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Probability- and spin-current operators for effective Hamiltonians
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We present a systematic construction of the probability- and spin-current operators, based on a momentum
power expansion of effective Hamiltonians. These operators play an essential role in transport problems related to
semiconductor heterostructures, in particular when spin-orbit interaction is taken into account. The result, valid
whatever the momentum power and including the linear (Bychkov-Rashba) term as well as the cubic (Dresselhaus
or D’yakonov-Perel) term, is of special importance for spintronics.
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I. INTRODUCTION

The probability current is a fundamental concept in
quantum mechanics, which connects the wavelike description
of a quasiparticle to the notion of the transport current.
When we consider a general Schrödinger problem with the
Hamiltonian

Ĥ0 = p̂2

2m
+ U (r) , (1.1)

where the real potential U (r) is periodic in a crystalline solid
and m is the free-electron mass, we are led to the usual
definition of the free-electron probability current:1

Jf = Re

[
ψ∗ p̂

m
ψ

]
= h̄

m
Im [ψ∗∇ψ]. (1.2)

When the spin-orbit interaction (SOI) is taken into account,
the Hamiltonian becomes

Ĥ = Ĥ0 + ĤSO (1.3)

with

ĤSO = h̄

4m2c2
(∇U × p̂) · σ̂ . (1.4)

Due to both the linear p̂ term and the Pauli matrix σy , ĤSO

is not real. This has strong consequences, in particular for
evanescent waves where the effective Hamiltonian matrix can
even be non-Hermitian.2 Following the approach developed
by Hoai Nguyen et al.,3 it is convenient to express the
full Hamiltonian, including the SOI terms, as an effective
Hamiltonian which consists of a momentum-operator p̂ power
series expansion: for instance, in addition to the kinetic energy,
quadratic in p̂, the SOI may provide leading terms that are
linear and cubic in p̂, respectively, known as the Bychkov-
Rashba4–6 and Dresselhaus terms.7 In three-dimensional III-V
semiconductors, the Dresselhaus terms are usually expressed
through the D’yakonov-Perel (DP) field.8,9 Then, since the
SOI potential is not real, it is necessary to consider a more
general definition of the probability current J. Taking into
account interactions that involve higher-order polynomial
terms in the Hamiltonian, we have to deal with an effective
Hamiltonian of order n. This general description applies to
holes in valence bands as well as electrons in conduction
bands.

Furthermore, an open question, strictly linked to the
one above, concerns the spin current (SC), whose stan-
dard definition10,11 has been extensively applied to study
spin transport and dynamics,12–20 spin-polarized tunneling
phenomena,21–23 and the spin-Hall effect.24–28 However, in
semiconductor physics which provides paradigmatic systems
for spintronics, it is known that the SC standard definition can
be suitably applied to two-dimensional systems with Rashba
SOI, but fails to describe spin-dependent transport phenomena
in bulk cubic semiconductors, where the SOI induces a DP
term in the conduction band. The existence of extra current or
extra spin-current terms was pointed out in Ref. 29, where a
lengthy but explicit calculation was performed up to the fourth
order. More recently, Drouhin et al.30 have proposed a compact
expression of the probability-current and SC operators up to
the third order; such a modified definition is mandatory to
obtain a consistent treatment of tunneling phenomena through
GaAs-like semiconductor barriers. Observe that, as pointed
out by Rashba in Ref. 10, there are still concerns because
a complete theory of spin transport currents has not been
formulated yet.

In this paper, we present a systematic construction
of the probability-current operator Ĵ, based on an effective
Hamiltonian written as a p̂ power series expansion. We
show the relation between the Hermitian velocity operator
v̂ and Ĵ, revealing the simple structure of the extra terms.
This procedure yields easy and compact calculations and
leads to physically intuitive expressions. The current operator
can subsequently be used to build the SC operator δ̂J.
Recently, Shi et al.31 have proposed an alternative spin-current
operator, satisfying the continuity equation, that they state
supports important conclusions concerning conservation of
spin currents,28,32,33 but which relies on several nonexplicit
assumptions. Their results are reanalyzed in the present
framework.

The layout of this paper is as follows: In Sec. II,
we give a general construction of current operators and a
derivation of local properties. In Sec. III, we introduce a
general Hamiltonian Ĥ (n) as an nth-degree homogeneous
function of momentum-operator coordinates; we consistently
derive the velocity operator and we show that a proper
symmetrization yields the Hermitian current operator Ĵ. In
Sec. IV, we show how to deduce the spin-current operator
δ̂J.
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II. GENERAL DEFINITION OF CURRENT OPERATORS

Generally speaking, a current operator is defined with
respect to a conservation law: Considering the density ρ of
a physical quantity, we need to satisfy the continuity equation
related to the current J, defining a source term G, so that

∂ρ

∂t
+ ∇ · J = G. (2.1)

It is well known that this decomposition is not unique. Let us
consider a linear operator Â that does not explicitly depend on
time and acts over a generic state ψ . In the following, we adopt
the notations (φ|ψ) = φ†ψ and (Â)ψ = (ψ |Â|ψ) = ψ†Âψ .
The general Schrödinger problem reads

ih̄
∂

∂t
ψ = Ĥψ, (2.2)

where Ĥ may be any Hamiltonian. For example, Ĥ may be
equal to Ĥ [defined in Eq. (1.3)] or to Ĥeff [defined below in
Eq. (3.1)]. We explicitly develop the derivative of (Â)ψ with
respect to time:

∂

∂t
(Â)ψ = ∂

∂t
(ψ†Âψ) =

(
∂

∂t
ψ†

)
Âψ + ψ†Â

(
∂

∂t
ψ

)
,

(2.3)

and with the help of Eq. (2.2) we obtain

∂

∂t
(Â)ψ = − 1

ih̄
(Ĥψ)†Âψ + 1

ih̄
ψ†Â(Ĥψ)

= 1

ih̄
[ψ†ÂĤψ − (Ĥψ)†Âψ]. (2.4)

If Â is a Hermitian matrix (the elements of which are
complex numbers, not differential operators),

(Ĥψ)†Âψ = (ψ†ÂĤψ)∗, (2.5)

so that we can rewrite Eq. (2.4) in a more suitable way, which
is the local form of Ehrenfest’s theorem:

∂

∂t
(Â)ψ = 2

h̄
Im (ψ†ÂĤψ). (2.6)

The integration over the whole space leads to the well-
known Ehrenfest theorem, whose global form is valid for any
(possibly differential) Hermitian operator Â:

d

dt
〈Â〉ψ = 1

ih̄
[〈ψ |ÂĤ|ψ〉 − 〈Ĥψ |Â|ψ〉]

= 1

ih̄
〈ψ |[Â,Ĥ]|ψ〉. (2.7)

We can write

∂

∂t
(Â)ψ = 1

h̄
Im (ψ†{Â,Ĥ}ψ) + 1

h̄
Im (ψ†[Â,Ĥ]ψ) (2.8)

with {̂a,̂b} = â b̂ + b̂ â, and, by integration over the whole
space, we get ∫

d3r Im (ψ†{Â,Ĥ}ψ) = 0. (2.9)

The time derivative of (Â)ψ can be seen as composed of
two parts, concerning two different physical processes: we

recognize in Eq. (2.8) the divergence of the current JA and the
source term G associated with JA:

∇ · JA = −1

h̄
Im (ψ†{Â,Ĥ}ψ)

= −1

h̄
Im (ψ†{Â,Ĥ − U}ψ), (2.10)

where the contribution of any Hermitian potential U(r) van-
ishes when taking the imaginary part of the anticommutator,
and

G = 1

h̄
Im (ψ†[Â,Ĥ]ψ). (2.11)

The above procedure has two advantages: first, we have
expressed in a general form all the quantities entering Eq. (2.1)
through commutators and anticommutators; then we have
related the current expression directly to the local properties of
its corresponding operator. Symmetry properties of this current
operator are discussed in Appendix A. It has to be noted that
it is always possible to include the source term G in the form
of a current JG, G = ∇ · JG so that the conservation equation
becomes

∂

∂t
(Â)ψ + ∇ · (JA − JG) = ∂

∂t
(Â)ψ + ∇ · J = 0, (2.12)

where J = JA − JG is divergence-free in the steady-state
regime. For instance, if we look for JG = ∇UG, the potential
UG is a solution of the Laplacian problem �UG = G.
Obviously, adding to the current a term proportional to the curl
of any vector field would not affect the result. Equation (2.9)
shows that the flux of JA over the boundary of the whole
system, which is a closed system, is zero. At this stage, the
boundary conditions on a subsystem are not under control.

III. PROBABILITY CURRENT OF AN EFFECTIVE
HAMILTONIAN

A. Formulation of the general nth-order Hamiltonian

Considering effective Hamiltonians, which are valuable
tools to tackle a number of practical problems, we deal with
general expressions given by momentum series expansions,
e.g., constructed from the energy expressed as a wave-vector-
component series expansion after the substitution {k → −i∇}.
We write the effective Hamiltonian Ĥeff as follows:

Ĥeff = Ĥp + V (r) , (3.1)

where V (r) may be the potential of a single barrier or that of
a superlattice; for example, Ĥp is such that

Ĥp =
∑

n

∑
l(k)∈{x,y,z}
k=1,...,n

cl(1),l(2),...,l(n)p̂l(1) · · · p̂l(n) =
∑

n

Ĥ (n),

(3.2)

where p̂l(k) is the momentum operator associated with the
l(k) Cartesian coordinate and where cl(1),...,l(n) are Hermitian
matrices which commute with p̂ and which are invariant under
permutation of the subscripts. The abstract form of Eq. (3.2)
allows us to perform easy calculations.
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Formally, we perform the identification

cx · · · cx︸ ︷︷ ︸
α

cy . . . cy︸ ︷︷ ︸
β

cz · · · cz︸ ︷︷ ︸
γ

= cx. . .x,︸ ︷︷ ︸
α

y. . .y,︸ ︷︷ ︸
β

z. . .z︸ ︷︷ ︸
γ

, (3.3)

where α, β, and γ are integers. We obtain

Ĥ (n) = (cxp̂x + cyp̂y + czp̂z)
n. (3.4)

Given Eqs. (3.2), (3.3), and (3.4), let us note that only terms
such as cxx or cxy (for n = 2) are meaningful, a term such as
cx being only a trick in the calculation.

Alternatively, one can write

Ĥ (n) =
∑

α+β+γ=n

cαβγ p̂α
x p̂ β

y p̂ γ
z (3.5)

with

cαβγ = n!

α!β!γ !
cα
x cβ

y cγ
z . (3.6)

The velocity operator can be obtained through the relation1

v̂ = i

h̄
[Ĥeff ,̂r] = ∂Ĥeff

∂p̂
. (3.7)

Using Eqs. (3.3)–(3.6), we find that its j th Cartesian compo-
nent v̂

(n)
j (j = x,y,z) is

v̂
(n)
j = ∂Ĥ (n)

∂p̂j

= ncj (cxp̂x + cyp̂y + czp̂z)
n−1. (3.8)

Note that, introducing the scalar product between the momen-
tum p̂ and the velocity operator v̂(n), we have

p̂x v̂
(n)
x + p̂y v̂

(n)
y + p̂zv̂

(n)
z = n(cxp̂x + cyp̂y + czp̂z)

n = nĤ (n),

(3.9)

or

p̂ · v̂(n) = nĤ (n), (3.10)

so that Ĥeff is simply related to the velocity operator,

Ĥeffψ =
(

p̂ ·
∑

n

1

n
v̂(n)

)
ψ + V ψ = Eψ. (3.11)

This form allows one a straightforward extension of the Ben-
daniel and Duke procedure34 to derive boundary conditions at
interfaces.35

Now, after Eq. (3.8), it is useful to introduce the Hermitian
symmetrized velocity operator

v̂
(n)
j (r0) = n

2

∑
l (k)∈{x,y,z}k=1,...,n−1

cj,l(1),...,l(n−1)

× [
δr0 p̂l(1) · · · p̂l(n−1) + p̂l(1) · · · p̂l(n−1)δr0

]
,

(3.12)

where δr0 = δ(r − r0) is the Dirac distribution. The velocity
at the point r0 is 〈ψ |̂v(n)

j (r0)|ψ〉. In Appendix B, we show that
performing the proper symmetrization according to the rule
defined in Eq. (3.14) yields a probability-current operator that,

for the j th Cartesian component, reads

Ĵj (r0) =
∑

n

Ĵ
(n)
j (r0), (3.13)

Ĵ
(n)
j (r0) =

∑
l (k)∈{x,y,z}k=1,...,n−1

cj,l(1),...,l(n−1)[δr0 p̂l(1) · · · p̂l(n−1)

+ p̂l(1)δr0 · · · p̂l(n−1) + · · · + p̂l(1) · · · p̂l(n−1)δr0 ].

(3.14)

We must verify that the divergence of the current, calculated
with the operator defined by Eq. (3.14), satisfies the conserva-
tion equation for the density of probability [Eq. (2.10) when
Â is the identity]. It is straightforward to show (Appendix B)
that the divergence of the probability current can be written as

∇ · J =
∑

n

∇ · J(n)

= −2

h̄
Im

∑
n

∑
j={x,y,z}

∑
l (k)∈{x,y,z}k=1,...,n−1

× (ψ |p̂j p̂l(1) · · · p̂l(n−1)cj,l(1),...,l(n−1)|ψ). (3.15)

Thus we recover all the terms of Eq. (2.10), which proves that
Eq. (3.14) yields a correct definition of the current operator.
Such a definition of Ĵ provides an unambiguous and general
tool for evaluating the probability current.

For n � 3, the comparison between the Hermitian sym-
metrized velocity operator and the current operator [see
Eqs. (3.12) and (3.14)] clearly shows that Ĵ

(n)
j (r0) contains

n − 2 extra terms, which are straightforwardly obtained from
∂Ĥeff/∂p̂. For instance, with Ĥeff ≡ p̂n, we have ∂Ĥeff/∂p̂ ≡
np̂n−1, so that v̂(n)(r0) ≡ (n/2)(δr0 p̂

n−1 + p̂ n−1δr0 ), whereas
Ĵ (n)(r0) ≡ (δr0 p̂

n−1 + p̂δr0 p̂
n−2 + · · · + p̂n−1δr0 ). As shown

in Ref. 3, these extra terms are especially important for
evanescent waves and they have deep consequences for
boundary conditions at semiconductor tunnel junctions.35 Note
that, up to the third order, Eq. (3.14) can be written in the simple
and intuitive form derived in Ref. 30:

Ĵj (r0) = δr0aj + (
δr0 p̂ + p̂δr0

) · bj

+ (
δr0 p̂̂pt + p̂δr0 p̂t + p̂̂pt δr0

)
: c

j
, (3.16)

where we have kept the notations of Ref. 30, i.e.,
Ĥ (1) = ∑

j aj p̂j ,Ĥ
(2) = ∑

j,k bjkp̂j p̂k , and Ĥ (3) =∑
j,k,l cjkl p̂j p̂kp̂l , with j,k,l = x, y, or z. Then, b j is

a vectorial operator of components (b j )k = bjk , and c j is
a second-order symmetric tensorial operator of components
[c

j
]kl = cjkl . The notation “:” refers to the generalized

double-dot product defined by p̂̂pt : c
j

= ∑
kl pkplcjkl .

IV. SPIN CURRENT

Equation (3.14) provides a general and symmetrized def-
inition of the probability-current operator. The spin-current
operator δ̂Ju in a direction defined by the unit vector u is
obtained by taking Â = σ̂u, the Pauli operator along the u
direction. It is shown in Appendix B that, as in Ref. 30, the j th
Cartesian component of the spin-current operator is obtained
from the j th component of the probability-current operator
after the substitution

cj,l(1),...,l(n) → 1
2 {̂σu,cj,l(1),...,l(n)}. (4.1)
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Because the spin current may be not conserved, there exist
source terms

G = 1

h̄
Im (ψ†[̂σu,Ĥ]ψ). (4.2)

Shi et al.31 have proposed to build a conservative spin
current. It is interesting to redo their derivation in the above
framework, which has the advantage of putting together the
results of Refs. 29 and 31. Shi et al. observe that it might often
happen that ∫

V
d3r G = 0, (4.3)

where the integration is performed over the volume of the
system (V ). Then∫

V
d3r G =

∫
V

d3r ∇ · JG =
∫
S

JG · ds = 0, (4.4)

where the volume integral is changed into a surface integral
through Ostrogradski’s theorem (here S is the surface limiting
V and ds is the surface element oriented along the normal toS).
Such a relation is obviously satisfied provided that JG · ds = 0,
i.e., provided that JG is a tangential vector to S, which is
physically reasonable.36 Shi et al. further assume that JG “is
a material property that should vanish outside the sample,”
which is a more restrictive hypothesis. Anyway, let us assume
that JG = 0 at the surface S. Following Shi et al.’s calculation,
it is straightforward to show, after partial integration where the
boundary contribution cancels, that∫

dy dz dx x

(
∂JG,x

∂x
+ ∂JG,y

∂y
+ ∂JG,z

∂z

)
= −

∫
d3r JG,x,

(4.5)

where JG,x , JG,y , and JG,z are the Cartesian components of
JG. Then∫

d3r JG = −
∫

d3r r∇ · JG = −
∫

d3r rG

= −1

h̄

∫
d3r r Im (ψ†[Â,Ĥ]ψ)

= −1

h̄

∫
d3r Im (ψ†r[Â,Ĥ]ψ). (4.6)

It is easy to check that, provided that [Â,r] = 0 (which is
the case for the spin current where Â = σ̂u),

r[Â,Ĥ] = [Âr,Ĥ] − ih̄̂vÂ, (4.7)

where [r,Ĥ] = ih̄̂v. Thus∫
d3r JG = −1

h̄

∫
d3r Im (ψ†[Âr,Ĥ]ψ)

+
∫

d3r Re (ψ †̂vÂψ)

= −1

h̄

∫
d3r Im (ψ†[Âr,Ĥ]ψ)

+
∫

d3r Re

(
ψ† {̂v,Â}

2
ψ

)
(4.8)

= −1

h̄

∫
d3r Im (ψ†[Âr,Ĥ]ψ) +

∫
d3r J̃A.

(4.9)

Here, J̃A is the canonical current defined as

J̃A = Re

(
ψ† v̂Â + Â̂v

2
ψ

)
. (4.10)

According to Eq. (2.4), we can write∫
d3r JG =

∫
d3r

[̃
JA − d(Âr)ψ

dt

]
. (4.11)

Shi et al. define the effective current density as JG,

JG = J̃A − d(Âr)ψ
dt

. (4.12)

We have the two following relations which define respectively
the total current J and the effective total current J :

J = JA − JG, (4.13a)

J = JA − JG = d(Âr)ψ
dt

+ (JA − J̃A). (4.13b)

Provided JA − J̃A = 0, i.e., when the canonical and the true
currents are set equal (which is justified only for Hamiltonians
up to second order in p̂; see Sec. III), the effective total current
becomes J = d(Âr)ψ/dt , which is Eq. (5) in the paper by
Shi et al.31 and also that by Zhang et al.,32 and which is the
cornerstone of their further calculations. Thus this relation
appears to be derived under special conditions so that it cannot
be general. Moreover, the meaning of the so-called effective
currents and their relationship with the true currents are not
clear [e.g., adding to J̃A any term of the form Re(ψ†Aψ),
where A is any anti-Hermitian linear operator, does not alter
the result].

V. CONCLUSION

We have given a systematic procedure to construct properly
symmetrized current operators. Thus, we have obtained a
general expression of the probability-current operator up to
the nth order, which clearly shows how the successive terms
build up. This generalizes previous results and provides us
with a practical tool to perform explicit calculations when
dealing with transport problems. The spin-current operator
is straightforwardly deduced, with the related expression of
the source term. Up to the second order, which includes
Bychkov-Rashba Hamiltonians, the current operators coincide
with the canonical results. When terms of order larger than 3
are taken into account in the Hamiltonian, extra terms must be
included in the current operators. This analysis sheds light on
previous discussions as it yields a convenient frame to compare
the canonical expressions to the true formulas. The tools we
have developed can be applied, for instance, to the holes in
the valence band or to the electrons in the conduction band
of a III-V semiconductor compound so that they should be
important for semiconductor-based spintronics.37
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APPENDIX A: SYMMETRY PROPERTIES
OF CURRENT OPERATORS

In Sec. II, Eq. (2.6), we derived the local form of Ehrenfest’s
theorem for a Hermitian matrix Â and deduced the expression
of the associated current JA. First, consider the case where
Â = Î , where Î is the identity, and the quadratic Hamiltonian
p̂2/2m. We rewrite Eq. (2.6) as

∂

∂t
|ψ |2 = −∇ · Re

(
ψ† p̂

m
ψ

)
= −∇ · J. (A1)

We recover the usual expression for the free-electron proba-
bility current

J = Re

(
ψ† p̂

m
ψ

)
. (A2)

Note that

∂

∂t
|ψ |2 = 1

ih̄

[(
ψ† p̂2

2m
ψ

)
−

(
ψ† p̂2

2m
ψ

)∗]

= 1

ih̄

[(
ψ† p̂2

2m
ψ

)
− (K̂0ψ)†

p̂2

2m
(K̂0ψ)

]
, (A3)

where K̂0 is the time-reversal Kramers operator for a spinless
particle, which consists of taking the complex conjugate in the
r representation. Let us check the expression of the current
operators we defined under time-inversion symmetry. For this
purpose we consider the term [see Eq. (2.10)]

−2ih̄∇ · JA = 2i Im (ψ†{Â,Ĥ }ψ)

= [ψ†ÂĤψ − (ψ†ÂĤψ)∗]

+ [ψ†Ĥ Âψ − (ψ†Ĥ Âψ)∗]. (A4)

First, look at the term ψ†ÂĤψ . We find

(K̂ψ |ÂĤ K̂ψ) = (K̂0ψ |R̂†ÂĤ K̂ψ) = (K̂0ψ |R̂†ÂK̂Ĥψ)

= −εA(K̂0ψ |R̂†K̂ÂĤψ)

= −εA(K̂0ψ |K̂0ÂĤψ)

= −εA(ψ |ÂĤψ)∗. (A5)

Here, K̂ = R̂K̂0 is the Kramers operator for a particle with spin
1/2, R̂ = −iσy (R̂† = R̂−1), and εA = ±1 depending whether
Â commutes (εA = −1) or anticommutes (εA = +1) with
K̂ ,38

K̂ÂK̂ = εAÂ, i.e., R̂†ÂR̂ = εAÂ∗. (A6)

Similarly, for the term ψ†Ĥ Âψ

(K̂ψ |Ĥ ÂK̂ψ) = −εA(ψ |Ĥ Âψ)∗. (A7)

Thus, we obtain

2i Im (ψ†{Â,Ĥ }ψ)

= ψ†{Â,Ĥ }ψ + εA(K̂ψ)†{Â,Ĥ }(K̂ψ). (A8)

We conclude that the general expression for the current of Â

is

∇ · JA = − 1

2ih̄
[ψ†{Â,Ĥ }ψ + εA(K̂ψ)†{Â,Ĥ }(K̂ψ)],

(A9)

which gives the behavior of JA upon time reversal, JA[ψ] =
εAJA[K̂ψ].

APPENDIX B: COMPLETE DERIVATION OF THE
CURRENT OPERATOR Ĵ

We are interested in finding the form of the probability
current operator Ĵ = (Ĵx,Ĵy,Ĵz) for a Hamiltonian
Ĥeff = Ĥp + V (r) = ∑

n Ĥ (n) + V (r) [Eqs. (3.1) and
(3.2)]. For a Hamiltonian p̂2/2m + V (r), it is known39

that the j th component of the current operator
(j = x, y, or z) at the point r0 is of the shape
Ĵ

(2)
j (r0) = (1/2m)[δr0 p̂j + p̂j δr0 ]; With the notation of

Eqs. (3.1) and (3.2), Ĥ (2) = ∑
l (k) ∈ {x,y,z}

k = 1,2

cl(1),l(2)p̂l(1)p̂l(2),

Ĵ
(2)
j (r0) = ∑

l(1)={x,y,z} cj,l(1)[δr0 p̂l(1) + p̂l(1) δr0 ], cl(1),l(2) =
(1/2m) δl(1),l(2). The aim of this Appendix is to show that, for
a Hamiltonian Ĥ (n), the following form of the j th component
of the probability-current operator Ĵ(n),

Ĵ
(n)
j (r0) =

∑
l (k) ∈ {x,y,z}

k = 1, . . . ,n − 1

cj,l(1),...,l(n−1)
[
δr0 p̂l(1)p̂l(2) · · · p̂l(n−1) + p̂l(1)δr0 p̂l(2) · · · p̂l(n−1) + · · · + p̂l(1)p̂l(2) · · · p̂l(n−1)δr0

]
, (B1)

gives back Eq. (2.10) with Â being the identity. The Dirac distribution interacts with the mixed powers of the current operator
so that the symmetrization procedure used in the construction of Ĵ

(n)
j (r0) provides (n − 2) further summations with respect to

the Hermitian symmetrized velocity operator. The two definitions coincide only up to n = 2. When n � 3, the extra terms are
crucial in order to satisfy the continuity equation. We evaluate every term over a generic state ψ ; for example, the second term
is of the shape

〈ψ |p̂l(1)δr0 p̂l(2) · · · p̂l(n−1)cj,l(1),...,l(n−1)|ψ〉 =
∫

d3r ψ†p̂l(1)δr0 p̂l(2) · · · p̂l(n−1)cj,l(1),...,l(n−1)ψ

=
∫

d3r (p̂l(1)ψ)†δr0 p̂l(2) · · · p̂l(n−1)cj,l(1),...,l(n−1)ψ

= [p̂l(1)ψ(r0)]†p̂l(2) · · · p̂l(n−1)cj,l(1),...,l(n−1)ψ(r0). (B2)

235313-5



BOTTEGONI, DROUHIN, FISHMAN, AND WEGROWE PHYSICAL REVIEW B 85, 235313 (2012)

Then the j th Cartesian component of the probability current for a generic state J
(n)
j can be written as

J
(n)
j = 〈ψ |Ĵ (n)

j |ψ〉 =
∑

l (k) ∈ {x,y,z}
k = 1, . . . ,n − 1

[ψ†p̂l(1) · · · p̂l(n−1)cj,l(1),...,l(n)ψ + · · ·

+ (p̂l(1) · · · p̂l(k−1)ψ)†p̂l(k) · · · p̂l(n−1)cj,l(1),...,l(n)ψ + · · · + (p̂l(1) · · · p̂l(n−1)ψ)†cj,l(1),...,l(n)ψ]. (B3)

From Eq. (B3), we can find the generic divergence term related to the derivative with respect to p̂j :

p̂j J
(n)
j =

∑
l (k) ∈ {x,y,z}

k = 1, . . . ,n − 1

[ψ†p̂j p̂l(1) · · · p̂l(n−1)cj,l(1),...,l(n)ψ − (p̂jψ)†p̂l(1) · · · p̂l(n−1)cj,l(1),...,l(n)ψ

+ (p̂l(1) · · · p̂l(k−1)ψ)†p̂j p̂l(k) · · · p̂l(n−1)cj,l(1),...,l(n)ψ − (p̂j p̂l(1) · · · p̂l(k−1)ψ)†p̂l(k) · · · p̂l(n−1)cj,l(1),...,l(n)ψ

+ (p̂l(1) · · · p̂l(k)ψ)†p̂j p̂l(k+1) · · · p̂l(n−1)cj,l(1),...,l(n)ψ − (p̂j p̂l(1) · · · p̂l(k)ψ)†p̂l(k+1) · · · p̂l(n−1)cj,l(1),...,l(n)ψ

+ · · · + (p̂l(1) · · · p̂l(n−1)ψ)†p̂j cj,l(1),...,l(n)ψ − (p̂j p̂l(1) · · · p̂l(n−1)ψ)†cj,l(1),...,l(n)ψ]. (B4)

In Eq. (B4) all the terms that have the same order in k (two consecutive terms except for the first one and the last one) vanish
after summation over j : ∑

j={x,y,z}

∑
l (k) ∈ {x,y,z}

k = 1, . . . ,n − 1

[−(p̂j p̂l(1) · · · p̂l(k−1)ψ)†p̂l(k) · · · p̂l(n−1)cj,l(1),...,l(n)ψ

+ (p̂l(1) · · · p̂l(k)ψ)†p̂j p̂l(k+1) · · · p̂l(n−1)cj,l(1),...,l(n)ψ] = 0. (B5)

Then the only terms still remaining in the summation are∑
j={x,y,z}

p̂j J
(n)
j = p̂ · J(n)

=
∑

j={x,y,z}

∑
l (k) ∈ {x,y,z}

k = 1, . . . ,n − 1

[ψ†p̂j p̂l(1) · · · p̂l(n−1)cj,l(1),...,l(n)ψ − (p̂j p̂l(1) · · · p̂l(n−1)ψ)†cj,l(1),...,l(n)ψ]

=
∑

j={x,y,z}

∑
l (k) ∈ {x,y,z}

k = 1, . . . ,n − 1

2iImψ†p̂j p̂l(1) · · · p̂l(n−1)cj,l(1),...,l(n)ψ . (B6)

Now ∇ · J(n) = (i/h̄)̂p · J(n) so that

∇ · J(n) = −2

h̄
Im

∑
j={x,y,z}

∑
l (k) ∈ {x,y,z}

k = 1, . . . ,n − 1

(ψ |p̂j p̂l(1) · · · p̂l(n−1)cj,l(1),...,l(n)|ψ). (B7)

Eventually

∇ · J =
∑

n

∇ · J(n).

In the more general case of an operator Â which verifies [Â,̂p] = 0, it is straightforward to see that ĴA [see Eq. (2.10)] can
be constructed through a similar procedure, so that it can be deduced from Eq. (B1), after the substitution

cj,l(1),...,l(n) → 1
2 {Â,cj,l(1),...,l(n)}. (B8)

Special cases of interest are Â = σ̂u, the Pauli operator along the u direction, which yields the SC operator δ̂Ju, and Â = π̂↑(↓),
the orthogonal projector on the up- (down-)spin state quantized along the u axis, which yields the up- (down-)spin-current operator.
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37W. K. Tse, J. Fabian, I. Žutić, and S. Das Sarma, Phys. Rev. B 72,

241303(R) (2005).
38A. Messiah, Quantum Mechanics (North-Holland, Amsterdam,

1962), Chap. XV, Sec. 21, p. 675.
39A. Messiah, Quantum Mechanics (Ref. 39), Chap. X, Sec. 4, p. 372.

235313-7

http://dx.doi.org/10.1103/PhysRev.100.580
http://dx.doi.org/10.1103/RevModPhys.76.323
http://dx.doi.org/10.1103/RevModPhys.76.323
http://dx.doi.org/10.1103/PhysRevB.68.241315
http://dx.doi.org/10.1103/PhysRevB.76.033306
http://dx.doi.org/10.1103/PhysRevB.77.039901
http://dx.doi.org/10.1103/PhysRevB.77.039901
http://dx.doi.org/10.1119/1.19421
http://dx.doi.org/10.1103/PhysRevLett.93.226602
http://dx.doi.org/10.1103/PhysRevLett.93.226602
http://dx.doi.org/10.1016/j.physe.2006.02.014
http://dx.doi.org/10.1103/PhysRevB.77.035327
http://dx.doi.org/10.1103/PhysRevB.77.035327
http://dx.doi.org/10.1080/00018731003739943
http://dx.doi.org/10.1103/PhysRevB.82.113307
http://dx.doi.org/10.1103/PhysRevB.82.115301
http://dx.doi.org/10.1103/PhysRevLett.105.126602
http://dx.doi.org/10.1103/PhysRevLett.105.126602
http://dx.doi.org/10.1103/PhysRevB.82.115321
http://dx.doi.org/10.1103/PhysRevB.72.153314
http://dx.doi.org/10.1103/PhysRevB.72.153314
http://dx.doi.org/10.1103/PhysRevB.76.245321
http://dx.doi.org/10.1088/0268-1242/27/4/045009
http://dx.doi.org/10.1103/PhysRevLett.85.393
http://dx.doi.org/10.1103/PhysRevLett.92.126603
http://dx.doi.org/10.1103/PhysRevB.70.201309
http://dx.doi.org/10.1103/PhysRevLett.95.166605
http://dx.doi.org/10.1103/PhysRevLett.95.166605
http://dx.doi.org/10.1103/PhysRevB.73.113305
http://dx.doi.org/10.1103/PhysRevB.73.113305
http://dx.doi.org/10.1103/PhysRevB.75.075319
http://dx.doi.org/10.1103/PhysRevB.83.113307
http://dx.doi.org/10.1103/PhysRevB.83.113307
http://dx.doi.org/10.1103/PhysRevLett.96.076604
http://dx.doi.org/10.1103/PhysRevLett.96.076604
http://dx.doi.org/10.1103/PhysRevB.77.075304
http://dx.doi.org/10.1103/PhysRevB.77.075304
http://dx.doi.org/10.1103/PhysRevB.81.085304
http://dx.doi.org/10.1103/PhysRev.152.683
http://dx.doi.org/10.1063/1.3672399
http://dx.doi.org/10.1063/1.3672399
http://dx.doi.org/10.1103/PhysRevB.78.153302
http://dx.doi.org/10.1103/PhysRevB.78.153302
http://dx.doi.org/10.1103/PhysRevB.72.241303
http://dx.doi.org/10.1103/PhysRevB.72.241303

