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A methodology for semiempirical density functional optimization, using regularization and cross-validation
methods from machine learning, is developed. We demonstrate that such methods enable well-behaved exchange-
correlation approximations in very flexible model spaces, thus avoiding the overfitting found when standard
least-squares methods are applied to high-order polynomial expansions. A general-purpose density functional for
surface science and catalysis studies should accurately describe bond breaking and formation in chemistry, solid
state physics, and surface chemistry, and should preferably also include van der Waals dispersion interactions.
Such a functional necessarily compromises between describing fundamentally different types of interactions,
making transferability of the density functional approximation a key issue. We investigate this trade-off between
describing the energetics of intramolecular and intermolecular, bulk solid, and surface chemical bonding, and the
developed optimization method explicitly handles making the compromise based on the directions in model space
favored by different materials properties. The approach is applied to designing the Bayesian error estimation
functional with van der Waals correlation (BEEF–vdW), a semilocal approximation with an additional nonlocal
correlation term. Furthermore, an ensemble of functionals around BEEF–vdW comes out naturally, offering an
estimate of the computational error. An extensive assessment on a range of data sets validates the applicability
of BEEF–vdW to studies in chemistry and condensed matter physics. Applications of the approximation and its
Bayesian ensemble error estimate to two intricate surface science problems support this.
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I. INTRODUCTION

Kohn-Sham density functional theory1,2 (KS–DFT) is a
widely celebrated method for electronic-structure calcula-
tions in physics, chemistry, and materials science.3,4 Indeed,
modern DFT methods have proven valuable for elucidating
mechanisms and fundamental trends in enzymatic and het-
erogeneous catalysis,5–13 and computational design of chem-
ically active materials is now within reach.14–17 Successful
use of DFT often relies on accurate but computationally
tractable approximations to the exact density functional for the
exchange-correlation (XC) energy. The generalized gradient
approximation (GGA) is very popular due to a high accuracy-
to-cost ratio for many applications, but suffers from a range
of shortcomings. Thus, common GGA functionals are well
suited for computing many important quantities in chemistry
and condensed matter physics, but appear to be fundamentally
unable to accurately describe the physics and chemistry of a
surface at the same time.18 Moreover, van der Waals (vdW)
dispersion interactions are not accounted for by GGAs,19 and
spurious self-interaction errors can be significant.20–22 The
interest in applying DFT to more and increasingly complex
problems in materials science is not likely to decrease in the
years to come. Much effort is therefore devoted to improve on
current density functional approximations.

The five-rung “Jacob’s ladder” of Perdew23 represents a
classification of the most popular density functional meth-
ods. Each rung adds new ingredients to the density func-
tional approximation (DFA), and so should enable better

approximations, but also adds to the computational cost. In
order of increasing complexity, the ladder consists of the
local spin-density approximation1 (LDA), GGA, meta-GGA
(MGGA), hyper-GGA, and finally the generalized random
phase approximation (RPA). The LDA uses only the local
density as input, while rungs 2 and 3 introduce semilocal
dependence of the density (GGA) and the KS orbitals
(MGGA).24 Hyper-GGAs introduce nonlocal dependence of
the occupied KS orbitals in the exact exchange energy density,
and fifth-rung approximations calculate correlation energies
from the unoccupied KS orbitals. The latter is computationally
heavy, but RPA-type methods are the only DFAs in this five-
rung hierarchy that can possibly account for vdW dispersion
between nonoverlapped densities.24

The failure of lower-rung DFAs in capturing dispersion
forces has spurred substantial developments in recent years.19

Such interactions are spatially nonlocal in nature, and several
different approaches to add “vdW terms” to lower-rung
DFAs now exist.25–28 The vdW–DF nonlocal correlation25

is a particularly promising development in this field. It is a
fully nonlocal functional of the ground-state density, and has
proven valuable in a wide range of sparse matter studies.29

However, the vdW–DF and vdW–DF2 (Ref. 30) methods
yield much too soft transition-metal crystal lattices,31,32 and
the correct choice of GGA exchange functional to use in
vdW–DF type calculations is currently investigated.30,32–34

One approach to choosing GGA exchange is comparison to
Hartree-Fock exchange35,36 and consideration of the behavior
of the exchange functional in the limit of large density

235149-11098-0121/2012/85(23)/235149(23) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.85.235149


JESS WELLENDORFF et al. PHYSICAL REVIEW B 85, 235149 (2012)

gradients.35 Where does the vdW–DF approximation belong in
a hierarchy such as Jacob’s ladder? In terms of computational
complexity, the method contains fully nonlocal density-density
information without explicit use of the KS orbitals. From
this point of view, it should fit between rungs 3 and 4, and
we assign it here to rung 3.5. Note that nonlocal exchange
approximations, designed to partially mimic exact exchange at
a reduced computational cost, have recently been proposed37,38

as belonging to a rung 3.5.
Put in simple terms, two paradigms for developing density

functionals are dominant: that of constraint satisfaction by
reduction24 and that of fitting to empirical data.39–42 Both
have contributed greatly to the success of DFT. Reductionists
impose constraints based on analytic properties of the exact
density functional, and strive for nonempirical functionals that
fulfill as many constraints as possible on each rung of Jacob’s
ladder. Empirically oriented DFA developers use experimental
or high-level theoretical training data to optimize the DFA
description of one or more materials properties. Reduction is
arguably the most systematic approach to density functional
development, and has had a significant impact on the field
of KS–DFT. However, choices are often made as to what
types of physics and chemistry the DFA should describe
well.43,44 The empirical approach is fundamentally a matter of
explicitly making these choices, and parametrize an XC model
to suit personal preferences for computational performance.
This makes overfitting the training data and transferability of
the optimized DFA to systems and materials properties not
contained in the training data a central issue.24

The risk of overfitting was realized early on by Becke and
others.40,45 Using polynomial expansions of GGA exchange
and correlation in least-squares-fitting procedures, polynomial
orders above four were found to yield increasingly oscillatory
and unphysical XC functionals, that is, “a transition to
mathematical nonsense.”45 Nevertheless, semiempirical DFAs
containing many parameters have been constructed42,46,47

with little attention to the overfitting issue. Transferability
of a DFA parametrization depends not only on the degree
of overfitting to a single set of molecular or condensed
matter properties, but also on how many physically different
properties the approximate model was trained on. Optimizing
XC parametrizations to several different properties naturally
leads to a “competition” between data sets in determining
the model solution, i.e., an XC model compromise. Implicitly
acknowledging this, each data set is often assigned more or
less arbitrary weights.46,47 In our view, such an approach is not
guaranteed to yield the optimum model compromise.

In this study, we apply machine-learning methods to avoid
the above-mentioned pitfalls of semiempirical density func-
tional development. Regularization of a very flexible polyno-
mial GGA exchange expansion is at the heart of the developed
approach. We furthermore investigate the characteristics of
XC model compromises in a GGA + vdW model space, and
formulate and apply an explicit principle for how an XC
model trade-off should be composed. Using several training
data sets of quantities representing chemistry, solid state
physics, surface chemistry, and vdW dominated interactions,
the Bayesian error estimation functional with van der Waals
(BEEF–vdW) exchange-correlation model is generated. The
three most important aspects of semiempirical DFA design are

thus considered in detail: data sets, model space, and model
selection. The developed approach furthermore leads to an
ensemble of functionals around the optimum one, allowing an
estimate of the computational error to be calculated. Lastly,
BEEF–vdW is evaluated on systems and properties partly
not in the training sets, and is also applied in two small
surface science studies: calculating potential-energy curves for
graphene adsorption on the Ni(111) surface, and investigation
of the correlation between theoretical chemisorption energies
and theoretical surface energies of the substrate.

II. DATA SETS

Several sets of energetic and structural data describing
bonding in chemical and condensed matter systems are used
throughout this study. These data sets are either adapted from
literature or compiled here from published works, and are
briefly presented in the following. Additional information is
found in the Appendix.

(a) Molecular formation energies. The G3/99 (Ref. 48)
molecular formation enthalpies of Curtiss and co-workers
represent intramolecular bond energetics. Experimental room-
temperature heats of formation are extrapolated to 0 K,
yielding 223 electronic-only static-nuclei formation energies.
The G2/97 (Ref. 49) set of 148 formation energies is a subset
of G3/99.

(b) Molecular reaction energies. Molecular formation ener-
gies lend themselves well to compilation of gas-phase reaction
energies. The RE42 data set of 42 reaction energies involves
45 different molecules from G2/97.

(c) Molecular reaction barriers. The DBH24/08 (Ref. 50)
set of Zheng et al., comprising 12 forward and 12 backward
benchmark barriers, is chosen to represent gas-phase reaction
barriers.

(d) Noncovalent interactions. The S22 (Ref. 51) and S22x5
(Ref. 52) sets of intermolecular interaction energies of nonco-
valently bonded complexes calculated at the coupled-cluster
level with single, double, and perturbative triple excitations
[CCSD(T)] were compiled by Hobza and co-workers. Particu-
larly, the S22 set has become popular for assessment34,53–58 and
parametrization30,33,47,54,59,60 of density functional methods for
vdW–type interactions. The S22x5 set consists of potential-
energy curves (PECs) for each S22 complex, with interaction
energies at relative interaction distances d of 0.9, 1.0, 1.2,
1.5, and 2.0 as compared to S22, totaling 110 data points.
For convenience, this study divides S22x5 into five subsets
according to interaction distance, e.g., “S22x5-0.9.”
The accuracy of the original S22 and S22x5 energies have
certain deficiencies, so the revised S22x5-1.0 energies of
Takatani et al.61 are used instead. The remaining (nonequilib-
rium) data points on each CCSD(T) PEC are correspondingly
corrected according to the difference between original and
revised S22x5-1.0 energies, as elaborated on in the Appendix.

(e) Solid state properties. Three sets of 0-K experimental
solid state data are used, here denoted Sol34Ec, Sol27LC, and
Sol27Ec. The first comprises cohesive energies of 34 period
2–6 bulk solids in fcc, bcc, diamond, and hcp lattices. Zero-
point phonon effects have not been corrected for. Conversely,
the Sol27LC and Sol27Ec sets contain lattice constants and
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cohesive energies, respectively, of 27 cubic lattices, both
corrected for zero-point vibrational contributions.

(f) Chemisorption on solid surfaces. The CE17 and
CE27 data sets comprise experimental reaction energies for
chemisorption of simple molecules on the (111), (100), and
(0001) facets of late transition-metal surfaces at low coverage.
The CE17 set is a subset of CE27.

III. COMPUTATIONAL DETAILS

Self-consistent density functional calculations are per-
formed using GPAW,62–64 a real-space grid implementation of
the projector augmented-wave method.65 The ASE (Refs. 64
and 66) package provides a convenient interface to GPAW.
Grid-point spacings of 0.16 Å are employed for high-quality
computations of simple properties such as molecular bind-
ing energies. Properties of bulk solids are calculated using
somewhat denser grids with a spacing of 0.13 Å. Real-space
structure relaxation is applied to the G3/99 molecules and
CE27 chemisorption systems with 0.05 eV/Å as the criterion
of maximum force on each relaxing atom. Molecular and
single-atomic systems are placed in a box with at least 7 Å
vacuum to the box boundaries, except for the S22x5 complexes
for which the vacuum width is 10 Å. Further details on the
computational procedure employed are found in the Appendix.

IV. MODEL SPACE

The GGA exchange energy density εGGA
x (n,∇n) is conve-

niently expressed in terms of the exchange energy density of
the uniform electron gas εUEG

x (n) and an exchange enhance-
ment factor Fx(s), depending on the local density as well as
its gradient through the reduced density gradient s,

s = |∇n|
2kF n

, 0 � s � ∞,

εGGA
x (n,∇n) = εUEG

x (n)Fx[s(n,∇n)], (1)

EGGA-x[n,∇n] =
∫

εUEG
x (n)Fx[s(n,∇n)]dr,

where n = n(r), kF = (3π2n)1/3 is the Fermi wave vector of
the UEG, and EGGA−x is the semilocal GGA exchange energy.

In this study, a highly general exchange model space is
obtained by expanding the GGA exchange enhancement factor
in a basis of Mx Legendre polynomials Bm[t(s)] of orders 0
to Mx − 1 in a transformed reduced density gradient, denoted
t(s):

t(s) = 2s2

4 + s2
− 1, − 1 � t � 1

F GGA
x (s) =

∑
m

amBm[t(s)],

EGGA-x[n,∇n] =
∑
m

am

∫
εUEG
x (n)Bm[t(s)]dr (2)

=
∑
m

amEGGA-x
m [n,∇n],

where am are expansion coefficients, and EGGA-x
m is the

exchange energy corresponding to the Legendre basis function
Bm. The polynomial basis is constructed such that the boundary

limits t = [−1,1] are zero for all m > 1 basis functions.
Therefore, these limits are determined by the order 0 and 1
basis functions only.

Semilocal approximations to electron correlation effects
beyond GGA exchange are not easily cast in terms of a single
variable, such as s. The correlation model space is chosen
to be a linear combination of the Perdew-Burke-Ernzerhof
(PBE) (Ref. 67) semilocal correlation functional, purely local
Perdew-Wang68 LDA correlation, and vdW–DF2 (Ref. 30)
type nonlocal correlation. The latter is calculated from a double
integral over a nonlocal interaction kernel φ(r,r′),

Enl-c [n] = 1

2

∫
n(r)φ(r,r′)n(r′)dr dr′, (3)

which is evaluated using the fast Fourier transformation
method of Román-Pérez and Soler,69 implemented in GPAW

as described in Ref. 70.
In total, the XC model space consequently consists of GGA

exchange expanded in Legendre polynomials as well as local,
semilocal, and nonlocal correlation,

Exc =
Mx−1∑
m=0

amEGGA-x
m + αcE

LDA-c

+ (1 − αc)EPBE-c + Enl-c, (4)

where Mx = 30, and the total number of parameters is M =
Mx + 1 = 31.

None of the commonly imposed constraints on GGA
exchange are invoked, e.g., the LDA limit of Fx(s) and
recovery of the correct gradient expansion for slowly varying
densities, nor the Lieb-Oxford (LO) bound71,72 for large
electron density gradients. However, as seen from Eq. (4),
the sum of LDA and PBE correlation is constrained to unity.

V. MODEL SELECTION

Choices are made when developing a semiempirical density
functional. These are both explicit and implicit choices
pertaining to what the functional is to be designed for, that is,
for the selection of an optimum exchange-correlation model
that captures the materials properties of main interest when
applying the approximation. This study aims to explicate the
choices, and to develop a set of principles for the model
selection process. These principles are used to guide the in-
evitable compromise between how well significantly different
quantities in chemistry and condensed matter physics are
reproduced by an incomplete XC model space. Development
of an XC functional is in this approach divided into two steps.
First an individual model selection for a number of data sets is
carried out, and subsequently a simultaneous model selection
is made, compromising between the individual fits.

A. Individual materials properties

1. Regularizing linear models

Model training is formulated in terms of finding the expan-
sion coefficient vector that minimizes a cost function without
overfitting the data. This may be viewed as determining the
optimum trade-off between bias and variance of the model.73

The cost function contains two terms: a squared error term and
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a regularization term. One simple regularization suitable for
varying the bias-variance ratio is one that “penalizes” the cost
function for model solutions that differ from a suitably chosen
prior solution. This effectively removes sloppy74 eigenmodes
of the cost function by adding curvature to all modes, and
thereby limits the effective number of parameters in the model
solution. As the regularization strength is continuously de-
creased from infinity towards zero, the model parameters that
minimize the cost function are allowed to differ increasingly
from the prior solution. In a sufficiently large model space,
the solution that reproduces the data best without overfitting
is in general found for intermediate regularization strength. A
slightly more elaborate regularization is used in this study, as
outlined later on.

Finding the optimum model is then a matter of determining
the optimum regularization strength. This may be done by
minimizing the estimated prediction error (EPE) for varying
regularization strength. The EPE provides a statistical estimate
of the validity of a model outside the space of its training data,
and can be obtained by a large variety of resampling methods.
We obtain it using bootstrap resampling.75 Even though
common error quantities, such as the standard deviation (STD),
will in general decrease for regularization strengths smaller
than that which minimizes the EPE, the corresponding model
solutions are likely to be increasingly overfitted. Minimizing
the EPE and not the STD is therefore preferred for determining
well-behaved XC functionals.

2. Details of the procedure

The standard Tikhonov regularization method73 is chosen
to control overfitting. A cost function for the ith data set is
therefore defined as

Ci(a) = (Xia − yi)
2 + ω2�2(a − ap)2, (5)

where Xi is a data matrix, a the coefficient vector, yi a target
vector of training data, ω2 the regularization strength, � is
denoted the Tikhonov matrix, and the prior vector ap is the
origo for regularization, i.e., the model solution for ω2 → ∞
and thus the model space reference point for regularization.

In accordance with Eq. (4), the data matrix consists of XC
contributions to a materials property for each system in the ith
data set from the M basis functions. These are evaluated non-
self-consistently on revised PBE (RPBE) (Ref. 76) densities.
The target vector contains the target XC contribution to each
quantity in the set. The Tikhonov matrix is defined from a
smoothness criterion on the basis functions. The exchange part
of � is the overlap of the second derivative of the exchange
basis functions with respect to the transformed reduced density
gradient

�2
ij =

∫ 1

−1

d2Bi(t)

dt2

d2Bj (t)

dt2
dt. (6)

Defined this way, the Tikhonov matrix directly penalizes
the integrated squared second derivative of the exchange
fit for finite regularization strength. This can be understood
as penalizing a measure of nonsmoothness of the fitted
exchange enhancement factor. In effect, the � matrix scales the
regularization strength acting on each exchange basis function,
such that higher-order basis functions are suppressed when

minimizing the cost function. This leads to a model selection
preference for solution vectors with small coefficients for
higher-order polynomials, unless they are essential for obtain-
ing a satisfactory fit. Physically, it is very reasonable to require
Fx(s) to be a smooth and preferably injective function of s,
and significantly nonsmooth exchange solutions have been
shown to degrade transferability of fitted exchange functionals
to systems outside the training data.77 The correlation part of �

has one in the diagonal and zeros in the off-diagonal elements.
Since � acts in the transformed t(s) space, the transformation
in Eq. (2) causes the regularization penalty on exchange to be
strongest in the large-s regime, where information from the
data matrix about the optimum behavior of Fx(s) is expected
to be scarce.76,78

In order to minimize the cost function in Eq. (5), it is
transformed by �−1. Ones are therefore inserted in the first
two diagonal elements of � to avoid numerical issues. The
solution vector ai that minimizes Ci is written as

ai = �−1(X′
i

T X′
i + L2ω2

i

)−1(
X′

i

T yi + ω2L2a′
p

)
, (7)

where X′
i = Xi�

−1, a′
p = �ap, and L2 is the identity matrix

with zeros in the first two diagonal elements. Singular value
decomposition of X′

i
T X′

i is used to calculate the inverse matrix.
The LDA and PBE correlation coefficients in the XC model
are constrained to be between 0 and 1, implying αc ∈ [0,1]
for the correlation coefficient in Eq. (4). In the cases that this
is not automatically fulfilled, it is enforced by recalculating
the solution while fixing αc to the nearest bound of the initial
solution.

The exchange part of the prior vector is chosen as the
linear combination of the order 0 and 1 polynomial basis
functions that fulfills the LDA limit at s = 0 and the LO
bound for s → ∞. With the exchange basis transformation
in Eq. (2), the prior for exchange is quite close to the PBE
exchange enhancement factor. For ω2 → ∞, we therefore
nearly recover PBE exchange, while lower regularization
strengths allow increasingly nonsmooth variations away from
this prior solution. The optimum model is expected to include
at least some semilocal correlation,31 so the origo of correlation
is αc = 0.75.

As previously mentioned, the optimum regularization is
found by minimizing the estimated prediction error for varying
ω2. Bootstrap resampling of the data matrix with the .632
estimator75,79 is used. It is defined as

EPE.632 =
√

0.368 · êrr + 0.632 · Êrr, (8)

where êrr is the variance between the target data and the
prediction by the optimal solution ai , and Êrr measures the
variance on samples of data to which solutions were not fitted
in the resampling. Both are determined as a function of ω2,
and Êrr is given by

Êrr = 1

Nμ

∑
μ

1

Ns|μ/∈s

∑
s|μ/∈s

(xμbs − yμ)2, (9)

where μ is an entry in the data set, Nμ the number of data
points, s a bootstrap sample of Nμ data points, and Ns|μ/∈s the
number of samples not containing μ. The parentheses calculate
the difference between the prediction xμbs of the data point μ

by the best-fit coefficient vector bs and the μth target value yμ.
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TABLE I. Model selection results of individually training the XC model of Eq. (4) to 10 different data sets. Meff is the effective number of
parameters in a model [see Eq. (21)]. The s = 0 and s → ∞ limits of the obtained exchange enhancement factors are also shown. MSD, MAD,
and STD are mean signed, mean absolute, and standard deviation, respectively, all in meV. Note that these are non-self-consistent results.

αc Meff Fx(0) Fx(∞) MSD MAD STD

CE17 0.90 4.7 0.97 2.15 −10 96 116
RE42 1.00 4.2 1.06 1.21 19 168 207
DBH24/08 0.00 3.7 1.14 3.14 1 116 142
G2/97 0.27 7.2 1.10 2.53 −13 109 149
Sol34Ec 0.00 7.7 0.97 1.25 −4 168 208
S22x5-0.9 0.81 3.2 0.96 1.68 0 9 11
S22x5-1.0 0.82 3.1 0.98 1.87 0 8 10
S22x5-1.2 0.40 5.7 1.04 2.38 0 4 6
S22x5-1.5 0.85 4.0 1.02 1.91 −1 3 4
S22x5-2.0 1.00 3.3 0.95 1.37 2 3 3

The best-fit solution is found by minimizing the cost function
with the data in sample s only.

In the bootstrap resampling procedure, 500 randomly
generated data samples are selected independently for each ω2.
The regularization strength that minimizes the .632 estimator is
found by a smooth fitting of the slightly scattered estimator plot
near the minimum. To properly regularize the S22x5 subsets
with long interaction distances, a condition Fx(s = ∞) � 1 is
enforced.

3. Individually trained XC models

Table I and Fig. 1 show details and statistics for the
optimized XC models obtained when the procedure outlined
above is applied to molecular, solid state, surface chemical, and
vdW dominated energetics. Each model is therefore trained
on a single materials property only, and their features differ
significantly.

The DBH24/08 set appears to favor GGA exchange that
substantially violates the LDA limit [Fx(0) = 1.14] along
with inclusion of full PBE correlation (αc = 0; no LDA
correlation). The model furthermore overshoots the LO bound
F LO

x = 1.804 significantly [Fx(∞) = 3.14]. The XC model
optimized to the G2/97 set shows similar trends with respect
to GGA exchange and PBE correlation, but is less extreme.

0 1 2 3 4 5
s

0

1

2

F
x

LO

LDA
CE17
RE42
DBH24/08
G2/97

Sol34Ec
S22x5-0.9
S22x5-1.0

S22x5-1.2
S22x5-1.5
S22x5-2.0

FIG. 1. (Color online) Exchange enhancement factors of the
individually trained XC models listed in Table I.

In the other end of the spectrum is the model optimized to
the Sol34Ec cohesive energies. These favor GGA exchange
starting out slightly below Fx = 1, then reaching a maximum
at s ≈ 2, and finally declining slowly towards Fx = 1.25.
Best agreement with experimental cohesive energies is found
with full PBE correlation in addition to nonlocal correlation.
The occurrence of a maximum in the exchange enhancement
factor should, however, not be overemphasized. It has been
shown76,78 that only small GGA exchange contributions to
chemical and solid state binding energetics can be attributed
to reduced density gradients above 2.5. In the region of large
s, where the smoothness criterion on exchange is strongly
enforced, the regularization term in the cost function [Eq. (5)]
will therefore be dominant in determining the solution for such
systems. The regularization may therefore well determine the
behavior of Fx(s) for large density gradients.

For the remaining data sets in Table I, the optimized XC
models appear reasonable, with all exchange enhancement
factors starting out near the LDA limit. It is illustrative to
investigate how the XC models perform for data sets on
which they were not trained. The standard deviation is a
natural measure of performance. Defining the relative standard
deviation rSTD on some data set with some XC model, as
the STD obtained by that model divided by the STD of the
model that was fitted to that data set, rSTD is a measure
of transferability. Figure 2 shows a color map of the rSTD
for all 10 training data sets with all 10 trained models. The
diagonal from bottom left to top right is, by definition, ones.
In a background of blue and yellow-green squares, the map
features two distinct areas of mostly reddish squares. To
the far right, the S22x5-2.0 model yields rSTD > 5 for all
other sets than DBH24/08, and rSTD ≈ 28 for S22x5-0.9.
Furthermore, a 5 × 4 square in the top left corner illustrates that
XC models trained on chemical or solid state data sets perform
significantly worse on vdW–type energetics than models fitted
to the latter. It is also interesting to see that the S22x5-2.0
rSTDs are largely unaffected by changing XC models. With
little or no density-density overlap between many of the
S22x5-2.0 complexes, the constant nonlocal correlation in all
10 models is likely the main XC contribution to intermolecular
binding.

In summary, the deviation statistics in Table I illustrate that
the XC model space considered here most certainly spans the

235149-5



JESS WELLENDORFF et al. PHYSICAL REVIEW B 85, 235149 (2012)

C
E

17

R
E

42

D
B

H
24

/0
8

G
2/

97

S
ol

34
E

c

S
22

x5
-0

.9

S
22

x5
-1

.0

S
22

x5
-1

.2

S
22

x5
-1

.5

S
22

x5
-2

.0

Training datasets

CE17

RE42

DBH24/08

G2/97

Sol34Ec

S22x5-0.9

S22x5-1.0

S22x5-1.2

S22x5-1.5

S22x5-2.0

Te
st

da
ta

se
ts

1

2

3

5

9

16

28

FIG. 2. (Color online) Color map of the relative standard devia-
tions obtained when non-self-consistently applying the XC models
found individually for each training data set, listed on the abscissa,
to all 10 training data sets along the ordinate.

model degrees of freedom necessary to obtain well-performing
density functionals with smooth exchange enhancement
factors and sound correlation components. However, a high
degree of transferability between the data sets should not be
expected for several of the models.

B. Several materials properties

Fundamentally, a compromise has to be made between
how well different materials properties are reproduced by the
same semiempirical density functional. This is expressed as
a compromise between how well the functional quantitatively
performs on different training data sets. What the compromise
should be can only be determined by the target applications
of the functional, and one challenge is to make this choice as
explicit as possible. This section presents one route towards a
methodology for optimizing an XC model to simultaneously
describe several different materials properties. First, the nature
of the model compromise is illustrated for the case of
simultaneously fitting two data sets using a summed cost
function with varying weights on the two sets. However, in
the end, a product cost function is found more convenient for
determining the optimum weights according to the directions
in model space favored by different data sets.

1. Model compromise

Consider first the problem of simultaneously fitting two
data sets, and let the model compromise be described through
the total cost function, given as the sum of the two individual
cost functions:

�(a) = W1C1(a) + W2C2(a), (10)

where Wi is a weight on data set i. The coefficient vector
solution b that minimizes �(a) is found by setting the

derivative to zero: Since the summed cost function is quadratic
in a, as the individual cost functions Ci are, it may be expressed
in terms of the individual solutions ai as

�(a) =
∑
i=1,2

Wi

(
C0

i + 1

2
(a − ai)

T Hi(a − ai)

)
, (11)

where C0
i = Ci(ai) is the minimized cost of data set i, and

Hi is the Hessian of Ci(a). The minimizing solution b is thus
found from the individual solutions ai as

b =
(∑

i=1,2

WiHi

)−1 (∑
i=1,2

WiHiai

)
. (12)

However, a principle for guiding the choice of weights is
needed.

Let us consider establishing a compromise based on explicit
principles. The regularized cost functions for each training
data set Ci(a) contain information of the costs associated with
deviating from the individually found model solutions ai along
all directions in model space. The individual costs all increase
when moving away from ai due to deterioration of the fits,
increased overfitting, or a combination of both. Define now
the relative cost for each data set, rCost[ i ], as the individual
cost for set i evaluated at the compromising solution b relative
to the individual cost at ai , hence

rCost[ i ] = Ci(b)

Ci(ai)
= Ci(b)

C0
i

� 1. (13)

Thus defined, the relative cost for each training data set is a
simple measure of how unfavorable it is for each data set to be
fitted by the compromising solution b instead of the individual
solutions ai .

The main panel of Fig. 3 illustrates XC model compromises
between the G2/97 and S22x5-1.0 data sets. The curve maps
out the relative costs on both data sets obtained from model
solutions b when systematically varying the weights in �(a).
The weight fraction f is introduced (see caption of Fig. 3).
A wide range of poorly compromising models can obviously
be produced, sacrificing a lot of relative cost on one set while
gaining little on the other. However, if both materials properties
represented by the two data sets are considered important,
the optimum weightening is somewhere midway between the
asymptotic extrema.

The inset in Fig. 3 shows how the product of the relative
costs varies with f . To the right along the abscissa, where
the fraction increasingly favors the G2/97 set, the rCost
product increases rapidly. To the left, the increase is much
smaller, but a minimum is located in-between. At least one
intermediate minimum is always present since the slopes in
the two asymptotic regions are −∞ and 0, respectively. This
property is induced by the variational property around the
two original minima of the individual cost functions. Similar
conclusions apply to any combination of two or more data sets
that do not favor the same directions in the incomplete model
space.

We find in general that the condition of minimizing the
product of relative costs is well suited for choosing cost
function weights for arbitrary numbers of training data sets, if
the aim is a general-purpose model. This condition, which
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FIG. 3. (Color online) Main panel: XC model compromises
between the G2/97 and S22x5-1.0 data sets illustrated in terms of
relative costs (rCost) for both data sets when the weight fraction f =
W[G2/97]/W[S22x5-1.0] is varied and the summed cost function
Eq. (10) is minimized. A range of compromising solutions are
obtained, many of which are essentially fitting one data set only
(rCost ≈ 1) while sacrificing model performance on the other (rCost
� 1). A red dot marks the point of equal rCost. The fact that an XC
model with rCost[G2/97] = rCost[S22x5-1.0] = 1 is not obtainable
illustrates the necessity of a model compromise. Inset: The product
of relative costs display a minimum (blue dot) for a certain weight
fraction.

is identical to minimizing the product of costs, is applied
henceforth.

2. Product cost function

A product cost function for arbitrary numbers of training
data sets is here defined, such that the minimizing solution c
yields a desired minimum of the product of costs. The cost
function is written as

	(a) =
∏

i

Ci(a)wi , (14)

where wi is a constant weight, and Ci is again an individual
cost function. The constant weight is an important feature of
	(a) since it allows inclusion of training data sets which are
perceived significantly less important than others. It is thus
chosen from personal preferences given the purpose of the
functional, and we shall see that c minimizes the product of
costs given this choice.

For the case of two data sets, the stationary point between
the two individual solutions in model space is found by
differentiating the logarithm of 	(a) with respect to a, and
solving ∑

i

wi

Ci

dCi

da
= 0. (15)

Using the method outlined above, the model solution that
minimizes 	(a) is found in terms of the individual solutions
as

c =
(∑

i

wi

Ci

Hi

)−1 (∑
i

wi

Ci

Hiai

)
, (16)

where Ci = Ci(c), and wi simply scales the individual costs.
We see that this solution corresponds to letting Wi in Eq. (11)
equal wi/Ci . Thus, minimizing the product of costs has
introduced a natural weight C−1

i , while wi still leave room
for deliberately biasing the model solution.

From here on, the product solution is therefore used to find
the desired XC model solution: Since Ci is evaluated at c, the
optimum solution is found iteratively, using C−1

i as an iterator
while searching for a converged minimum of the product cost
function, given the constant weights wi .80

3. BEEF–vdW density functional

The BEEF–vdW exchange-correlation functional was de-
signed using the set of weights w listed in Table II. In principle,
these should all equal one, however, correlations between some
of the data sets have led us to lower the constant weight
on some of them: Since the RE42 set is based on G2/97
molecules, the data in RE42 are correlated with some of
the data in G2/97. Both weights were therefore lowered to
0.5. The same reasoning applies to the S22x5 subsets, where
the same complexes are found in all the five sets, albeit at
different interaction distances. A weight of 1/5 = 0.2 on each
S22x5 subset would therefore be natural, but for reasons of
performance of the final functional, constant weights of 0.1
were chosen. The prior vector was the same for the combined
functional as for the individual models.

The resulting model compromise is also tabulated in
Table II, showing the effective data-set weight w/C, rCost,
and rSTD for all data sets used in model training. It is clearly
seen that especially the S22x5-0.9 interaction energies are hard
to fit simultaneously with the other data sets within the XC
model space employed here: The relative cost for the set is
high, allowing the model to adapt mostly to the other data sets
by lowering w/C for this set. This is furthermore reflected in
the rSTD of 5.4, indicating that the BEEF–vdW performance
on this data set is significantly worse than obtained in the
individual fit to the S22x5-0.9 systems reported in Table I.
Even so, the remaining S22x5 subsets appear to share XC

TABLE II. The BEEF–vdW model compromise. The effective
weight in determining the XC model solution is w/C for each data
set, as iteratively found from minimizing the product cost function
[Eq. (14)]. The relative standard deviation (rSTD) is the ratio of the
STD at the BEEF–vdW compromise to the STD at the regularized
individual solution in Table I. The relative costs (rCost) are defined
similarly, but includes regularization [see Eq. (13)].

w w/C rCost rSTD

CE17 1.0 1.80 1.7 1.3
RE42 0.5 0.62 2.5 1.8
DBH24/08 1.0 0.65 4.9 2.3
G2/97 0.5 0.62 2.6 1.6
Sol34Ec 1.0 0.43 7.5 2.8
S22x5-0.9 0.1 0.01 28.6 5.4
S22x5-1.0 0.1 0.04 9.1 2.9
S22x5-1.2 0.1 0.09 3.5 2.1
S22x5-1.5 0.1 0.08 4.1 2.1
S22x5-2.0 0.1 0.18 1.8 1.5
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TABLE III. Expansion coefficients am for the BEEF–vdW Leg-
endre exchange basis functions of order m. The correlation mixing
parameter, αc in Eq. (4), is 0.6001664769.

m am m am

0 1.516501714 × 100 15 −8.018718848 × 10−4

1 4.413532099 × 10−1 16 −6.688078723 × 10−4

2 −9.182135241 × 10−2 17 1.030936331 × 10−3

3 −2.352754331 × 10−2 18 −3.673838660 × 10−4

4 3.418828455 × 10−2 19 −4.213635394 × 10−4

5 2.411870076 × 10−3 20 5.761607992 × 10−4

6 −1.416381352 × 10−2 21 −8.346503735 × 10−5

7 6.975895581 × 10−4 22 −4.458447585 × 10−4

8 9.859205137 × 10−3 23 4.601290092 × 10−4

9 −6.737855051 × 10−3 24 −5.231775398 × 10−6

10 −1.573330824 × 10−3 25 −4.239570471 × 10−4

11 5.036146253 × 10−3 26 3.750190679 × 10−4

12 −2.569472453 × 10−3 27 2.114938125 × 10−5

13 −9.874953976 × 10−4 28 −1.904911565 × 10−4

14 2.033722895 × 10−3 29 7.384362421 × 10−5

model space with the data sets representing formation and
rupture of interatomic bonds to a significantly greater extent.
Thus, accurate description of the balance of strong and weak
interactions in the S22x5-0.9 complexes is nearly incompatible
with at least one of the other sets of materials properties, when
demanding well-behaved exchange and correlation functionals
in the present model space.

Table III lists the BEEF–vdW expansion coefficients. The
correlation functional consists of 0.6 LDA, 0.4 PBE, and 1.0
nonlocal correlation. The qualitative shape of the BEEF–vdW
exchange enhancement factor is shown in Fig. 4, with s = 0
and s → ∞ limits of 1.034 and 1.870, respectively. Thus,
BEEF–vdW exchange does not exactly obey the LDA limit for
s = 0, but is 3.4% higher. The enhancement factor is above
most GGA exchange functionals up to s ≈ 2.5, from where it
approaches the LO bound with a small overshoot in the infinite
limit.
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FIG. 4. (Color online) The BEEF–vdW exchange enhancement
factor compared to those of a few standard GGA exchange func-
tionals. The corresponding BEEF–vdW correlation functional is
composed of 0.6 LDA, 0.4 PBE, and 1.0 nonlocal correlation.

The lack of exact fulfillment of the LDA limit for exchange
indicates a conflict between this limit, the training data, and the
employed preference for smooth exchange models. The G2/97
and DBH24/08 chemical data sets are found to give particular
preference to exchange enhancement models with Fx(0) ≈
1.1, and enforcing Fx(0) = 1.0 for these sets leads to severely
nonsmooth exchange solutions for s → 0. Similar behavior
was found in Ref. 77. Note that MGGA approximations
are able to achieve exchange models with Fx(0) �= 1.0 for
densities different from the UEG, while still obeying the LDA
limit for UEG-like densities. The BEEF–vdW Fx also has
small “bump” at s ≈ 1.3. This is not essential to the quality
of the model and is not expected to harm its transferability.
However, completely removing such features requires overly
strong regularization.

VI. ENSEMBLE ERROR ESTIMATION

A normal DFT calculation does not provide any information
about the uncertainty of the result from using an approximate
XC functional. One method to obtain an estimate of the
uncertainty is performing several calculations using different
functionals, and observe the variations in the prediction of the
quantity of interest. Another more systematic approach is to
use an ensemble of functionals designed to provide an error
estimate, as discussed in Ref. 81. This method is applied to
the BEEF–vdW model, and the adaptation is briefly presented
here.

Inspired by Bayesian statistics,73 we define a probability
distribution P for the model parameters a given the model θ

and training data D:

P (a|θD) ∼ exp[−C(a)/τ ], (17)

where C(a) is the cost function, and τ is a cost “temperature.”
Given the data D, a model perturbation δa has a certain
probability associated with it, and this defines an ensemble
of different XC functionals. The temperature is to be chosen
such that the spread of the ensemble model predictions of
the training data reproduces the errors observed when using
BEEF–vdW self-consistently. This approach to constructing
the probability distribution is closely related to the maximum
entropy principle.77,82

The ensemble is defined through a Hessian scaled with the
temperature. The Hessian is calculated directly from

H = 2
N∑
i

wi

Ci(ap)
�−1

(
X′

i

T X′
i + ω2

i L2
)
�−1T

, (18)

where the sum is over training data sets. The temperature is
related to the effective number of parameters in the model,
calculated from the effective regularization

ω2
eff =

N∑
i

wi

Ci(c)
ω2

i , (19)

where ω2
i are the regularization strengths for the individual data

sets. Additionally, diagonalization of the combined square of
the transformed data matrix

′ = VT

(
N∑
i

wi

Ci(c)
X′

i

T X′
i

)
V, (20)
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where ′ contains the eigenvalues along the diagonal and V
the eigenvectors, allows the effective number of parameters
left in the model after regularization, Meff , to be computed as

Meff =
M∑
m

′
m

2

′
m

2 + ω2
effL

2
m

. (21)

Since Meff = 7.11 in the BEEF–vdW model compromise,
more than 75% of the initially 31 model degrees of freedom
have been suppressed by regularization.

The temperature calculation is slightly modified from the
method in Ref. 81 in order to construct an unbiased error
estimation. This reflects that a larger error is expected when
BEEF–vdW is applied to systems not included in the training
data sets. The temperature is therefore calculated as

τ = 2
C(c)

Meff
· Ntot

Ntot − Meff
, (22)

where Ntot is the total number of systems in the training
sets. The second term is close to unity since Ntot � Meff .
An ensemble matrix is now found as

�−1 = τ H−1, (23)

with eigenvalues w2
�−1 and eigenvectors V�−1 .

Finally, using an ensemble of k vectors vk , each of length
M with elements randomly drawn from a normal distribution
of zero mean and variance one, the BEEF–vdW ensemble
coefficient vectors ak are calculated from

ak = V�−1 · 1w�−1 · vk. (24)

The BEEF–vdW ensemble matrix is provided in the Supple-
mental Material.83

An illustration of the BEEF–vdW ensemble is shown in
Fig. 5. For each data point in each data set, this ensemble
may be applied non-self-consistently to BEEF–vdW electron
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FIG. 5. (Color online) Bayesian ensemble of XC functionals
around BEEF–vdW. Main panel: Black solid line is the BEEF–vdW
exchange enhancement factor, while the orange lines depict Fx(s)
for 50 samples of the randomly generated ensemble. Dashed black
lines mark the exchange model perturbations that yield DFT results
±1 standard deviation away from BEEF–vdW results. The inset
shows a histogram of the distribution of correlation parameters in
an ensemble containing 20 000 samples. The distribution is centered
around αc = 0.6.

TABLE IV. Comparison of self-consistent BEEF–vdW standard
deviations to those predicted by the ensemble of functionals around
BEEF–vdW. All energies in meV.

BEEF–vdW Ensemble estimate

CE17 143 209
RE42 372 253
DBH24 331 144
G2/97 242 312
SolEc34 576 436
s22x5-0.9 171 197
s22x5-1.0 94 181
s22x5-1.2 36 137
s22x5-1.5 8 67
s22x5-2.0 5 18

densities. The standard deviation of the ensemble predictions
of a quantity is then the ensemble estimate of the BEEF–
vdW standard deviation on that quantity. The exchange
enhancement ensemble expands after s ≈ 2, where most of the
chemistry and solid state physics have already happened.76,78

The predictive performance of the ensemble has been
evaluated using 20 000 ensemble functionals. In practice,
however, a few thousand ensemble functionals suffice for
well-converged error estimates at a negligible computational
overhead. Estimated standard deviations on the training data
sets are compared to those from self-consistent calculations
in Table IV. The ensemble performance on the data-set level
should be assessed in combination with observing the error
predictions on a system-to-system basis. Figure 6 illustrates the
BEEF–vdW ensemble error estimates for the RE42 molecular
reaction energies, and compares BEEF–vdW results to those
of other functionals. Similar figures for more data sets are
found in the Supplemental Material.83

On the data-set level, the overall predictive performance of
the ensemble is satisfactory. The ensemble standard deviations
in Table IV are slightly overestimated for the G2/97, CE17,
and S22x5-0.9 data sets, while the ensemble underestimates
the errors for RE42, DBH24/08, and Sol34Ec. For the
remaining S22x5 subsets, the error estimates are too large.

Importantly, Fig. 6 illustrates strengths and weaknesses
of the present approach to error estimation. Many of the
reaction energies are accurately reproduced by BEEF–vdW,
and the ensemble estimates a relatively small error on those
data. However, some of the reactions for which BEEF–vdW
yields larger errors are assigned too small error bars. The
water-gas shift reaction CO + H2O→CO2 + H2 is one of
these. The reason for this is indicated by the fact that all tested
GGA, MGGA, and vdW–DF–type functionals yield nearly
identical reaction energies for this reaction. One simply has
to move rather far in XC model space to find a functional
that predicts a reaction energy significantly different from the
BEEF–vdW result. This causes the ensemble to underestimate
the actual error for that reaction. Since the hybrid functionals
appear to break the overall trends observed for the lower-rung
functionals in Fig. 6, inclusion of exact exchange in the
model space might remedy such limitations of the BEEF–vdW
functional and its Bayesian ensemble.
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FIG. 6. (Color online) Deviations � = �rE
DFT − �rE

exp between the RE42 molecular reaction energies calculated using representative
XC functionals and experiment. Color codes are BEEF–vdW: black; GGA: blue; MGGA: green; vdW–DF type: red; and hybrid: yellow.
BEEF–vdW ensemble error estimates are indicated by horizontal error bars. The numbers in the middle column are self-consistent BEEF–vdW
deviations from experiment.

VII. BENCHMARKS

The following is a comparative assessment of BEEF–
vdW and a selection of literature XC functionals of the
LDA, GGA, MGGA, vdW–DF, and hybrid types. These are
listed in Table V. The benchmark data sets used are the
six sets to which BEEF–vdW was trained, except Sol34Ec,

as well as the G3-3, CE27, Sol27Ec, and Sol27LC data
sets. The latter sets were introduced in Sec. II. Statistics
on deviations of computed quantities from experimental
or high-level theoretical references are reported for each
density functional in terms of the mean signed (MSD), mean
absolute (MAD), and standard deviation (STD). The sign
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TABLE V. A selection of density functionals at the LDA (1),
GGA (2), MGGAa (3), vdW–DF (3.5), and hybridb (4) rungs of
Jacob’s ladder.

Type Targetc Ref.

LDA 1 68
PBE 2 General 67
RPBE 2 Chemistry 76
BLYP 2 Chemistry 87, 88
HCTH407 2 Chemistry 46
PBEsol 2 Solid state 43
WC 2 Solid state 89
AM05 2 Solid state 90
TPSS 3 General 91
revTPSS 3 General 44
vdW-DF 3.5 vdW 25
vdW-DF2 3.5 vdW 30
optPBE-vdW 3.5 vdW 33
optB88-vdW 3.5 vdW 33
C09-vdW 3.5 vdW 34
B3LYP 4 Chemistry 92
PBE0 4 Chemistry 93

aAttempts to apply the M06-L (Ref. 47) MGGA were unsuccessful
due to convergence issues for a wide range of systems from almost
all considered data sets. Note that problematics of evaluating MGGA
potentials, especially for the M06 family of functionals, are discussed
in recent literature (Refs. 84–86).
bHybrid functionals have not been applied to extended systems.
cShould be understood as a very general characterization of the main
target of a functional, and does not consider underlying principles of
design.

convention is

deviation = DFT − reference. (25)

Computed deviations for all systems in all data sets considered
are tabulated in the Supplemental Material,83 which also
provides the raw DFT data.

All data are furthermore available online in the Computa-
tional Materials Repository (CMR).95 The repository contains
all information about the individual DFT calculations which
form the basis for the results presented here, including atomic
configurations and GPAW specific parameters. Access to search,
browse, and download these data is provided through the CMR
web interface.96

A. Molecular formation energies

The G2/97 and G3/99 thermochemical test sets have
become standards for validating density functional methods,
and the present calculations are well in line with published
benchmark data94 for these sets. Statistics are reported in
Table VI. Considering first G2/97, the LDA grossly overesti-
mates the molecular formation energies. Significant improve-
ments are found with GGAs, where XC functionals designed
to capture molecular energetics (RPBE, BLYP, HCTH407)
yield STDs below 0.5 eV, while those targeted at solid
state properties (PBEsol, WC, AM05) perform significantly
worse: their MSDs are large and negative, indicating severe

overbinding. The TPSS and revTPSS MGGA approximations
perform quite well on this set.

Turning to the vdW–DF variants, good description of the
G2/97 formation energies is also found for vdW–DF and
vdW–DF2. This, however, is not the case for the optPBE–
vdW, optB88–vdW, and C09–vdW functionals, for which
the GGA exchange components are optimized with vdW
dominated energetics in mind. This approach apparently leads
to intramolecular overbinding, as previously noted in Ref. 31.

For comparison, Table VI also includes statistics for
the B3LYP and PBE0 hybrids. As the wide application of
hybrid XC functionals in the quantum chemistry community
suggests, B3LYP and PBE0 accurately describe molecular
bond energetics, and the B3LYP parametrization is found to
be the best DFA for the G2/97 data set. Table VI furthermore
shows that also the BEEF–vdW functional performs very well
in predicting molecular formation energies. With a MAD
of 0.16 eV, BEEF–vdW is highly accurate on the G2/97
thermochemical set, and even outperforms the PBE0 hybrid
on these systems.

Now, let us switch attention to the G3-3 set of 75 molecules,
which the BEEF–vdW model was not trained on. For most
XC functionals tested here, the average deviations on G3-3
are larger than on G2/97. It is, however, noteworthy that
TPSS, revTPSS, vdW–DF, and vdW–DF2 are exceptions to
this trend. Benchmarking BEEF–vdW on G3-3 validates its
good performance in predicting molecular bond energetics.
This conclusion is underlined by the BEEF–vdW deviation
statistics on the full G3/99 compilation. With a MAD of 0.19
eV, it is the most accurate DFA tested on G3/99, closely
followed by B3LYP. Both MGGA functionals as well as
vdW–DF and vdW–DF2 also perform well on this set.

B. Molecular reaction energies

The last column of Table VI summarizes deviation statistics
for the RE42 data set. Even though the reaction energies are
derived from the G2/97 formation energies, the reaction ener-
gies appear difficult to capture accurately with GGA, MGGA,
and vdW–DF type functionals. None of them yield a STD
less than 0.3 eV. The B3LYP hybrid proves significantly more
accurate in this respect. Interestingly, the optPBE–vdW and
optB88–vdW functionals, which both severely overestimate
the G2/97 formation energies, prove as reliable for calculating
gas-phase reaction energies as the best GGA (RPBE), and
compare well to TPSS and BEEF–vdW.

C. Chemisorption on solid surfaces

Deviation statistics for the CE17 and CE27 data sets are
reported in the first two columns of Table VII. The BEEF–vdW
model was trained on CE17, while CE27 contains 10 extra
entries, mostly covering dissociative H2 chemisorption on late
transition-metal surfaces. With MADs � 0.7 eV, LDA and
the GGAs designed for solid state applications are clearly
overbinding simple adsorbates to solid surfaces (negative
MSDs). The RPBE, BLYP, and HCTH407 functionals are
significantly more reliable for calculation of chemisorption
energies, RPBE performing best with a MAD of 0.11 eV for
both CE17 and CE27. Also, vdW–DF and vdW–DF2 yield
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TABLE VI. Deviation statistics on the G2/97, G3-3, and G3/99 thermochemical data sets, as well as the RE42 set of molecular reaction
energies. All energies in eV.

G2/97 (148) G3-3 (75) G3/99 (223) RE42 (42)

Method MSD MAD STD MSD MAD STD MSD MAD STD MSD MAD STD

LDA −3.69 3.69 4.27 −8.35 8.35 8.78 −5.25 5.25 6.16 −0.55 1.06 1.62
PBE −0.64 0.68 0.84 −1.32 1.32 1.48 −0.87 0.90 1.10 −0.08 0.30 0.42
RPBE 0.25 0.40 0.51 0.94 0.96 1.13 0.48 0.59 0.78 0.11 0.26 0.34
PBEsol −1.69 1.70 2.00 −3.94 3.94 4.14 −2.45 2.45 2.90 −0.29 0.48 0.73
BLYP 0.00 0.32 0.43 0.57 0.62 0.76 0.19 0.42 0.56 0.16 0.29 0.37
AM05 −1.77 1.78 2.07 −4.00 4.00 4.19 −2.52 2.52 2.96 −0.21 0.41 0.62
WC −1.24 1.26 1.51 −2.86 2.86 3.03 −1.79 1.80 2.14 −0.24 0.43 0.65
HCTH407 0.09 0.26 0.35 0.48 0.55 0.65 0.22 0.36 0.47 0.06 0.27 0.35
TPSS −0.22 0.28 0.33 −0.26 0.29 0.33 −0.24 0.28 0.33 0.06 0.25 0.32
revTPSS −0.21 0.28 0.34 −0.24 0.26 0.31 −0.22 0.27 0.33 0.16 0.33 0.43
vdW–DF −0.10 0.24 0.33 0.18 0.24 0.32 −0.01 0.24 0.33 0.24 0.39 0.52
vdW–DF2 −0.15 0.28 0.39 0.11 0.26 0.36 −0.06 0.28 0.38 0.24 0.40 0.54
optPBE–vdW −0.84 0.85 0.98 −1.72 1.72 1.82 −1.14 1.14 1.32 0.06 0.27 0.35
optB88–vdW −1.04 1.04 1.20 −2.22 2.22 2.34 −1.44 1.44 1.68 0.02 0.26 0.34
C09–vdW −1.55 1.55 1.80 −3.55 3.55 3.72 −2.22 2.22 2.61 −0.11 0.33 0.45
B3LYPa 0.05 0.14 0.19 0.36 0.37 0.41 0.15 0.21 0.28 −0.05 0.15 0.22
PBE0a −0.10 0.21 0.28 −0.40 0.44 0.55 −0.20 0.29 0.39 0.13 0.33 0.47
BEEF-vdW −0.02 0.16 0.24 0.19 0.25 0.31 0.05 0.19 0.27 0.14 0.29 0.37

aB3LYP and PBE0 data adapted from Ref. 94.

MADs of 0.20 eV of less on CE27, while the two MGGAs
overbind on average. Again, a significant overbinding is found
for the three exchange-modified vdW–DF flavors. Lastly, it is
seen from the CE17 column in Table VII that BEEF–vdW
is among the DFAs offering most accurate predictions of
chemisorption energies of simple adsorbates on solid surfaces.
Since much of this accuracy is retained when moving to CE27,
good transferability is expected when applying BEEF–vdW
to other types of surface processes involving rupture and
formation of chemical bonds.

D. Molecular reaction barriers

The DBH24/08 reaction barrier heights belong to a class
of systems for which a fraction of exact exchange is known to
increase computational accuracy significantly over GGAs.22,97

This is supported by the DBH24/08 data in Table VII,
where the two hybrids clearly outperform the lower-rung
XC functionals. Considering the corresponding statistics for
BEEF–vdW as well as for the individual DBH24/08 XC model
reported in Table I, where a MAD of 0.12 eV was obtained, it is

TABLE VII. Deviation statistics on the CE17 and CE27 chemisorption energies, DBH24/08 reaction barriers, and the S22x5 interaction
energies of noncovalently bonded complexes. All energies in eV, except S22x5, which is in meV.

CE17 (17) CE27 (27) DBH24/08 (24) S22x5 (110)

Method MSD MAD STD MSD MAD STD MSD MAD STD MSD MAD STD

LDA −1.34 1.34 1.39 −1.33 1.33 1.42 −0.58 0.58 0.73 −50 62 110
PBE −0.42 0.42 0.44 −0.40 0.40 0.43 −0.33 0.33 0.43 76 76 132
RPBE −0.02 0.11 0.13 0.00 0.11 0.14 −0.27 0.27 0.34 138 138 227
PBEsol −0.85 0.85 0.87 −0.85 0.85 0.89 −0.44 0.44 0.56 38 53 85
BLYP −0.04 0.13 0.16 0.02 0.15 0.18 −0.33 0.33 0.39 140 140 218
AM05 −0.70 0.70 0.73 −0.69 0.69 0.73 −0.41 0.41 0.53 99 99 157
WC −0.76 0.76 0.78 −0.76 0.76 0.80 −0.41 0.41 0.52 56 63 105
HCTH407 0.11 0.17 0.22 0.15 0.20 0.30 −0.19 0.21 0.31 115 116 218
TPSS −0.32 0.32 0.37 −0.34 0.34 0.41 −0.35 0.35 0.41 100 100 162
revTPSS −0.38 0.38 0.43 −0.38 0.38 0.45 −0.35 0.35 0.41 92 92 141
vdW–DF −0.05 0.12 0.14 0.04 0.18 0.22 −0.27 0.28 0.34 39 52 87
vdW–DF-2 −0.04 0.13 0.18 0.07 0.20 0.26 −0.30 0.31 0.37 31 33 61
optPBE–vdW −0.39 0.39 0.42 −0.31 0.35 0.40 −0.33 0.33 0.41 −4 21 29
optB88–vdW −0.52 0.52 0.56 −0.44 0.45 0.52 −0.37 0.37 0.45 3 10 15
C09–vdW −0.78 0.78 0.81 −0.73 0.73 0.79 −0.41 0.41 0.50 −5 12 18
B3LYP −0.17 0.17 0.21 111 111 180
PBE0 −0.13 0.15 0.19 71 71 124
BEEF–vdW −0.08 0.12 0.14 −0.01 0.16 0.19 −0.26 0.26 0.33 42 50 88
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clear that the BEEF–vdW model has moved significantly away
from the part of model space favored by gas-phase reaction
barrier heights. Nevertheless, BEEF–vdW is among the best
nonhybrid functionals for such quantities.

E. Noncovalent interactions

The last column of Table VII lists deviation statistics for
the S22x5 interaction energies. As previously found in several
studies30,33,53,59 of the original S22 data set, vdW dominated
interactions are well described by vdW–DF type density
functionals, especially those with an optimized exchange
component. With MADs of 20 meV or less over all 110
points on the 22 potential-energy curves, the optPBE–vdW,
optB88–vdW, and C09–vdW functionals prove highly accurate
in this respect. The vdW–DF2 functional also captures vdW

TABLE VIII. Detailed statistics on the deviations of calculated
S22x5 interaction energies from CCSD(T) benchmarks using van der
Waals density functionals in all five points along the intermolecular
potential-energy curve. Mean signed and mean absolute deviations
are in meV. Mean signed relative (MSRD) and mean absolute relative
(MARD) deviations are also listed. Negatively signed deviation
means overbinding on average.

Method MSD MAD MSRD MARD

d = 0.9
vdW–DF 140 140 198% 198%
vdW–DF2 99 99 143% 143%
optPBE–vdW 29 31 28% 35%
optB88–vdW 17 19 26% 26%
C09–vdW −13 21 −13% 35%
BEEF–vdW 136 137 214% 214%
d = 1.0
vdW–DF 70 71 20% 25%
vdW–DF2 43 44 13% 15%
optPBE–vdW −1 20 −9% 13%
optB88–vdW 5 13 3% 6%
C09–vdW −3 13 1% 6%
BEEF–vdW 72 74 20% 28%
d = 1.2
vdW–DF 4 32 −16% 23%
vdW–DF2 5 13 −2% 7%
optPBE–vdW −25 28 −29% 30%
optB88–vdW −4 13 −6% 9%
C09–vdW −3 13 −8% 11%
BEEF–vdW 6 27 −12% 18%
d = 1.5
vdW–DF −13 15 −39% 40%
vdW–DF2 2 4 4% 6%
optPBE–vdW −20 20 −44% 44%
optB88–vdW −3 6 −12% 13%
C09–vdW −6 11 −26% 28%
BEEF–vdW −5 6 −13% 14%
d = 2.0
vdW–DF −4 4 −20% 20%
vdW–DF2 5 5 34% 34%
optPBE–vdW −5 5 −20% 21%
optB88–vdW 1 2 3% 8%
C09–vdW −2 2 −13% 15%
BEEF–vdW 2 3 27% 28%

interactions well, but the positive MSD signifies that most
of the deviations from the CCSD(T) reference energies stem
from underbinding. For vdW–DF and BEEF–vdW, this is
even more pronounced. None of the tested MGGA or hybrid
DFAs convincingly capture vdW interactions. Only the most
weakly gradient enhancing GGAs (PBEsol, WC, AM05) yield
reasonable statistics. Taking into account the appreciable LDA
overbinding of the S22x5 complexes, what appears to be GGA
functionals capturing long-ranged dispersion is more likely a
case of getting it right for the wrong reasons.

For completeness, Table VIII shows detailed S22x5 statis-
tics for vdW–DF variants and BEEF–vdW. Although per-
forming reasonably well on S22x5 as a whole, the vdW–DF,
vdW–DF2, and BEEF–vdW functionals underestimate the
intermolecular binding energies at shortened binding distances
d = 0.9. Also, at d = 1.0 the exchange-modified vdW–DF
flavors offer a better description, but the difference between
the two groups is much reduced. Concerning computational
accuracy, the vdW–DF2 MSD of 43 meV and MAD of 44 meV
for S22x5-1.0 obtained here compare very well to the MSD
and MAD of 40 and 41 meV, respectively, found in a recent
study59 for a revised S22 data set.

F. Solid state properties

Table IX reports a summary of deviation statistics for
calculations of lattice constants (Sol27LC) and cohesive
energies (Sol27Ec). The lattice constant statistics are in clear
favor of the PBEsol, AM05, WC, and revTPSS functionals.
Their standard deviations are small and the MSDs are close
to 0 Å. On average, however, these remarkably accurate
predictions of equilibrium crystal volumes come at the price
of overestimated cohesive energies.

The picture is opposite for vdW–DF and vdW–DF2. Lattice
constants are overestimated and more so than with any other
XC functional tested, vdW–DF2 yielding a standard deviation
of 0.18 Å. Furthermore, those two DFAs notably underestimate
cohesive energies. The less repulsive exchange functionals of
the modified vdW–DF variants lead in general to statistics
similar to those of PBE and TPSS for the two materials
properties in question. These findings closely match those
reported in recent studies32,78,98–100 assessing the performance
of GGA, MGGA, and vdW–DF type XC functionals for solid
state properties.

Benchmarking finally BEEF–vdW, we find in Table IX that
it performs reasonably well for cohesive energies and lattice
constants, though still predicting softer crystal lattices than
the optimized vdW–DF variants. With BEEF–vdW, these two
bulk materials properties are, however, significantly closer to
agreement with experiments than predictions by vdW–DF,
vdW–DF2, and most of the GGAs designed mainly for
chemistry.

VIII. APPLICATIONS

Two applications of BEEF–vdW to problems of current
interest in the surface science community are here presented:
graphene adsorption on the close-packed Ni(111) surface,
and the trends observed when applying lower-rung density
functionals in calculations of the binding energy of CO to
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TABLE IX. Deviation statistics for the Sol27Ec cohesive energies (eV/atom) and Sol27LC lattice constants (Å). Zero-point vibrational
effects have been removed from both experimental data sets.

Sol27Ec (27) Sol27LC (27)

Method MSD MAD STD MSD MAD STD

LDA 0.89 0.89 1.08 −0.07 0.07 0.10
PBE −0.10 0.27 0.38 0.05 0.06 0.07
RPBE −0.54 0.58 0.71 0.11 0.11 0.13
PBEsol 0.43 0.45 0.63 −0.01 0.03 0.04
BLYP −0.79 0.80 0.89 0.11 0.11 0.14
AM05 0.25 0.36 0.51 0.01 0.03 0.04
WC 0.37 0.41 0.57 0.00 0.03 0.04
HCTH407 −0.59 0.67 0.82 0.08 0.10 0.14
TPSS 0.08 0.27 0.36 0.05 0.05 0.08
revTPSS 0.31 0.37 0.50 0.03 0.04 0.07
vdW–DF −0.54 0.60 0.72 0.12 0.12 0.14
vdW–DF2 −0.58 0.64 0.75 0.12 0.14 0.18
optPBE–vdW −0.12 0.27 0.38 0.06 0.08 0.10
optB88–vdW 0.01 0.25 0.36 0.04 0.08 0.09
C09–vdW 0.42 0.43 0.59 0.01 0.05 0.06
BEEF–vdW −0.37 0.45 0.59 0.08 0.08 0.11

Pt(111) and Rh(111) substrates as well as the surface energy
of those substrates.

A. Graphene adsorption on Ni(111)

The remarkable electronic properties of monolayer
graphene103–105 and its potential application in electronics
technology104,106 motivate investigation of the interactions
between graphene sheets and metallic surfaces. The na-
ture of graphene adsorption on metals is highly metal
dependent,107,108 some surfaces binding graphene only weakly
and others forming strong covalent bonds to the carbon sheet.
The Ni(111) surface belongs to the latter group, graphene
forming a (1 × 1) overlayer at a graphene-metal distance of
d = 2.1 Å.109 Furthermore, a band gap is induced in graphene
upon adsorption, underlining the strong hybridization respon-
sible for changing the electronic structure of the carbon
sheet.110,111

Several theoretical studies have investigated the
graphene/Ni(111) potential-energy curve, with mixed
results.112–118 However, based on RPA calculations, it is by
now established that this particular adsorption process is
a delicate competition between strong interactions close to
the surface and vdW forces further from the surface.101,102

Figure 7 shows calculated PECs for graphene adsorption
on Ni(111) using LDA, MGGA, and vdW–DF type density
functionals, as well as BEEF–vdW. Computational details are
given in the Appendix. Additionally, two sets of RPA data are
shown for comparison, indicating that graphene adsorption
on Ni(111) is characterized by a physisorption minimum
at d = 3.0–3.5 Å and a chemisorbed state at d ≈ 2.2 Å,
the latter in good agreement with experiments.109 However,
as previously found,101,102,116,117 rung 1–3 DFAs, as well
as vdW–DF and vdW–DF2, fail to simultaneously describe
both qualitative features. Conversely, the optPBE–vdW and
optB88–vdW PECs are increasingly closer to RPA data. The
BEEF–vdW PEC shows qualitatively similar features, but the
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FIG. 7. (Color online) Potential-energy curves for graphene
adsorption on the Ni(111) surface. Random phase approximation data
are from Refs. 101 (RPA1) and 102 (RPA2). The gray area indicates
the region spanned by the estimated standard deviations along the
BEEF–vdW PEC.
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local minimum at d = 2.25 Å is very shallow and yields a
positive adsorption energy.

Figure 7 also shows ensemble error estimates along the
BEEF–vdW PEC. Especially two aspects of these are of
interest. First of all, the error bars do not straddle the zero line
for large graphene-metal distances, indicating that confidence
in the presence of a physisorption minimum is high. Second,
the error bars enlarge notably at smaller distances from d =
2.6 Å and inwards, reflecting that these BEEF–vdW data points
are associated with a significantly larger uncertainty. Recalling
how the ensemble error estimate is designed (Sec. VI), the
error estimates indicate that the graphene/Ni(111) PEC is very
sensitive to the choice of XC functional in the chemically
interesting range. Put differently, the ensemble suggests that
we should not trust the BEEF–vdW prediction of a positive
PEC for d < 2.7 Å as a definite result, as the estimated errors
are simply too large in this region of the PEC.

B. Surface chemistry and stability

Chemisorption energies of molecules on surfaces are
obviously important quantities in heterogeneous catalysis and
surface science. However, accurate computation of surface
energies Eγ can be critical as well since minimization of
surface energy is a driving force determining the morphology
and composition of surfaces, interfaces, and nanoparticles.123

GGA density functionals, however, often underestimate Eγ ,
and the GGAs yielding most accurate surface energies also
vastly overbind molecules to surfaces.119 It thus appears that
accurate computation of chemisorption energies on a surface
as well as the stability of that surface is not possible with
the same GGA approximation, underscoring a fundamental
incompleteness of the GGA XC model space.

The issue is here investigated for vdW–DF variants and
BEEF–vdW. Figure 8 shows atop chemisorption energies of
CO on Pt(111) and Rh(111) against surface energies of those
substrates, calculated using GGA, MGGA and vdW–DF type
functionals, and BEEF–vdW with error estimation. These
are compared to RPA results and experimental data. As
previously reported,119,124 the GGA data points fall along an
approximately straight line, which is significantly offset from
the experimental data, thus illustrating the issue discussed
above. This is here shown to be the case for vdW–DF variants
also: The dashed vdW–DF lines are parallel to the solid GGA
lines, and are only slightly offset from the latter, especially for
Rh(111). The vdW–DF and vdW–DF2 data points are quite
close to RPBE. Larger surface energies are found with the
exchange-modified vdW–DF variants, albeit at the expense
of overestimated chemisorption energies. Note that such a
correlation should be expected from Tables VII and IX and
a linear relation between Eγ and the solid cohesive energy.123

Although BEEF–vdW contains the vdW–DF2 nonlocal
correlation functional as an essential component, the former
predicts larger surface energies than the latter without sacri-
ficing accuracy of the CO-metal binding energy. We expect
that this ability of BEEF–vdW to “break” the vdW–DF line
is due to the expanded GGA model space as compared to
vdW–DF, the latter of which pairs nonlocal correlation with
LDA correlation. Significant inclusion of semilocal correlation
in vdW–DF type calculations was also found in Ref. 31 to

0.4 0.5 0.6 0.7 0.8 0.9 1.0

Pt(111) Eγ (eV/atom)

−2.0

−1.9

−1.8

−1.7

−1.6

−1.5

−1.4

−1.3

−1.2

−1.1

C
O

/P
t(

11
1)

Δ
E

(e
V

)

HCTH407
BLYP

RPBE

PBE

AM05

WC

PBEsol

TPSS
revTPSS

C09-vdW

optB88-vdW

optPBE-vdW

vdW-DF
vdW-DF2

BEEF-vdW

RPA
exp

0.5 0.6 0.7 0.8 0.9 1.0 1.1

Rh(111) Eγ (eV/atom)

−2.2

−2.0

−1.8

−1.6

−1.4
C

O
/R

h(
11

1)
Δ

E
(e

V
)

HCTH407

BLYP RPBE

PBE

AM05

WC
PBEsol

TPSS

revTPSS

C09-vdW

optB88-vdW

optPBE-vdW

vdW-DF

vdW-DF2

BEEF-vdW

RPA exp

FIG. 8. (Color online) Atop CO chemisorption energies �E

versus surface energies Eγ for Pt(111) and Ru(111). Red and
blue lines are linear fits to GGA and vdW–DF type data points,
respectively. MGGA data in green and yellow RPA data adapted
from Ref. 119. Estimated standard deviations are indicated by error
bars around the orange BEEF–vdW data points. All points (Eγ ,�E)
inside the gray areas are within one standard deviation from the
BEEF–vdW point for both quantities. Experimental surface energies
from liquid-metal data (Refs. 120 and 121), and experimental CO
chemisorption energies from Ref. 122.

broadly improve accuracy for several materials properties.
The BEEF–vdW error estimates furthermore appear very
reasonable. The experimental CO chemisorption energies are
straddled for both Pt(111) and Rh(111), and the error estimates
along Eγ almost fill out the gap between the GGA lines to
the left and the RPA and C09–vdW surface energies to the
right. Lastly, it is seen from the green TPSS and revTPSS
data points in Fig. 8, as also reported in Ref. 124, that the
third rung of Jacob’s ladder may offer the possibility of quite
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accurate surface energies with only moderately overbound
surface adsorbates.

IX. DISCUSSION

The presented approach to semiempirical DFA develop-
ment fundamentally considers XC functionals as more or less
accurate models of the exact density functional. From this
point of view, the XC model space expansion and model
selection procedure are essential, as are data sets for calibrating
or benchmarking XC models. The concept of an ensemble
of model solutions is intrinsic to the present model selection
procedure. The cost function for a single data set has both weak
(sloppy) and strong (important) eigenmodes in a sufficiently
flexible model space. Regularization is used to suppress the
weak modes in order to facilitate a physically sensible model
and maximize transferability. The regularized ensemble thus
contracts around the strong modes, and the optimum model
can, to some extent, be regarded an average of the ensemble
solutions. Without Tikhonov regularization of exchange, all
XC approximations obtained in this work would have 31
parameters and wildly oscillating GGA exchange solutions,
corresponding to a least-squares fit of an order-30 polynomial
in the reduced density gradient. Instead, well-behaved models
with 3–8 effective parameters are obtained.

It is important to note that model selection is intricately
connected to the model space. The reduced density gradient
transformation t(s) defines the expansion of GGA exchange. It
thereby also determines how hard the regularization punishes
nonsmoothness in different regions of s space, as well as
how the exchange part of the prior solution transforms to s

space. As previously stated, the prior is the origo for the XC
model solution. Many different priors may be chosen, but we
find it convenient that it transforms to a reasonable exchange
approximation. Then, decreasing regularization from infinity
towards zero leads to increasingly nonsmooth variations away
from this initial guess.

The linear combination correlation model space of local,
semilocal, and nonlocal correlation was anticipated31 to enable
highly accurate calculations for several, if not all, of the data
sets considered. The individually trained models in Table I con-
firm this, some sets favoring full LDA correlation in addition
to nonlocal ditto, other sets preferring full PBE correlation,
while most sets are fitted best by a combination of both.
The corresponding exchange functionals are also significantly
different, so the sets of strong eigenmodes for the regularized
cost functions are very materials property dependent. We argue
here that explicitly considering transferability among different
materials properties is important for producing a single DFA
composed of the most important modes for the combined data
sets, that is, the optimum model compromise must be found.

One approach to this task is minimizing a weighted sum
of the individual cost functions. This is somewhat similar
to weighted training functions used in least-squares-fitting
procedures, but with the critically important addition of regu-
larization. The summed cost function is elegantly minimized
using the individual solutions only, but gives no information
regarding how the weights should be chosen. Clearly, an XC
model trade-off is inevitable, so the weights should be the
ones yielding an optimum compromise. For just two data sets,

a wide range of poor choices of weights can be made, and the
complexity of this choice increases with the number of data
sets. In line with the statistical approach taken in the bulk of
this work, we believe that such choice should not be made
based on experience or intuition alone. Rather, a systematic
methodology for locating one or more points in XC model
space, where a well-behaved and properly compromising
solution resides, is desirable. The condition of minimizing
the product of relative costs for each data set is a reasonable
requirement for the model solution, philosophically as well as
in practice: The condition essentially states that if changing
the solution vector a to a + δa gains a larger relative reduction
in cost on one materials property than is lost in total on all
other properties considered, then a + δa is preferred.

Extensive benchmarking of BEEF–vdW against popular
GGA, MGGA, vdW–DF type, and hybrid XC functionals
shows that the developed methodology is able to produce truly
general-purpose XC approximations. Results are summarized
in Fig. 9, where error statistics for representative functionals
on gas-phase chemical, surface chemical, solid state, and
vdW dominated data sets are illustrated by bars. The BEEF–
vdW model compromise is indeed a very agreeable one.
For none of the data sets is the average BEEF–vdW error
among the largest, while several other functionals are highly
biased towards certain types of materials properties. This is
especially true for vdW–DF2 and optB88–vdW, displaying
severely erroneous description of binding energetics for bulk
solids and molecules, respectively. Furthermore, the figure
shows an overall performance equivalence of BEEF–vdW
and the original vdW–DF for gas-phase and surface chemical
properties, although the former more accurately predicts
bonding in the solid state. Further testing of the functional
might, however, prove interesting. Systems such as ionic
solids, semiconductors, and transition-metal complexes are not
included in the present benchmark, nor are the BEEF–vdW
predictions of molecular ionization potentials and electron
affinities tested. This will be addressed in future work.

We emphasize the strengths and weaknesses of the BEEF–
vdW ensemble error estimate. The ensemble functionals are
based on a probability distribution for the model parameters,
which limits the ensemble to the BEEF–vdW model space
only. This space is incomplete in the sense that it can not
accommodate a physically reasonable XC model yielding zero
error on all systems in all data sets considered, hence the
model trade-off. The BEEF–vdW computational errors are in
general reasonably well estimated, but the energetics of certain
systems is rather insensitive to the choice of XC approximation
within the GGA, MGGA, and vdW–DF type model spaces.
This leads to relatively small error estimates for these systems,
even though the actual computational error may be substantial.

Meanwhile, we find BEEF–vdW and the Bayesian ensem-
ble highly useful in surface science related applications. The
fact that BEEF–vdW appears to yield more accurate surface
energies than GGA or vdW–DF type XC approximations
of similar accuracy for adsorbate-surface bond strengths is
very promising. The error estimate proves very useful in this
case, even though the kinetic energy density of MGGA type
functionals may be needed in the model space if the surface
energy error bars are to span the experimental data. This again
illustrates that the ensemble does not give information beyond
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(RE42), bulk solid cohesive energies (Sol27Ec) and lattice constants (Sol27LC), and interaction energies of noncovalently bonded complexes
(S22x5). B3LYP calculations were not performed for bulk solids nor the extended CE27 systems.

its model space, as it is solely based on it. However, the
error estimate carries important information in the BEEF–
vdW study of graphene adsorption on Ni(111). The PEC is
qualitatively wrong in the region of chemical bonding for this
intricate case of “solid state adsorption,” and the estimated
errors indeed indicate that this part of the BEEF–vdW PEC
is poorly determined. BEEF–vdW calculations can therefore
not predict with any confidence whether graphene should form
chemical bonds to the Ni(111) substrate in a low-temperature
experiment. It is encouraging that the ensemble is able to
capture this.

X. SUMMARY AND CONCLUSIONS

We have presented and evaluated a machine-learning-
inspired approach to semiempirical density functional de-
velopment. Focus has been on general applicability of the
resulting density functional to both strong and weak interac-
tions in chemistry and condensed matter physics, including
surface chemistry. Transferability and avoiding overfitting are
thus key issues, leading the presented methodology to rely
primarily on (1) a variety of data sets chosen to represent
vastly different interactions and bonding situations, (2) a
very flexible XC model space expansion at a computationally
feasible GGA + vdW level of approximation, and (3) XC
model selection procedures designed to “tame” the flexible
model space and yield XC approximations which properly
compromise between describing different types of physics and
chemistry.

To conclude, we have shown that regularization and cross-
validation methods are very useful for semiempirical density
functional development in highly flexible model spaces. It
is furthermore clear that computationally efficient general-
purpose functionals, targeted at accurately describing sev-
eral physically and chemically different materials properties,

necessarily must compromise between those properties in an
incomplete XC model space. However, the optimum model
trade-off is not easily found from simple intuition. A simple but
powerful principle for determining the position in model space
of a properly compromising XC approximation is therefore
formulated.

Application of the developed methodology has yielded the
BEEF–vdW density functional, and a benchmark of BEEF–
vdW against popular GGA, MGGA, vdW–DF type, and hybrid
XC functionals for energetics in chemistry and condensed
matter physics has been conducted. This benchmark validates
BEEF–vdW as a general-purpose XC approximation, with
a reasonably reliable description of van der Waals forces
and quantitatively accurate prediction of chemical adsorption
energies of molecules on surfaces, while avoiding large
sacrifices on solid state bond energetics. This should make
it a valuable density functional for studies in surface science
and catalysis.

Furthermore, an error estimation ensemble of functionals
around BEEF–vdW comes out naturally of the developed
fitting methodology. The ensemble is designed to provide an
easily obtainable estimate of the XC approximation error. It
is based on a probability distribution for the XC model pa-
rameters, and has been applied in the BEEF–vdW benchmark
and qualitative assessments for molecular surface adsorption,
surface energies, and graphene adsorption on Ni(111).

Finally, the methods developed here should lend themselves
well to other XC model spaces also, including the MGGA level
of theory or self-interaction correction schemes.
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APPENDIX: DETAILS OF DATA SETS AND
COMPUTATIONS

1. G2/97 and G3/99

In accordance with the procedure of Ref. 49, the G3/99
formation enthalpies are corrected for thermal and vibrational
contributions using thermal corrections and zero-point ener-
gies from Refs. 49 and 94. The G3/99 set is divided into three
subsets denoted G3-1, G3-2, and G3-3 comprising 55, 93, and
75 molecules, respectively. The G3-1 and G3-2 subsets con-
stitute G2/97. The G3-3 subset contains a significant fraction
of larger carbon-rich molecules as compared to G2/97.

Theoretical G3/99 formation energies �f E are calculated
from the difference between molecular and atomic total
energies as

�f E = EM −
∑
A

EA, (A1)

where A runs over all atoms in the molecule M , while EM and
EA are ground-state molecular and atomic total energies at
0 K, respectively.

2. RE42

The 42 molecular reaction energies �rE of the RE42 set are
listed in Table X. Theoretical reaction energies are calculated
from the total energies of G2/97 molecules after full geometry
relaxation as

�rE =
∑
P

EP −
∑
R

ER, (A2)

where the sums run over reactant (R) and product (P )
molecules.

3. DBH24/08

Forward (Vf ) and backward (Vb) benchmark reaction
barriers from high-level theory or experiments are adapted
from Ref. 50. Ground- and transition-state molecular ge-
ometries determined from quadratic configuration interaction
calculations with single and double excitations (QCISD) are
from Ref. 136. Density functional barrier heights are computed
from the transition-state total electronic energy (Ets) and the
initial (Ei) and final (Ef ) state total energies as

Vf = Ets − Ei, Vb = Ets − Ef . (A3)

4. S22x5

The original S22 publication51 from 2006 reported
CCSD(T) interaction energies of 22 noncovalently bonded
complexes with extrapolation to the complete basis-set (CBS)
limit. However, different basis sets were used for small and
large complexes. Geometries were determined from MP2 or
CCSD(T) calculations. Later works61,137 have revised the S22
interaction energies, employing larger and identical basis sets
for all complexes without changing the geometries. For the

TABLE X. Gas-phase molecular reactions and reaction energies
(in eV) constituting the RE42 data set. The experimental reaction
energies are compiled from the G2/97 static-nuclei formation
energies. �rE < 0 means exothermic.

Reaction �rE

N2 + 2H2 → N2H4 0.41
N2 + O2 → 2NO 1.88
N2 + 3H2 → 2NH3 −1.68
O2 + 2H2 → 2H2O −5.45
N2 + 2O2 → 2NO2 0.62
CO + H2O → CO2 + H2 −0.31
2N2 + O2 → 2N2O 1.57
2CO + O2 → 2CO2 −6.06
CO + 3H2 → CH4 + H2O −2.80
CO2 + 4H2 → CH4 + 2H2O −2.50
CH4 + NH3 → HCN + 3H2 3.32
O2 + 4HCl → 2Cl2 + 2H2O −1.51
2OH + H2 → 2H2O −6.19
O2 + H2 → 2OH 0.74
SO2 + 3H2 → SH2 + 2H2O −2.62
H2 + O2 → H2O2 −1.68
CH4 + 2Cl2 → CCl4 + 2H2 0.19
CH4 + 2F2 → CF4 + 2H2 −8.60
CH4 + H2O → methanol + H2 1.33
CH4 + CO2 → 2CO + 2H2 3.11
3O2 → 2O3 2.92
methylamine + H2 → CH4 + NH3 −1.15
thioethanol + H2 → H2S + ethane −0.71
2CO + 2NO → 2CO2 + N2 −7.94
CO + 2H2 → methanol −1.48
CO2 + 3H2 → methanol + H2O −1.17
2 methanol + O2 → 2CO2 + 4H2 −3.11
4CO + 9H2 → trans-butane + 4H2O −9.00
ethanol → dimethylether 0.53
ethyne + H2 → ethene −2.10
ketene + 2H2 → ethene + H2O −1.92
oxirane + H2 → ethene + H2O −1.56
propyne + H2 → propene −2.00
propene + H2 → propane −1.58
allene + 2H2 → propane −3.64
iso-butane → trans-butane 0.08
CO + H2O → formic acid −0.39
CH4 + CO2 → acetic acid 0.28
CH4 + CO + H2 → ethanol −0.91
1,3-cyclohexadiene → 1,4-cyclohexadiene −0.01
benzene + H2 → 1,4-cyclohexadiene −0.01
1,4-cyclohexadiene + 2H2 → cyclohexane −2.94

larger complexes, the reported basis-set effects are significant,
so we use here the CCSD(T)/CBS energies of Takatani et al.61

as the current best estimate of the true S22 interaction energies.
The S22x5 (Ref. 52) CCSD(T)/CBS potential-energy

curves were reported more recently. The computational proto-
col was, however, not updated from that used for S22, so we
expect the aforementioned interaction-energy inaccuracies to
persist for S22x5. In order to shift the equilibrium point on each
PEC to the revised S22 energies, and approximately correct
the remaining data points, a modification of the (possibly)
slightly inaccurate S22x5 CCSD(T) interaction energies is here
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introduced as

Ed
int := εd

int × E1.0
int

ε1.0
int

, (A4)

where Ed
int and εd

int denote modified and original S22x5
energies at the relative intermolecular distance d, respectively.
For E1.0

int = ε1.0
int , Eq. (A4) obviously reduces to Ed

int = εd
int for

all distances. The obtained corrections to εd
int are listed in

Table XI. The maximum correction of 11.4% amounts to
25.6 meV for the indole-benzene complex in a stacked
geometry, while the total mean signed correction to all the
110 interaction energies is 0.1 meV.

The modified CCSD(T) interaction energies are used
throughout this study for the S22x5 data set and subsets.
Each density functional interaction energy Ed

int is calculated
as the difference between the total electronic energy of the
interacting complex Ed

0 and those of its two isolated molecular
constituents Ed

1 and Ed
2 :

Ed
int = Ed

0 − Ed
1 − Ed

2 . (A5)

TABLE XI. Corrections Ed
int − εd

int to the S22x5 interaction
energies in Ref. 52 computed from Eq. (A4). Reported statistics are
most negative (min), most positive (max), mean signed (msc), and
mean absolute (mac) interaction energy correction at each distance.
Furthermore, the total mean signed (MSC) and total mean absolute
(MAC) energy corrections over all 110 energies are reported in the
bottom rows. All energies in meV.

Relative interaction distance d

Complex E1.0
int /ε

1.0
int 0.9 1.0 1.2 1.5 2.0

1 −1.0% −1.0 −1.3 −1.0 −0.5 −0.1
2 −1.0% −1.9 −2.2 −1.8 −1.0 −0.4
3 −1.1% −8.0 −9.1 −7.6 −4.5 −1.8
4 −1.1% −6.5 −7.3 −6.1 −3.7 −1.6
5 −1.1% −9.2 −10.0 −8.4 −5.1 −2.2
6 −1.8% −11.8 −13.0 −10.8 −6.4 −2.5
7 −2.3% −14.7 −16.0 −13.0 −7.3 −2.5
8 0.0% 0.0 0.0 0.0 0.0 0.0
9 −1.2% −0.4 −0.8 −0.4 −0.1 0.0
10 3.2% 1.5 2.1 1.6 0.7 0.2
11 6.8% 0.4 8.3 5.7 1.6 0.2
12 6.9% 5.1 13.5 9.0 2.9 0.6
13 1.3% 3.8 5.6 3.6 1.4 0.4
14 11.4% 10.5 25.6 17.8 5.3 0.5
15 4.6% 15.9 24.3 16.4 6.5 1.8
16 −1.4% −0.7 −0.9 −0.7 −0.3 −0.1
17 −0.6% −0.8 −0.9 −0.7 −0.4 −0.1
18 1.3% 1.1 1.3 1.0 0.5 0.2
19 −0.7% −1.2 −1.3 −1.1 −0.6 −0.2
20 3.2% 3.1 3.9 3.1 1.6 0.5
21 2.1% 4.5 5.2 4.4 2.5 1.0
22 −0.6% −1.6 −1.8 −1.5 −0.9 −0.4

min −2.3% −14.7 −16.0 −13.0 −7.3 −2.5
max 11.4% 15.9 25.6 17.8 6.5 1.8
msc 1.2% −0.5 1.1 0.4 −0.4 −0.3
mac 2.5% 4.7 7.0 5.3 2.4 0.8

MSC 0.1
MAC 4.0

TABLE XII. Experimental solid-state properties of 27 cubic bulk
solids. The ZPAE exclusive Sol27LC 0-K lattice constants a0 (Å) are
adapted from Ref. 98. 0-K Sol27Ec cohesive energies Ec (eV/atom)
from Ref. 125 are corrected for ZPVE contributions. Strukturbericht
symbols are indicated in parentheses for each solid. A1: fcc, A2: bcc,
A3: hcp, A4: diamond.

Sol27LC Sol27Ec

Solid a0 Ec ZPVEa

Li (A2) 3.451 1.66 0.033
Na (A2) 4.209 1.13 0.015
K (A2) 5.212 0.94 0.009
Rb (A2) 5.577 0.86 0.005
Ca (A1) 5.556 1.86 0.022
Sr (A1) 6.040 1.73 0.014
Ba (A2) 5.002 1.91 0.011
V (A2) 3.024 5.35 0.037
Nb (A2) 3.294 7.60 0.027
Ta (A2) 3.299 8.12 0.023
Mo (A2) 3.141 6.86 0.044
W (A2) 3.160 8.94 0.039
Fe (A2) 2.853 4.33 0.046
Rh (A1) 3.793 5.80 0.047
Ir (A1) 3.831 6.98 0.041
Ni (A1) 3.508 4.48 0.044
Pd (A1) 3.876 3.92 0.027
Pt (A1) 3.913 5.86 0.023
Cu (A1) 3.596 3.52 0.033
Ag (A1) 4.062 2.97 0.022
Au (A1) 4.062 3.83 0.016
Pb (A1) 4.912 2.04 0.010
Al (A1) 4.019 3.43 0.041
C (A4) 3.544 7.59 0.216
Si (A4) 5.415 4.69 0.063
Ge (A4) 5.639 3.89 0.036
Sn (A4) 6.474 3.16 0.019

aZPVE corrections are calculated according to Eq. (A6) using Debye
temperatures from Ref. 125.

Computational accuracy is enhanced by keeping all atoms
in the molecular fragments in the same positions in the box
as those atoms have when evaluating the total energy of the
complex.

5. Sol27LC and Sol27Ec

It was recently shown78 that removal of thermal and
zero-point contributions to experimentally determined lattice
constants and bulk moduli may be important when benchmark-
ing density functional methods. Experimental zero Kelvin
lattice constants and cohesive energies (Ec) contain zero-point
vibrational contributions, leading to zero-point anharmonic
expansion (ZPAE) of the lattice and zero-point vibrational
energy (ZPVE) contributions to Ec. As discussed in Ref. 138,
an estimate of the ZPVE may be obtained from the Debye
temperature �D of the solid according to

ZPVE = − 9
8kB�D. (A6)

The vibrational contribution is subtracted from the cohesive
energy, leading to increased stability of the crystal towards
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atomization. The same reference derived a semiempirical
estimate of the ZPAE contribution to the volume of cubic
crystals. A recent study18 calculating the ZPAE from first
principles largely validates this approach. The Sol27LC and
Sol27Ec sets of zero Kelvin lattice constants and cohesive
energies of 27 fcc, bcc, and diamond structured bulk solids are
appropriately corrected for zero-point phonon effects. Details
are given in Table XII.

Density functional computation of total energies of the
extended bulk solids is done using a 16×16×16 k-point
mesh for sampling reciprocal space of the periodic lattice and
0.1 eV Fermi smearing of the electron occupation numbers.
Calculations for bulk Fe, Ni, and Co are spin polarized.
The cohesive energy for a given crystal lattice constant a is
calculated from

Ec = EA − EB, (A7)

where EA is the total energy of the free atom and EB is the
bulk total energy per atom. By this definition, the equilibrium
cohesive energy of a stable solid is a positive quantity.
Equilibrium lattice constants of cubic crystals a0 are deter-
mined from fitting the stabilized jellium equation of state
(SJEOS, Ref. 138) to cohesive energies sampled in five points
in a small interval around the maximum of the Ec(a) curve.

6. CE17 and CE27

The CE17 and CE27 data are derived from temperature-
programed desorption experiments or from microcalorimetry,
most often at low coverage. The 27 chemisorption energies
have been critically chosen from literature with emphasis on
reliability as well as covering a reasonably wide range of
substrates and adsorbates. All data are listed in Table XIII
along with details regarding adsorption mode, adsorption site,
and references.

Most of the CE27 surface reactions are molecular ad-
sorption processes at 0.25 ML coverage. In that case, the
chemisorption energy is computed according to

�E = EAM − EM − xEA, (A8)

where EAM is the total electronic energy of the adsorbate A on
metal surface M , and EA and EM total energies of the isolated
adsorbate and metal surface, respectively. The constant x

equals 1 for molecular adsorption and N2 dissociation on
Fe(100), while x = 1

2 for the dissociative H2 chemisorption
reactions. In the case of NO dissociation on Ni(100) at
0.25 ML coverage, the chemisorption energy is

�E = EAM + EBM − 2EM − EAB, (A9)

where AB is the NO molecule.
With these definitions of chemisorption energies, we

consider extended surface slab models with 2×2 atoms in
each layer and five layers in total. The slab models are
periodic in the surface plane and a vacuum width of 20 Å
separates periodically repeated slabs perpendicularly to the
surface planes. Calculations involving Fe, Ni, and Co are
spin polarized. Well-converged chemisorption energies are
obtained using a 10 × 10 × 1 k-point mesh and a real-space
grid spacing around 0.16 Å. The self-consistently determined
lattice constant of the slab solid obviously determines the xy

TABLE XIII. The 27 experimental reaction energies �E for
chemisorption on late transition-metal surfaces constituting the CE27
data set. The somewhat smaller CE17 data set is a subset of CE27.
Reactions in CE17 are marked with a “�”. All chemisorption energies
are in eV per adsorbate at a surface coverage of 0.25 ML, except
where otherwise noted. The adsorption mode is indicated by “m”
(molecular) or “d” (dissociative), along with the adsorption site.
Chemisorption energies for O have been evaluated as 1

2 {�E(O2) −
Eb(O2)} with Eb(O2) = 118 kcal/mol (Ref. 126) for the dioxygen
bond energy.

Mode Site �E Reference(s)

CO/Ni(111) � m fcc −1.28 122
CO/Ni(100) m hollow −1.26 127
CO/Rh(111) � m top −1.45 122
CO/Pd(111) � m fcc −1.48 122
CO/Pd(100) � m bridge −1.60 127–130
CO/Pt(111) � m top −1.37 122
CO/Ir(111) � m top −1.58 122
CO/Cu(111) � m top −0.50 122
CO/Co(0001) � m top −1.20 122
CO/Ru(0001) � m top −1.49 122
O/Ni(111) � m fcc −4.95 130
O/Ni(100) � m hollow −5.23 130
O/Rh(100) � m hollow −4.41 130
O/Pt(111) � m fcc −3.67 131
NO/Ni(100) � d hollow −3.99 127
NO/Pd(111) � m fcc −1.86 132
NO/Pd(100) � m hollow −1.61 133
NO/Pt(111) m fcc −1.45 131
N2/Fe(100)b d hollow −2.3 134
H2/Pt(111) � d fcc −0.41 135
H2/Ni(111) d fcc −0.98 135
H2/Ni(100) d hollow −0.93 135
H2/Rh(111) d fcc −0.81 135
H2/Pd(111) d fcc −0.91 135
H2/Ir(111) d fcc −0.55 135
H2/Co(0001) d fcc −0.69 135
H2/Ru(0001)c d fcc −1.04 135

a�E is the average of −1.58, −1.67, −1.69, and −1.45 eV.
bThe coverage of atomic nitrogen is 0.5 ML.
c�E is the average of −0.83 and −1.24 eV, both from Ref. 135.

dimensions of the slab simulation cell. Since the number of
real-space grid points employed in each direction is discrete,
a grid spacing of exactly 0.16 Å in the x and y directions is
rarely possible for slab calculations. Instead, it may be slightly
smaller or larger, which should not affect the computational
accuracy significantly. During structure relaxations, the bottom
two layers of the 2 × 2 × 5 slab models are fixed in the bulk
structure as found from bulk calculations.

7. Graphene adsorption on Ni(111)

Adsorption of graphene on Ni(111) was modeled using a
1 × 1 × 5 surface slab, a Ni(fcc) lattice constant of 3.524 Å as
determined with the PBE density functional, and 20 Å vacuum
width. The top three atomic layers were fully relaxed with PBE
using a grid spacing of 0.15 Å and a (20 × 20 × 1) k-point
mesh. Carbon atoms were placed in atop and fcc adsorption
sites, respectively.

235149-20



DENSITY FUNCTIONALS FOR SURFACE SCIENCE: . . . PHYSICAL REVIEW B 85, 235149 (2012)

*jesswe@fysik.dtu.dk
1W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
2W. Kohn, A. D. Becke, and R. G. Parr, J. Phys. Chem. 100, 12974
(1996).

3W. Kohn, Rev. Mod. Phys. 71, 1253 (1999).
4E. A. Carter, Science 321, 800 (2008).
5B. Hammer and J. K. Nørskov, in Impact of Surface Science on
Catalysis, Advances in Catalysis, Vol. 45, edited by B. C. Gates
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