeed, for large values of pc it is μ

which adequately describes the influence of the magnetic field
on the flip-flop terms and for small values it is τ . In between,
both of the measures are of relevance. In the present paper we
exclude this case and concentrate on the three cases shown in
Fig. 1 where only one scale is relevant.

IV. RESULTS AND DISCUSSION

Now we come to the central results of the present paper. In
what follows, we investigate the scaling of the two measures
μ and τ with the magnetic field strength for a fixed particle
number and with the particle number for a fixed magnetic field.
With respect to the scaling of μ we consider Nc = 1,2 and for
τ we focus on Nc = 2,3.

As already mentioned above, due to Eqs. (3) and (7), the
dynamics 〈Sz

1(t)〉 decomposes into a sum of dynamics on
different multiplets. In a first step, it is instructive to focus
on Nc = 1 and to consider only a single term of the sum. As
demonstrated below, this leads to the scaling of the measure μ

with the magnetic field on a fully analytical level.

A. Magnetic field scaling of μ for Nc = 1

As we are dealing with only a single central spin in this
subsection, in what follows we drop the index in 〈Sz

1(t)〉. Let
I denote the quantum number of some multiplet in the sum
〈Sz(t)〉. This corresponds to the Hamiltonian

HI = A′ �S · �I + BSz. (12)

For fixed m this corresponds to a 2Nc × 2Nc = 2 × 2 matrix,
which can be diagonalized easily. Here it is convenient to
respresent HI with respect to the eigenbasis of the first term,
�S · �I , resulting from the well-known formula for coupling
a spin of arbitrary length to a spin of length S = 1/2

(see, e.g., Ref. 33):∣∣I ± 1
2 ,m

〉 = c±(m)|⇑〉∣∣I,m − 1
2

〉
± c∓(m)|⇓〉∣∣I,m + 1

2

〉
, (13)

where

c±(m) =
√

I ± m + 1/2

2I + 1
. (14)

This yields the matrix

HI =

⎛
⎜⎝ A′I

2 + Bm

x

√
B2

4 − B2m2

x2√
B2

4 − B2m2

x2 −A′(I+1)
2 − Bm

x

⎞
⎟⎠, (15)

where we introduce the shorthand notation x = 2I + 1. We
denote the components of the HI eigenstates with respect to
the basis {|⇑〉|I,m − 1/2〉,|⇓〉|I,m + 1/2〉} by ψ

(j )
i and the

corresponding eigenvalues by Ei . Diagonalizing Eq. (15), we
get

ψ
(1)
1 = [a+c−(m) + b+c+(m)], (16a)

ψ
(2)
1 = [b+c−(m) − a+c+(m)], (16b)

ψ
(1)
2 = [a−c−(m) + b−c+(m)], (16c)

ψ
(2)
2 = [b−c−(m) − a−c+(m)], (16d)

with

a± = 1√
1 + 4B2x2z2+z2−

(A′x2+4Bm±A′xy)2

, (17a)

b± = ∓ 1

a±

Bz+z−
Ay

. (17b)

Here we define

y =
√

x2 + 4B2

A′2 + 8Bm

A′ (18)

and

z± =
√

x ± 2m

x
. (19)

Considering the initial state |α〉 = |⇓〉|I,m + 1/2〉, it then
follows for the central spin dynamics that

〈Sz(t)〉

= ∣∣ψ (2)
1

∣∣2

∣∣ψ (1)
1

∣∣2 − ∣∣ψ (2)
1

∣∣2

2︸ ︷︷ ︸
:=μ

(I )
1

+ ∣∣ψ (2)
2

∣∣2

∣∣ψ (1)
2

∣∣2 − ∣∣ψ (2)
2

∣∣2

2︸ ︷︷ ︸
:=μ

(I )
2

+ψ
(2)
1 ψ

(2)
2

ψ
(1)
1 ψ

(1)
2 − ψ

(2)
1 ψ

(2)
2

2
cos

[
(E1 − E2)t

h̄

]
.

(20)

We denote the measure μ corresponding to Eq. (12) by μ(I ).
Obviously, the quantities μ

(I )
i , introduced in Eq. (20), are
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related to μ(I ) by

μ(I ) = 1
2 + μ

(I )
1 + μ

(I )
2 . (21)

Inserting Eq. (17) in the expression for μ
(I )
1,2 given in Eq. (20)

and performing some extensive algebra (see the Appendix),
we get

μ
(I )
1,2 = −1

4
∓ (B/2A′) + (m/2)

y
+ (x2 − 4m2)/4

y2
(22)

and hence

μ(I ) = (x2 − 4m2)/2

y2
. (23)

Let us consider B to be given in units of A (for simplicity we
denote B = BA). Then we have y2 = x2 + 4BN (BN + 2m).
As mentioned above, in our analysis we focus on initial states
with nearly unpolarized baths. The measure μ is significant
only for highly polarized central spin systems. Hence, in the
most important situation of Nc � N it follows that BN � 2m

so that y2 scales like B2. Consequently, we have μ(I ) ∼ B−2.
This result is independent of the value of I and, hence, we
arrive at

μ ∼ 1

B2
. (24)

B. General scaling properties

Now we evaluate the full dynamics in an almost analytical
fashion and derive the scalings of μ (for Nc = 1,2) and τ

(for Nc = 2,3). As demonstrated below, the number of central
spins has no (direct) influence on the result. In Figs. 2 and 3 we
plot μ and τ against the magnetic field and the number of bath

FIG. 2. B field and N scalings of μ for Nc = 1,2 and
N = 401,801 or A/B = 8,4, respectively. The exchange coupling
in the case of Nc = 2 is fixed to Jex = (1/800)A. We consider
initial product states with |αc〉 = |⇓〉,|⇓⇓〉, corresponding to pc = 1,
and a low bath polarization of pb = (1/N ). The results are plotted
on a double logarithmic scale. We find power laws ∼B−ν with
ν ≈ 2 and ∼N−ν with ν ≈ 1. In the first case, the exact values
are given by ν = 2.024 85,2.097 05 (Nc = 1,N = 401,801) and
ν = 1.955 65,1.964 27 (Nc = 2,N = 401,801). For the N scaling
we have ν = 0.989 959,1.017 76 (Nc = 1,A/B = 8,4) and ν =
0.925 328,0.975 64 (Nc = 2,A/B = 8,4). With respect to the mag-
netic field scaling, the fully analytical result, given in Eq. (24), is
reproduced.

FIG. 3. B field and N scalings of τ for Nc = 2,3 and
N = 401,801 or A/B = 8,4, respectively. The exchange coupling
is fixed to Jex = (1/800)A. We consider initial product states with
|αc〉 = |⇓⇑〉,|⇓⇓⇑〉, corresponding to pc = 0, 1

3 and a low bath polar-
ization of pb = (1/N ). The results are plotted on a double logarithmic
scale. We find power laws ∼Bν with ν ≈ 2 and Nν with ν ≈ 2. In
the first case, the exact values are given by ν = 2.079 75,1.995 43
(Nc = 2,N = 401,801) and ν = 1.977 42,1.995 55 (Nc = 3,N =
401,801). For the N scaling we have ν = 1.877 36,1.977 22 (Nc = 2,

A/B = 8,4) and ν = 1.770 72,1.925 03 (Nc = 3,A/B = 8,4).
Note that an increase of τ corresponds to a decrease of the flip-flop
contributions to the dynamics.

spins on a double logarithmic scale. We consider two different
values of N or B, respectively, for each number of central
spins. Obviously, this changes the values of the measures, but
not their scaling properties. For the B field scaling we find
a simple power law ∼B−2 in all cases, which for Nc = 1
reproduces the fully analytical result presented above. Indeed,
already this is much stronger than the B−1 scaling anticipated
by the perturbative approaches presented so far.17–22,29,30 Note
that an increase of τ indicates a decrease of the influence
of the flip-flop terms on the dynamics. The scaling with the
number of bath spins turns out to be even more surprising.
For μ we find ∼N−1, whereas for τ the influence of Hff

scales down with ∼N−2. As mentioned above, for Nc = 2,3
we always considered a weak but nonzero exchange coupling
Jex = (1/800)A. The results are generic for Jex �= 0. However,
for a zero exchange coupling, Jex = 0, the τ scaling yields a
slightly different result. Here the exponent in the magnetic
field scaling ∼B−ν decreases from ν = 2 to ν = (3/2). We
have no explanation for the concrete value of 3/2. However, it
is not suprising that ν does not become 2 as in the case Nc = 1,
where we naturally have Jex = 0. This would be the natural
guess if for Jex = 0 the Hamiltonian would decompose in a
sum of independent Nc = 1 models. However, this is not the
case as the Nc central spins interact with a common bath. Here
the dynamics of the central spins result from the interaction
with the spin bath and with each other through the spin bath.
The case of separate baths has been investigated in Refs. 34
and 35.

Consequently, in any case the somewhat surprising ap-
proach to use A(B

√
N )−1 as a the small parameter for a

perturbative treatment, presented in Refs. 29 and 30, turns out
to even underestimate the flip-flop suppressing character of
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the particle number. Hence, with respect to the particularly
interesting low field case the perturbative limit is not yet
achieved.

V. CONCLUSION

In conclusion, we have studied the scaling of the influence
of the flip-flop terms with the magnetic field and the number
of bath spins in central spin models. In order to be able to treat
comparatively large systems, we considered homogeneous
couplings. The flip-flop contribution to the dynamics has
been isolated by choosing simple product initial states. The
effect of an applied magnetic field manifests itself in the
magnitude of the spin decay and the decoherence time. For
highly polarized central spin systems it is the magnitude of
the spin decay which is the relevant scale, whereas for a
low central spin polarization it remains, to a large extent,
unaffected and the decoherence time describes the influence
of the magnetic field. We investigated the scaling of μ

and τ for Nc = 1,2 and Nc = 2,3 in different parameter
regimes.

Surprisingly, we found that μ decreases quadratically with
the magnetic field and linearly with the number of bath
spins. For Nc = 1 we presented a fully analytical derivation.
For Jex > 0 the decoherence time shows identical scaling
properties with respect to the magnetic field, whereas if
Jex = 0, the behavior slightly changes to ∼B−3/2. As a very
interesting and unexpected result, it turns out that τ increases
quadratically with the number of bath spins, corresponding
to a quadratic decrease of the flip-flop contributions to the

dynamics. Summarizing, for pc ≈ 1 our results suggest

A(B
√

N )−2

as the small parameter of a perturbation theory. This essentially
goes along with the approach considered in Refs. 29 and 30.
However, for small values of pc we have

A(BN )−2.

This means that the perturbative treatments of central spin
models presented so far strongly underestimate the influence
of both the magnetic field and the number of bath spins. It
is therefore desirable to search for new approaches using the
full suppression of the flip-flop terms. Although all scaling
properties are independent Nc, central spin models with more
than one central spin are particularly interesting with respect to
such investigations, as here low polarizations of the central spin
system can be achieved. This leads to a very strong decrease
of the influence of the flip-flop terms with the number of
bath spins and hence the possibility to treat extremely small
magnetic fields.
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APPENDIX

In what follows we present details of the derivation of
Eq. (22). Inserting the eigensystem (16) of the Hamiltonian
(12) in the expression for μ

(I )
1,2 given in Eq. (20) we get

μ
(I )
1,2 = −z2

+(B + A′m)(A′x2 + 4Bm ± A′xy)[A′x2 ± A′xy + 2B(2m + xz2
−)]2

4x{A′2x3 ± A′x(±8Bm + A′xy) + 4B[B + B(x − 1) ± Amy]}2
, (A1)

which can be simplified to

μ
(I )
1,2 = −(B + A′m)(x + 2m)(A′x2 + 2Bx ± A′xy)2

4x2A′2y2(4Bm + A′x2 ± A′xy)
. (A2)

On the other hand, the expression (22) can be rewritten as

μ
(I )
1,2 = ∓ (B + A′m)

2Ay
+ (B + A′m)2

A′2y2
. (A3)

If we now equalize Eq. (A2) with Eq. (A3) and multiply by the denominators, we get for one side

−16B2m ∓ 8A′Bmy − 16A′Bm2 ∓ 2A′2x2y − 4A′Bx2 − 4A′2x2m − 2A′2xy2 ∓ 4A′Bxy ∓ 4A′2mxy (A4)

and for the other

−A′2x3 ∓ A′2x2y − 2A′Bx2 ∓ A′2x2y − A′2xy2 − 2A′Bxy − 2A′Bx2 ∓ 2A′Bxy − 4B2x − 2A′2x2m ∓ 2A′2xym

− 4A′Bmx ∓ 2A′2xym − 2A′2y2m ∓ 4A′Bmy − 4A′Bmx ∓ 4A′Bmy − 8B2m. (A5)

Inserting Eq. (18) in the terms proportional to y2 immediately shows that Eqs. (A4) and (A5) are identical, which yields
Eq. (22).
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