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Kondo temperature of a quantum dot
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We study the dependence of the Kondo temperature on the gate voltage in a strongly blockaded quantum dot
with a small single-particle level spacing. We show that the dependence cannot be fitted to that of the Anderson
impurity model with the gate voltage-independent level width. The effect originates in high-order tunneling
processes, which make a dominant contribution to the exchange amplitude when the gate voltage is tuned away
from the middle of the Coulomb blockade valley.
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I. INTRODUCTION

In a typical transport experiment a nanostructure, such as
semiconductor quantum dot,1–3 is connected via tunneling
junctions to two massive electrodes. Such devices often
exhibit a logarithmic enhancement of the conductance G with
lowering the temperature T ,

G(T ) = G0 + GK

ln2(T/TK )
, (1)

with temperature-independent coefficients G0 and GK . This
behavior is a manifestation of the well-known many-body
phenomenon the Kondo effect, resulting from the interaction
of conduction electrons with an impurity possessing additional
degrees of freedom (see Refs. 4–6 for a review). The associated
energy scale, the Kondo temperature TK , characterizes also the
dependencies of the differential conductance on the applied
magnetic field and/or source-drain bias, which show a similar
logarithmic enhancement.7

The Kondo effect develops when a quantum dot has a
nonzero spin in the ground state, which is guaranteed to happen
when the dot has an odd number of electrons. The number of
electrons N is controlled by the electrostatic potential Vg on
the capacitively coupled gate electrode.1,4,5 In the regime of a
strong Coulomb blockade, N is close to an integer at almost
any Vg except narrow mixed-valence regions, where adding
an electron to the dot is not associated with a large penalty
in electrostatic energy. Observable quantities, including G0,
GK , and TK in Eq. (1), exhibit a quasiperiodic dependence on
the dimensionless parameter N = Vg/δVg , where δVg is the
distance between the mixed-valence regions.4,5 In terms of N ,
these regions are narrow intervals of the width � � 1 about
half-integer values of N .

In this paper we study the dependence of the Kondo
temperature of a quantum dot TK on the gate voltage N .
Surprisingly, the dependence TK (N ) has not received much
attention in the literature (see, however, Refs. 8 and 9). In fact,
experimental data are often2,3 fitted to the expression

TK (N )

EC

=
√

�N�

1 − �N
exp

[
−4�N (1 − �N )

�

]
, (2)

originally derived10 for the single-level Anderson impurity
model. In Eq. (2) EC is the charging energy and �N is
the distance in the dimensionless gate voltage to the charge

degeneracy point,

�N = 1/2 − |N − N0|, (3)

where N0 is an odd integer. Equation (2) is applicable for �N
in the range

� � �N � 1/2. (4)

Since the Kondo effect is a crossover phenomenon rather than
a phase transition, a precise definition of TK is somewhat
arbitrary. In particular, Eq. (2), as well as Eq. (13) below, is
based on the perturbative renormalization group11 and defines
TK up to a gate voltage-independent numerical coefficient
of the order of unity. The choice of the coefficient does not
affect the validity of Eq. (1), which is applicable in the weak
coupling regime of the Kondo effect T � TK . The value of the
coefficient, however, becomes important in the strong coupling
regime T � TK . A survey of various definitions of TK for the
Kondo effect with spin- 1

2 on the dot7 can be found in Refs. 3
and 12.

Apart from EC , which sets the overall scale, the dependence
TK (N ) as given by Eq. (2) is completely characterized by
a single dimensionless parameter �. Despite its simplicity,
Eq. (2) captures the most essential qualitative feature of
TK (N ): The Kondo temperature has a minimum in the middle
of the Coulomb blockade valley N = N0. At this point TK is
exponentially small, TK/EC ∝ exp(−1/�).

Moreover, although Eq. (2) is inapplicable in the mixed-
valence region �N � � [see Eq. (4)], it yields an estimate of
the energy scale in this regime. Indeed, at �N ∼ � the expo-
nential factor in Eq. (2) is of order of unity, while the prefactor
is of the order of �, resulting in TK ∼ EC�. For the Anderson
model EC� coincides with the tunneling-induced width of the
single-particle energy level in the dot �0 [see Eq. (18) below].
Since in the mixed-valence regime the Coulomb blockade is
partially “lifted,” the level width �0 indeed represents the true
scale characterizing the low-energy properties of the system.

Unlike in the Anderson model, the single-particle level
spacing in a quantum dot δ is much smaller than the charging
energy EC .4,5 It was shown in Ref. 8 that for δ � EC the
dependence TK (N ) differs significantly from that prescribed
by Eq. (2). However, this result was obtained in the limit when
the contacts between the dot and the leads are almost open.5,13

In this limit the dot is in the mixed-valence regime at all values
ofN . In other words, the limit considered in Ref. 8 corresponds
to � ∼ 1, which is incompatible with the condition (4) of the
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validity of Eq. (2). In this paper we show that, contrary to
the widespread belief, Eq. (2) is inapplicable to sufficiently
large quantum dots in the weak tunneling regime as well, even
though Eq. (4) is satisfied in a wide range of gate voltages.

It should be noted that experiments in Refs. 2 and 3 are not
performed in the regime of open dot-lead contacts. Indeed, in
the open contacts limit the temperature-independent elastic
cotunneling4,5,14 contribution to the conductance G0 [see
Eq. (1)] approaches G(0)/2; hence, the temperature-dependent
Kondo contribution enters Eq. (1) with a vanishingly small
coefficient GK = G(0) − 2G0 � G(0) (see Ref. 15). Accord-
ingly, in this limit the conductance is almost unaffected by
the Kondo effect. On the contrary, in experiments aiming at
indisputable realization of the Kondo effect, such as those
described in Refs. 2 and 3, G(0) ≈ GK � G0.

The rest of the paper is organized as follows. In Sec. II
we describe the model of a quantum dot coupled by tunneling
to the conducting leads. In Sec. III we derive the exchange
amplitude of the effective low-energy Kondo model both in
the limit δ � EC , corresponding to the Anderson model, and
in the limit δ � EC , corresponding to a quantum dot. The
results are discussed in Sec. IV.

II. THE MODEL

We consider a strongly asymmetric configuration, when the
conductances of the dot-lead contacts are very different; this
simplification does not affect the results. In this case the lead
with a weaker coupling to the dot plays the part of a weakly
coupled probe, Eq. (1) remains intact,4 and for the evaluation
of the Kondo temperature it is sufficient to consider coupling
to a single lead,

H = Hc + Hd + Ht. (5)

Here

Hc =
∑
ks

ξk c
†
kscks (6)

describes electrons in the lead. For a lateral quantum dot
system formed by electrostatic depletion of a 2D electron
gas at the interface of a semiconductor heterostructure,1,2 it
is sufficient to take into account only a single propagating
mode per dot-lead contact,4,5,13 and ξk can be linearized near
the Fermi level, which corresponds to a constant density of
states ν.

The second term in Eq. (5) describes an isolated quantum
dot. We consider the simplest model,4,5

Hd =
∑
ns

εnd
†
nsdns + EC(N̂ − N )2. (7)

Here N̂ = ∑
ns d

†
nsdns is the total number of electrons in the dot

and EC is the charging energy. The single-particle energies εn

are characterized by a finite level spacing δ � EC . The Fermi
level corresponds to ε0 = 0; this level is singly occupied when
the number of electrons in the dot N = 〈N̂〉 is odd.

Finally, the last term in Eq. (5) represents the tunneling
between the dot and the lead,

Ht = t0
∑
nks

c
†
ksdns + H.c. (8)

A description of the dot-lead contact in terms of the tunneling
Hamiltonian Eq. (8) is possible4,5 when the dimensionless (i.e.,
in units of 2e2/h) conductance of the contact is small,

g = 4π�0/δ � 1. (9)

Accordingly, the tunneling-induced width �0 = πνt2
0 of

single-particle energy levels in the dot, the single-particle level
spacing δ, and the charging energy EC form a well-defined
hierarchy,

�0 � δ � EC. (10)

III. THE EFFECTIVE KONDO MODEL

When the gate voltage is tuned away from the mixed-
valence regions, at N close to an odd integer N0, the dot has
an odd number of electrons N ≈ N0 and its ground state has
spin S = 1/2. The low-energy excitations of the Hamiltonian
Eqs. (5)–(8) are then described by the effective Kondo model4

H = Hc + Vρ + J (s · S), (11)

where ρ = ∑
kk′s c

†
ksck′s and s = ∑

kk′ss ′ c
†
ks(σ ss ′/2)ck′s ′ rep-

resent the local particle and spin densities of conduc-
tion electrons, and the spin S is the projection of Ŝ =∑

nss ′ d
†
ns(σ ss ′/2)dns ′ onto the ground-state multiplet of an

isolated dot.
The potential scattering term in Eq. (11) is responsible9 for

the deviations of N from N0,

N − N0 ≈ −2νV . (12)

The reduction of the original model (5)–(8) to the effective
Kondo model (11) is possible for |N − N0| � 1, which results
in the restriction (3) on the allowed values of N .

The exchange term in Eq. (11) leads to the Kondo effect
characterized by the Kondo temperature11

TK 
 D0(νJ )1/2 exp(−1/νJ ). (13)

Here D0 is the high-energy cutoff; it corresponds either to the
threshold for the intradot excitations δ or to the energy cost,

E± = 2EC |N − N0 ∓ 1/2|, (14)

for adding/removing an electron to/from the dot, whichever is
smaller:

D0 = min{δ,E±} = min{δ,2EC�N }. (15)

A. Anderson model (δ�EC )

We discuss first the limit δ � EC , corresponding to the
Anderson impurity model.10 Although, in view of Eq. (10),
this limit does not correspond to a realistic situation, it leads to
the qualitatively correct dependence TK (N ) (see the discussion
above). At δ � EC all but n = 0 energy levels in the dot are
either empty or doubly occupied. Projecting these levels out,
we write

N̂ → n↑ + n↓ + N0 − 1,

where n↑ and n↓ are the spin-up and spin-down occupations of
n = 0 level. Substitution into Eq. (7) yields, up to a constant,

Hd = 2EC[n↑n↓ − (N − N0 + 1/2)(n↑ + n↓)]. (16)
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The tunneling Eq. (8) induces transitions to states with n = 0
level being empty and doubly occupied. The transitions are
virtual and can be accounted for perturbatively. In the second
order in the tunneling amplitude t0 one finds10,16 Eq. (11), with

J = 2t2
0

(
1

E+
+ 1

E−

)
, V = − t2

0

2

(
1

E+
− 1

E−

)
, (17)

and with E± given by Eq. (14). Reduction to the Kondo model
is justified when |N − N0| � 1. With the help of Eq. (12) and
the second equation in Eq. (17), this condition translates into
Eq. (3) with the width of the mixed-valence region given by

� = �0 = 4

π

�0

EC

. (18)

Comparison with the first equation in Eq. (17) shows that for
the Anderson model

� = νJ0, J0 = min{J (N )} = J (N0). (19)

Using Eqs. (3) and (18), the exchange amplitude (17) is written
as

νJ = �

4�N (1 − �N )
. (20)

Equations (13), (15), and (20) then yield Eq. (2) above.
Accounting for higher order in t0 contributions results in a
correction to J in Eq. (17). The correction is small, �J0/J0 ∼
νJ0 � 1,10,17 and its effect on the value of of the Kondo
temperature TK is negligible.

B. Quantum dot (δ � EC )

The Anderson model result for J0 = min{J (N )} [see
Eqs. (19)] remains intact even in the limit δ � EC , when
the model is no longer applicable. The leading correction
now reads17 �J0/J0 ∼ �0/δ � 1. Although the correction
is still small, it is by a factor EC/δ � 1 larger than that in
the Anderson model and results in an increase17 of TK in the
middle of the Coulomb blockade valley by the factor C with
ln C = (�J/J0)/νJ0 ∼ EC/δ � 1.

The effect of the higher order in tunneling contributions to
the exchange amplitude turns out to be even more dramatic
when N is tuned away from the middle of the Coulomb block-
ade valley N = N0. Indeed, it is well known18,19 that when N
is close to the mixed-valence region, say, at N ≈ N0 + 1/2,
transitions between the two almost degenerate charge states
of the dot result in diverging logarithmic corrections to the
tunneling amplitude. The origin of these corrections is again
the Kondo effect, with the two charge states playing the part
of the impurity spin.13,19

Following Ref. 19, we project out virtual transitions to the
state with N0 − 1 electrons in the dot, associated with the en-
ergy cost E− ≈ 2EC � E+. This amounts to the introduction
of a high-energy cutoff in Eqs. (5)–(8): |ξk|,|εn| < 2EC . The
projected Hamiltonian can be cast in the form of an anisotropic
two-channel spin- 1

2 Kondo model with the physical spin s

representing the channel index,19

H =
∑
spα

εpαψ†
spαψspα + Iz τ zT̂z + I⊥

2
(τ+T̂− + τ−T̂+).

(21)

Here the “bare” (corresponding to the bandwidth D = 2EC)
values of the coupling constants are I⊥ = 2t0, Iz = 0. In terms
of |⇓〉 and |⇑〉, representing, respectively, charge states with
N0 and N0 + 1 electrons in the dot, the pseudospin operators
in Eq. (21) are given by

T̂z = 1
2 (|⇑〉〈⇑| − |⇓〉〈⇓|), T̂+ = T̂

†
− = |⇑〉〈⇓|.

The operators ψ in Eq. (21) are the relabeled operators c and
d of Eqs. (6)–(8),

ψs,p,α=⇑ = dn→p,s, ψs,p,α=⇓ = ck→p,s .

Accordingly, the single-particle energies εp,α = −ε−p,α are
characterized by the pseudospin-dependent density of states
ν⇑ = 1/δ, ν⇓ = ν. Finally, the local pseudospin density is
given by τ = ∑

s

∑
pp′αα′ ψ

†
spα(σ̃ αα′/2) ψsp′α′ , where compo-

nents of the vector σ̃ are the Pauli matrices acting on the
pseudospin degree of freedom.

The scaling equations for the model (21) read

dĨz

dζ
= Ĩ 2

⊥(1 − Ĩz),
dĨ⊥
dζ

= Ĩ⊥

[
Ĩz − 1

2

(
Ĩ 2
z + Ĩ 2

⊥
)]

, (22)

where ζ = ln(2EC/D), and

Ĩz = 1
2 (ν⇑ + ν⇓)Iz, Ĩ⊥ = (ν⇑ν⇓)1/2I⊥

are dimensionless coupling constants. Since SU(2) sym-
metry is broken, renormalization generates also corrections
of the type

∑
pp′α ψ

†
spαψsp′αT̂z. These terms lead to small

pseudospin-dependent corrections to the density of states,20

which we neglect.
Equations (22) yield

Ĩ 2
⊥(D) = γ 2 + Ĩ 2

z (D), (23)

where

γ = Ĩ⊥(0) =
√

4�0/πδ

and

Ĩz(D) =
{

γ 2 ln(2EC/D), D � EC

√
�0/δ ,

[ ln(D/TC)]−1, D � EC

√
�0/δ .

(24)

Here

TC = 2ECγ e−π/2γ (25)

is the energy scale for the charge Kondo effect19 and D ∼
EC

√
�0/δ is the value of the cutoff at which the two

contributions to Ĩ⊥ in Eq. (23) are of the same order of
magnitude, Ĩz(D) ∼ γ .

Equations (23) and (24) are valid in the weak coupling
regime Ĩz(D) � 1 and as long as the bandwidth D exceeds
both the single-particle level spacing in the dot δ and the
addition energy E+. [For Ĩz(D) � 1 the Knight shiftlike
renormalization E+ → (1 − Ĩz)E+ can be neglected.] At
smaller D,

D � D∗ = max{δ,E+(N )}, (26)

the Hamiltonian is given by Eq. (21) with renormalized
coupling constants. At E+ � E−, it is equivalent to Eqs. (5)–
(8) with the high-energy cutoff D∗ and with the tunneling
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amplitude t0 replaced by the gate voltage-dependent t , which
satisfies

4νt2(D∗) = δ Ĩ 2
⊥(D∗). (27)

[We neglect a weak potential scattering arising from the z

component of the exchange in Eq. (21).]
Further reduction of the bandwidth from D∗ down to D0

[see Eq. (15)] can be carried out without regard to the presence
of multiple energy levels in the dot as these levels have been
already accounted for in the renormalization of the tunneling
amplitude. Projecting out the dot’s excitations with the help
of the Schrieffer-Wolf transformation,10,16 we end up with
the Kondo model Eq. (11) with the exchange and potential
scattering amplitudes

νJ = 2νt2(D∗)

E+
, V = − νt2(D∗)

2E+
(28)

[cf. Eq. (17)]. Repeating the arguments that led to Eq. (18)
above, we find the renormalized width of the mixed-valence
region,

� = 4

π

�

EC

, � = πνt2(δ). (29)

Further analysis depends on the parameters of the system. The
richest behavior is realized in the limit

(δ/EC)2 � �0/δ � 1. (30)

In quantum dots formed by electrostatic depletion of 2D
electron gas,1 the left-hand side of Eq. (30) is controlled by the
size of the dot L, δ/EC ∝ 1/L for sufficiently large dots,4,5

while the right-hand side is proportional to the conductance
of the dot-lead contact [see Eq. (9)]. Experimentally, these
quantities are tuned independently of each other,1,4 and the
inequalities (9) and (30) can be satisfied simultaneously.

Equation (30) is equivalent to ln(δ/TC) � √
δ/�0, which

is compatible with the assumption that D∗ ∼ δ belongs to the
weak coupling regime of the charge Kondo effect ln(δ/TC) �
1. The renormalized level width � introduced in Eq. (29) is
then given by

� = π

4

δ

ln2(δ/TC)
(31)

and satisfies �0 � � � δ.
Close to but still well outside the mixed-valence region, the

exchange constant (28) takes the form

νJ = �

4�N
, � � �N � δ/EC, (32)

similar to that in the Anderson model at �N � 1 [see
Eq. (20)]. Note, however, that � in Eq. (32) is much larger
than its Anderson model value � = �0 given in Eq. (18).

Further away from the mixed-valence region Eqs. (23)–(28)
give

νJ = �0

4�N
[1 + (EC/δ)�0 ln2�N ],

√
�0/δ � �N � 1.

(33)

The gate voltage-dependent logarithmic correction in Eq. (33)
remains small for all N .

Stretching Eq. (33) beyond its domain of applicability, and
taking into account that at �N = 1/2 Eq. (33) represents only
a half of the exchange amplitude in the effective Kondo model
(at this point E+ ≈ E− and transitions between charge states
with N0 and N0 − 1 electrons in the dot make an identical
contribution to J ), we recover the result of Ref. 17, �J0/J0 ∼
�0/δ. This strongly suggests that the corrections considered
in Ref. 17 and the ones studied in the present paper have
a common origin and serves as an independent check that
the procedure outlined above indeed captures the dominant
contributions to the exchange amplitude.

IV. DISCUSSION

The gate voltage-dependent corrections to the exchange
amplitude, and, therefore, to the Kondo temperature TK ,
originate in the strong renormalization of the level width.
Indeed, close to the middle of the Coulomb blockade valley
TK (N ) is governed by the Anderson model expression Eq. (2)
with � given by its bare single-level value �0 ∼ �0/EC

[see Eqs. (18) and (33)]. However, the width of the mixed-
valence region � ∼ �/EC � �0 depends on the much larger
renormalized level width � � �0 [see Eqs. (29) and (31)].

Similar to the Anderson model, the width � represents
the energy scale in the mixed-valence regime, while the
corresponding value of � parametrizes the dependence TK (N )
close to but still well outside the mixed-valence region[see
Eq. (32)]. Unlike in the Anderson model [cf. Eq. (19)], there is
no simple relation between � and νJ0 = min{νJ (N )} ≈ �0;
the latter determines the value of min{TK (N )}.

These observations imply that the dependence TK (N )
cannot be fitted to the Anderson model’s result [Eq. (2)] with
the gate voltage-independent �. Instead, TK (N ) interpolates
smoothly between the corresponding curves for two different
Anderson models, as sketched in Fig. 1. This behavior appears
to be consistent with the results of the experiments.2,3

In the above derivation we assumed that the tunneling
amplitudes tn are identical for all energy levels in the dot,
tn = t0 [see Eq. (8)]. In large quantum dots with chaotic
motion of electrons the amplitudes tn are not only different,
but random and statistically independent of each other.4,5,21

Accounting for these mesoscopic fluctuations does not affect
our results qualitatively. The main difference is that �0 and

Γ0/δδ/E CΓ/EC

Γ

TK

Γ0

δ EC

δ EC

ΔN
FIG. 1. Kondo temperature TK as function of the distance �N to

the closest charge degeneracy point. The dashed lines correspond to
single-level Anderson impurity models with two different values of
the tunneling-induced level width, � and �0. The solid line represents
a quantum dot with a small level spacing δ � EC .
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� are now random, although the relation � > �0 still holds.
Whereas the bare level width �0 has a broad Porter-Thomas
distribution,4,5,21 the renormalized width �, being a sum
of many statistically independent contributions, is expected
to have a narrow Gaussian distribution.22 Accordingly, the
exchange amplitude J (and, therefore, TK ) become less
random as the gate voltage approaches the mixed-valence
regions. Note also that for tn �= t−n the function TK (N ) is no
longer symmetric about the middle of the Coulomb blockade
valley, TK (N ) �= TK (2N0 − N ).

Finally, as discussed above, TK (N ) in quantum dots with
almost open contacts also differs8 from that in the Anderson
model. In this case the conductance of the dot-lead contact is

large, 1 − g � 1, and

(νJ )−1 ∼ (EC/δ)(1 − g) sin2(π�N ).

Description of the crossover between the result of Ref. 8
and our Eqs. (28)–(33), applicable for g � 1, requires an
understanding of an intermediate regime between the strong
and the weak Coulomb blockade. Despite some progress in
this direction,23 a detailed theoretical description of this regime
remains an open problem.

To conclude, in this paper we demonstrated that the gate
voltage dependence of the Kondo temperature of a quantum
dot with a small level spacing is drastically different from that
in the Anderson impurity model.
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