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Optical excitation of squeezed longitudinal optical phonon states in an electrically
biased quantum well
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We present quantum kinetic calculations showing how squeezed phonon states can be generated in a biased
quantum well by optical driving. In such states the uncertainty of the lattice displacement or momentum is
reduced below its zero-point value. It is shown that quantitative results that are meaningful for real observations
require accounting for the inevitably limited spatial resolution. Our simulations yield results for the strength of
the squeezing and predict under which conditions it can occur: Optical excitations on the lowest absorption line
need at least two pulses to generate squeezing, while a single pulse below the band gap may produce a squeezed
state which has an almost minimum-value uncertainty product.
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I. INTRODUCTION

The generation of squeezed photon states is one of the show-
pieces demonstrating nonclassical behavior of light.1 In addi-
tion, these states allow for measurements with unprecedented
precision as needed, e.g., for the detection of gravitational
waves.2 While in quantum optics it is well established how
squeezed states can be prepared, the excitation and detection
of such states in a mechanical system, i.e., squeezed phonons,
is still challenging. Squeezing for a mechanical system means
that the uncertainties of either momentum or position reach
values below their vacuum level while the product of these
uncertainties is of course still above the limit provided by
the Heisenberg uncertainty principle. Substantial efforts have
been made to realize and measure squeezed states in a crystal
lattice. The techniques to detect phonon squeezing can be
roughly divided into two groups. First, the uncertainty of the
lattice displacement u can be directly determined by measuring
a quantity that is proportional to u2. For that purpose a
second-order Raman scattering signal has been used in KTaO3

and SrTiO3 crystals3–5 and, more recently, in ZnTe.6 Johnson
et al. have used femtosecond x-ray diffraction in which the
intensity of a reflection peak is directly related to u2 by the
Debye-Waller factor.7 Second, the uncertainty can be observed
as the variance of an ensemble of measurements. Misochko
et al. have in this way seen oscillations of the uncertainty of
the lattice displacement in a variety of different crystals;8–10

however, these results are still under debate.11

On the theoretical side, second-order Raman scattering12,13

predicts the generation of squeezed states after excitation with
either ultrafast pulses or monochromatic waves. In contrast to
the Raman model it has been found within an exactly solvable
quantum dot model that a single resonant ultrafast excitation
of the dot does not lead to squeezed longitudinal optical
(LO) phonons.14 Furthermore the decay of LO phonons into
acoustic phonons, which is analogous to the parametric down
conversion process in quantum optics, leads to acoustic phonon
squeezing.15 For quantum dots this squeezing stays localized
in striking contrast to the situation in quantum optics.16

In this paper we present quantum kinetic simulations of
the carrier-phonon dynamics in an optically driven quantum
well. We demonstrate two ways in which a squeezed phonon

state can be reached: by a two-pulse excitation on the lowest
transition line, which exhibits similarities with the behavior of
the quantum dot model,14 and by a single-pulse below-band-
gap excitation, which yields a state close to a prototypical
squeezed state. We also illuminate the important role of
spatial averaging. The microscopic model adopted in this
work has been shown to reproduce quantitatively experimental
observations devoted to the generation of coherent phonons in
quantum wells.17–20

II. OBSERVABLES AND SPATIAL AVERAGING

A quantitative description of lattice uncertainties requires
taking into account spatial averaging. Spatial averaging is
experimentally unavoidable, but it also is the reason why
fluctuations do not completely dominate the signals from
lattice dynamics. The measurement techniques, be it an
optical pump-probe setup,3,17 detection of emitted terahertz
radiation,18 or x-ray scattering,7,21 are not sensitive to the
position of individual nuclei, but average over a comparatively
large volume of the lattice. This affects the lattice uncertainties
because it excludes modes with higher q vectors.

Without averaging, even at zero temperature the zero-point
fluctuations of every phonon mode contribute to the lattice
displacement uncertainty. In a typical crystal, even relatively
strong lattice vibrations have an amplitude smaller than this
zero-temperature uncertainty. The same effect is known from
the quantized electromagnetic field: Without averaging, it has
infinite uncertainties.22

We therefore start by defining spatially averaged observ-
ables. In an experiment, the region averaged over is defined
by, e.g., the spot size of the probe beam. In realistic situations,
it is so large that only phonon modes very close the Brillouin
zone center contribute to the observables. We assume that the
averaged observables are completely determined by the q = 0
mode, which reduces the numerical complexity of the problem
and allows us to give an explicit equation for the dependence
on the size of the averaging volume. However, all other phonon
modes still contribute indirectly to the dynamics.

We focus on optical phonons, which in a polar crystal are
the quanta of the relative motion of the two oppositely charged
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sublattices. LO phonons have the most efficient coupling to
the electronic subsystem and dominate in optical signals, but
to quantify the vacuum uncertainties of the relative lattice
motion also the transverse optical (TO) phonon branches need
to be taken into account. We denote the phonon operators as
bα

q , where q is the phonon wave vector and the branch index
α differentiates between the LO and the two TO branches.
The operator of the displacement of the two sublattices in the
continuum limit is called û(r); the corresponding momentum
operator is π̂(r). Assuming a flat dispersion relation and
neglecting LO-TO splitting29 we define those as dimensionless
quantities by

û(r) = 1√
N

∑
α,q

eα
q

(
bα†

q e−iqr + bα
q eiqr), (1)

π̂(r) = i√
N

∑
α,q

eα
q

(
bα†

q e−iqr − bα
q eiqr). (2)

Here N is the number of unit cells in the system volume and
eα

q is the mode unit vector; in particular, eLO
q = q/q. To get the

dimensioned quantities, û has to be multiplied with
√

h̄/(2mω)
and π̂ with

√
h̄mω/2, where ω is the optical phonon frequency

and m is the reduced mass of the lattice ions.23,24 As we assume
homogeneity in the x-y plane, the lattice can only be displaced
in the z direction. Hence we will focus on ûz and π̂z.

The spatial averages of ûz(r) and π̂z(r) are introduced as
Gaussian-weighted integrals over these quantities with width
σz in growth direction and σ‖ in in-plane directions:

Ûz =
∫

Gσ‖(x)Gσ‖ (y)Gσz
(z) ûz(r) d3r (3)

with Gσ (x) = (
√

2πσ )−1 exp[−x2/(2σ 2)]; the average �̂z is
defined accordingly.

An important effect of the spatial averaging is that it
reduces the vacuum uncertainties, i.e., the uncertainties which
are present even at zero temperature. Without averaging we
have (�uz)2

0 = (�πz)2
0 = 1. For GaAs this means a position

uncertainty of more than a thousandth of the lattice constant,
which is large compared to typical lattice displacements.25

The averages have a vacuum uncertainty of (�Uz)2
0 =

(��z)2
0 = a3/(32

√
π

3
σ 2

‖ σz), where a is the lattice constant.
In an experiment the averaging will in general extend over
many unit cells, and this value will be much smaller than
one.

The uncertainties in an arbitrary state of the system are
determined by the phonon correlations

δ〈b†qbq′〉 = 〈b†qbq′〉 − 〈b†q〉〈bq′〉, (4)

δ〈bqbq′〉 = 〈bqbq′〉 − 〈bq〉〈bq′〉. (5)

From here on the branch index α is left out and all phonon
operators implicitly refer to the LO branch. In our model
the coupling to TO phonons is neglected, and therefore the
transverse branches contribute to the vacuum uncertainties

only. Explicitly, we have

(�Uz)
2 = (�Uz)

2
0 + 1

N

∑
q,q′

qz

q

q ′
z

q ′ e
−(1/2)σ 2

‖ (q2
x+q2

y+q ′2
x +q ′2

y )

× e−(1/2)σ 2
z (q2

z +q ′2
z ) · 2Re(δ〈b†qbq′〉 + δ〈bqbq′〉).

(6)

For (��z)2 the equation is almost the same with only the
rightmost plus sign changed into a minus. We define SU

and S� as the relative change in the lattice uncertainties,
e.g., SU = (�Uz)2/(�Uz)2

0 − 1. Negative values mean that the
uncertainty is smaller than the vacuum uncertainty and thus
signify squeezing.

In reciprocal space the spatial averaging means that only
small q vectors contribute. For sufficiently large σ‖ and σz we
can then approximate the phonon correlations by their values
at q,q ′ = 0. With the appropriately defined limits

δn0 = lim
qz,q ′

z→0
sgn(qz)sgn(q ′

z) δ
〈
b†qzez

bq ′
zez

〉
, (7)

δb0 = lim
qz,q ′

z→0
sgn(qz)sgn(q ′

z) δ
〈
bqzez

bq ′
zez

〉
, (8)

where ez is the unit vector in z direction, and taking
into account the correct asymptotic behavior of the phonon
correlations, we then arrive at

SU,� = a

σz

F

(
σ‖
σz

) (
N

4

)1/3

· 2Re (δn0 ± δb0) with

(9)

F (r) =
r2

[
r2 − 1 + π

2 − 2r2√
2r2−1

arctan(
√

2r2 − 1)
]

π1/2(r2 − 1)2
.

F (r) is a monotonic function with upper limit π−1/2. Hence
the modulation of the lattice uncertainties is strongest if σz

is small and σ‖ is large. Averaging over only a small extent
in z direction could be achieved by using a measurement that
is sensitive only to the well material, but not to the barrier.
σz still has to be larger than the width of the quantum well
as otherwise the approximation of including only terms with
qz ≈ 0 becomes invalid.

In what follows we will leave out the prefactor aF/σz

that depends only on the extent of the averaging and call the
remaining quantities S̃U,�. As an example, with the GaAs
lattice constant a = 0.565 nm, σz = 20 nm, and σ‖ = 5 μm,
this prefactor has a value of 0.016. In the same way we define
the extent-independent quantities Ũz and �̃z by excluding
the prefactor (8π )−1/2a/σz, which for the same parameters
is 5.6 × 10−3.

III. QUANTUM KINETIC CALCULATIONS

We make use of a microscopic model of a GaAs/AlAs quan-
tum well with a width of 11.3 nm under an electric bias field
in growth direction of 170 kV/cm. The electric field leads to
a charge separation in excited states and thereby increases the
electron-phonon coupling. The envelope function description
is used to calculate subband energies and wave functions. We
are concerned with optical excitation on the lowest exciton
line and below and therefore limit the model to the lowest
electron and heavy hole subband. LO phonons are coupled via
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Fröhlich interaction to the electronic subsystem. Anharmonic
contributions to the lattice potential can be neglected on the
time scales considered here.26 Coulomb interaction between
the carriers accounts for excitonic effects. The light field is
treated classically and is coupled to the electronic subsystem
in the usual dipole and rotating wave approximation. Further
details of the model can be found in Refs. 27 and 19, where
almost the same model has been used to study coherent phonon
generation.

The dynamics are calculated using a variant of the density
matrix theory. The infinite hierarchy of equations of motion is
truncated in this way: The dynamical variables are expanded in
orders of the phonon coupling g and the laser field strength E,
and for each order the equations of motion are set up separately;
subsequently, all contributions to the variables exceeding a
certain order in E or g are neglected. If the initial state of the
system is a pure state, this is equivalent to directly solving the
Schrödinger equation while keeping contributions to the state
vector strictly separated by their order in E and g. The relevant
density matrices can then be derived from the state vector,
again neglecting all contributions above a certain order.30

In this work, the initial state always is the ground state,
and the latter approach has been used because its numerical
complexity is smaller. We have calculated the uncertainties
SU,� up to an order of E2 g4. Because the next higher orders
vanish, the lowest order corrections not included are of order
E4 or g6. For resonant driving conditions as discussed in
Ref. 19, the order g6 might still be important; however,
this case is of no interest for the purpose of generating
squeezed states because the generation of incoherent phonons
by carrier relaxation is also resonant and inflates the lattice
uncertainties. For the conditions considered here, it turns out
that even calculations of maximal order g2 are sufficient, as
will be shown below. In this paper moderately low excitation
densities are used where contributions of orders beyond E2 are
not important. We have verified this by performing standard
correlation expansion calculations of the electronic dynamics,
in which higher orders in E are accounted for.

IV. SIMULATION RESULTS

With a single-pulse excitation on the lowest exciton line
or above our simulations reveal that no squeezed state is
created. A similar result has been found for a microscopic
model of a quantum dot, where it has been shown analytically
that a single excitation with an ultrashort laser pulse resonant
with the lowest transition line cannot produce a squeezed
phonon state.14 Nevertheless, we will see that in both cases
a two-pulse excitation can produce a squeezed state, and
that the conditions necessary are quite similar. These general
similarities occur despite the obvious differences between the
two systems in their electronic structure, which also affect the
phonon coupling: In a quantum dot in the strong confinement
limit, phonon effects are limited to pure dephasing, while in
a quantum well there are many more electronic states, allow-
ing real phonon absorption and emission processes to take
place.

Figure 1 shows the minimum value of the uncertainties S̃U

and S̃� after excitation with two equally strong pulses resonant
on the lowest exciton line. The laser field envelope of each
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FIG. 1. (Color online) Minimum values of S̃U (t) and S̃�(t) in
the real-time interval 0.4 . . . 0.6 ps for an excitation with two equally
strong laser pulses resonant with the lowest exciton line and a FWHM
of 70 fs. The plot shows the dependence on the delay time and on the
relative phase between the two pulses.

pulse is a Gaussian with a full width at half maximum (FWHM)
of 70 fs. The horizontal and vertical axes, respectively, give the
delay time t0 and the relative phase ϕ = ϕ2 − ϕ1 − ω0t0, where
ω0 is the central frequency of the laser and ϕ1,2 are the phases of
the pulses. For certain values of t0 and ϕ the lattice momentum
uncertainty S̃� is clearly squeezed. We observe a checkered
area of regions with reduced and increased uncertainty, with
the delay time dependence being approximately periodic with
the optical phonon oscillation period of 114 fs. This behavior is
very similar to the quantum dot case.14,28 However, in contrast
to that system, the lattice displacement here is never squeezed
and S̃U is generally much larger than S̃�.

A situation in which momentum squeezing is particularly
strong with t0 = 126 fs and ϕ = −0.61π is further detailed in
Fig. 2. The upper panel shows the density of electron-hole pairs
generated by the laser pulses. The pulse intensities have been
adjusted so that a density of 1010 cm−2 is reached. The new
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FIG. 2. (Color online) Effects of two 70-fs pulses resonant with
the lowest exciton line centered at t = 0 and t = 126 fs with a relative
phase of ϕ = −0.61π . The plot shows the electron density (upper
panel), the mean value of lattice displacement and momentum (center
panel), and their uncertainties (lower panel). The dashed lines are
from a calculation of higher maximal order (g4), where the phase
has been adjusted to ϕ′ = −0.82π in order to account for energy
renormalization due to phonons.
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charge distribution after the excitation leads to a shift of the
lattice equilibrium position. This induces a coherent oscillation
of the lattice displacement around the new equilibrium (center
panel). In the lower panel we see that a squeezed state has
been created, as S̃� acquires negative values. After the second
pulse, it oscillates with twice the phonon frequency around a
value close to zero. S̃U is much larger and has been scaled
down by a factor of 10 to make it fit better into the same plot.
The lattice displacement uncertainty is strongly increased and
its period of oscillation corresponds essentially to the single
phonon frequency, although a Fourier transformation reveals
a double-frequency component, too.

The plot shows calculations with maximal order of both
g2 (solid lines) and g4 (dashed lines). For the higher order
calculation there is a small shift of the exciton line due
to the phonon interaction, which has been accounted for
by readjusting the relative phase to ϕ′ = −0.82π for this
calculation. The two calculations are in good agreement and
hence the chosen maximal order is confirmed to be sufficient.

There is quite a difference between the uncertainties of
lattice displacement and momentum, which might come as a
surprise, considering their apparent symmetry in the theory
and the fact that in the quantum dot case their behavior is
completely analogical. But there is one respect in which lattice
displacement and momentum are different: The displacement
suffers a shift of its equilibrium position, whereas the momen-
tum always oscillates around zero. In the quantum dot model,
this is also true, but there the shift happened instantaneously.
This means that the differences should go away if there is no
residual electron-hole population after the pulse which shifts
the lattice equilibrium position.

This indeed happens, and it is why an off-resonant exci-
tation with a single laser pulse might be even better suited
for an experimental demonstration of a squeezed phonon
state. Figure 3 shows the effects of a 50-fs below-band-gap
excitation. The optical pulse has a central energy of 1.410 eV,
whereas the lowest exciton line lies at 1.487 eV. Its strength
has been chosen so that a peak density of 1010 cm−2 is reached;
under off-resonant conditions this corresponds to a rather high
laser intensity. The generated electron density is transient and
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FIG. 3. (Color online) Generation of a squeezed state by a 50-fs
below-band-gap excitation. The unlabeled line in the lower panel is
the sum S̃U + S̃�. Dashed lines are from a calculation of maximal
order g4.

after the pulse only a small fraction remains (upper panel). As
a side effect, this could reduce stray influences in experiments
because a measurement of the phononic variables often also
is sensitive to changes in the electronic state. The fast change
in the carrier density exerts a force on the lattice. This creates
an oscillation of the mean lattice displacement with the LO
phonon frequency (center panel).

The lower panel shows that the state is squeezed: S̃U and
S̃� alternatingly fall below zero with a frequency of twice
the phonon frequency. The Heisenberg uncertainty principle,
which for our variables reads (SU + 1)(S� + 1) � 1, can for
small values of SU and S� be reduced to S̃U + S̃� � 0. This
sum is also plotted and indicates how much the uncertainty
relation is overfulfilled. After the pulse it is small compared
to the oscillation amplitude of S̃U and S̃�, which means that
a state very close to a prototypical squeezed state has been
created.1 In contrast, in the resonant two-pulse excitation
discussed above, the uncertainty S̃U strongly dominates and the
sum of uncertainties is almost equal to this value. Additionally,
the squeezing effect now is larger by an order of magnitude
and affects both lattice displacement and momentum. For the
exemplary prefactor given above the oscillation amplitude
of SU and S� is about 2.6 × 10−4; for comparison, in
the experiment of Ref. 3 on a bulk KTaO3 crystal a value
of roughly 10−5 has been reported. Obviously, the reduction
of the uncertainties relative to the standard quantum limit is
rather small. Stronger squeezing could be achieved by more
intense optical excitation, limited of course by phase-space
filling, or by using a different well material such as ZnSe, in
which electron-phonon coupling is stronger.

V. CONCLUSIONS

We have shown simulations of the generation of squeezed
phonon states in quantum wells, focusing on the experimen-
tally relevant quantities, i.e., the spatially averaged lattice
variables. Our calculations pave the way towards quantitative
comparisons with real experiments by providing absolute
values for the strength of the squeezing, which depends on
the extent of the averaging. A single-pulse excitation resonant
on the lowest exciton line leads to a steplike time evolution
of the electronic density and does not produce squeezed
states, but certain two-pulse excitations yield squeezed lattice
momenta. A single pulse below the lowest exciton line
generates a transient electron density that impulsively exerts
a force on the lattice. This results in squeezing of both the
lattice displacement and the momentum. The latter method
is particularly promising for two reasons: First, the state
generated is very close to an ideal squeezed state in that
its uncertainty product is close to its minimum value; and
second, the electron density after the pulse is small, which
could otherwise interfere with the measurement of the lattice
variables.
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