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We show that a “one-shot” GW approach (denoted G0W0) can accurately calculate the photoemission/inverse-
photoemission properties of Cu2O. As the results of any perturbative method are heavily dependent on the
reference state, the appropriate reference Hamiltonian for G0W0 is identified by evaluating the performance
of density-functional-theory-based input wave functions and eigenvalues generated with selected exchange-
correlation functionals. It is shown that a reference Hamiltonian employing the hybrid Heyd-Scuseria-Ernzerhof
functional used in conjunction with G0W0 produces an accurate photoemission/inverse-photoemission band gap
and photoemission spectrum whose character is then further analyzed. The physical origin of why a hybrid
functional is required for the zeroth-order wave function is discussed, giving insight into the unique electronic
structure of Cu2O in comparison to other transition-metal oxides.

DOI: 10.1103/PhysRevB.85.235142 PACS number(s): 71.15.Qe, 82.45.Vp, 79.60.−i, 77.22.Ch

I. INTRODUCTION

Cu2O is a p-type semiconductor that is attractive for use
in photovoltaics and photocatalysis due to its abundance,
nontoxicity, and low-cost production processing. Its band
gap of 2.17 eV falls within a spectral range near the solar
maximum,1 rendering it an excellent absorber of sunlight,
and the estimated position of its conduction band provides
a large overpotential for reduction reactions involved in water
splitting and carbon dioxide reduction.2 Its catalytic potential
is also evident from the widespread use of copper-based
and copper-oxide-based catalysts in commercial chemical
reactions, including the Cu/ZnO catalyst used for methanol
production from CO and H2,3 and the CuO/ZrO2 catalyst used
for low-temperature CO oxidation.4 Experimentally, Cu2O has
been effective in photocatalytic water splitting, albeit with low
efficiencies,5,6 and it shows promise to be functional in CO2

reduction.7,8 Cu2O has also been used as the p-type material
in heterojunction solar cells, but with efficiencies of less than
2%. Its poor performance highlights the need to optimize its
properties for solar energy conversion through alloying or
doping with other elements.

Directed materials design can be facilitated through
quantum-mechanical studies, using well-founded theoretical
approaches to calculate the relevant properties of Cu2O-
based materials and to evaluate how they may perform in
photocatalysis. Two important measures of functionality are
efficient absorption of sunlight and band-edge energies placed
favorably for electrochemistry. A fundamental step in the
verification of both of these properties is the assessment of the
photoemission/inverse-photoemission spectrum (PES/IPES).9

Accurate theoretical calculations of the PES/IPES are also
significant as the first step in a multistep process to calculate
the optical absorption spectrum (OAS). The OAS of Cu2O
has been of considerable interest for decades as the prototype
of Wannier excitons,10 and while the spectrum has been well-
studied experimentally,1,11 theoretical approaches are required
for full characterization of all optical transitions. Finding an

accurate means of calculating the PES/IPES is thus crucial not
only for photocatalytic design applications, but it also opens
the door for detailed study of the OAS.

The PES/IPES can be derived from many-body perturbative
Green’s function methods, which are used to calculate elec-
tronic quasiparticle excitations. In the Hamiltonians of these
methods, the exchange-correlation self-energy accounts for all
nonclassical electronic interactions, but its exact expression as
formulated in Hedin’s equations is intractable even for simple
systems.12 The standard means for evaluating the self-energy
is the GW approximation,12 where the common practice is to
use a “one-shot” method (denoted G0W0) that is a first-order
correction to a reference single-particle Hamiltonian, H0.
Other schemes for GW calculations with varying levels of
self-consistency have also been developed.13–17

One of the most successful self-consistent approaches is
the quasiparticle self-consistent GW (QSGW) approxima-
tion, in which a static, Hermitian, one-body Hamiltonian is
constructed to minimize a measure of difference between its
effective potential and the self-energy.16,17 In each iteration
of QSGW, a GW calculation is performed and the resulting
self-energy is recast as a Hermitian Hamiltonian that is used
for the next iteration. Essentially, this formulation constructs
a reference Hamiltonian that reduces the perturbation in a
final one-shot G0W0 calculation. Although QSGW has been
successful in improving the band structure for many materials
where standard G0W0 methods have failed, it has a tendency
to overestimate band gaps. This may result from neglecting
the vertex function when applying self-consistency, which,
if retained, would incorporate higher-order electron-electron
interactions in every iteration. A true self-consistent solution
of Hedin’s equations would include the vertex function in
every iteration—in the expression for the self-energy, where
within the GW approximation the vertex function is fixed
(to δ functions), and in the screened Coulomb interaction
W , which is approximated within the random phase ap-
proximation (RPA).18 By neglecting the vertex function, the
implementation of self-consistent GW becomes conceptually
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inconsistent with the true self-consistent solution to Hedin’s
equations. Unless vertex corrections are incorporated within
each iteration (which have been difficult to account for in
the construction of both W and the self-energy19), it is
inconclusive whether self-consistency is more reliable than
a zeroth-order GW calculation from a good Kohn-Sham
reference. Additionally, there is no mathematical proof that
the QSGW approach is truly independent of the initial
Hamiltonian, and the question remains if its solution is truly
unique.

Bruneval et al. applied the GW approximation with varying
levels of self-consistency to calculate quasiparticle excitations
of Cu2O.20 They reported that the standard G0W0 approach
failed and predicted a gap far below the experimental value,
and they showed that the QSGW approach calculated a
more accurate gap. However, due to the reasons described
previously, it may be more conceptually sound to improve
the choice of reference Hamiltonian through Kohn-Sham
methods and then use the standard one-shot G0W0 approach,
as opposed to improving the reference Hamiltonian through
the constrained approximation to self-consistency in QSGW.
Additionally, the dependence on QSGW is problematic due to
the prohibitive expense introduced by self-consistency, which
can be a hindrance for further computational evaluation of
Cu2O-based photocatalytic materials. For these reasons, we
aim to develop an alternative approach within the framework
of the standard G0W0 calculation, seeking to establish an
accurate method that is both well-justified and computationally
tractable.

The success of the G0W0 method depends heavily on the
accuracy of the reference single-particle Hamiltonian, H0. In
the one-shot approach, G0 and W0 are calculated from the
reference eigenvalues and eigenfunctions, and a single GW

iteration cannot be expected to correct an eigenvalue gap that
is not of the same order of the experimental gap. The inaccurate
G0W0 calculation reported by Bruneval et al. used Kohn-Sham
density functional theory (DFT) as the reference Hamiltonian,
with an exchange-correlation (XC) functional employing the
local density approximation (LDA).20 The failure of G0W0

there was likely due to the inaccuracy of the LDA functional,
because local treatment of electron XC does not capture
the physics of strongly correlated electrons, inadequately
describing the strong electron repulsion of the localized d

electrons in first-row, mid-to-late transition-metal oxides.21

The failure of the LDA+G0W0 approach is an indication that
the large errors of the reference Hamiltonian could not be
corrected perturbatively. To enable an accurate G0W0 method,
it is therefore necessary to first determine an H0 with an
XC functional that will appropriately treat the ground-state
properties of the material under study. Bruneval et al. chose
to construct a more accurate H0 through the QSGW method,
which showed significant improvements over the LDA+G0W0

results. However, due to the previously explained rationale,
we choose to employ DFT-based methods for the H0. This
strategy has been used successfully in modeling the PES/IPES
of hematite.22

One approach to correcting the failure of local and semilocal
XC functionals is the DFT+U method,23,24 which introduces
a parametrized Hartree-Fock (HF)-like potential to describe
on-site interactions of highly localized electrons, such as d or f

electrons. In many systems, DFT+U produces a better mean-
field description than DFT with either the generalized gradient
approximation (GGA) or LDA XC functionals, and combined
DFT+U+G0W0 approaches have shown improvement in
the predicted band structures in comparison with standard
DFT+G0W0 methods.22,25,26

For systems in which the on-site approximate treatment
of exact exchange in DFT+U does not accurately describe
all electron-electron interactions, it may be necessary to
incorporate exact exchange from the HF formalism into the XC
functional applied to all electrons, through the use of hybrid
functionals. The Perdew-Burke-Ernzerhof hybrid (PBE0)27

and the Heyd-Scuseria-Erzerhof (HSE) functionals28–31 are ex-
amples of hybrid functionals that accurately predict a number
of ground-state properties of strongly correlated systems, and
thus may be appropriate for use in the reference Hamiltonian of
a G0W0 calculation. Both replace a portion of PBE GGA32,33

exchange with HF exchange, leaving correlation to be fully
treated by the PBE GGA functional. HSE contains a nonlocal
screened-exchange portion of its functional that functions
similarly to the nonlocal and screened self-energy operator in
the GW approximation. Therefore, the HSE functional itself
is a reasonable zeroth-order approximation of the self-energy,
and its use is a step toward a level of self-consistency without
employing a fully self-consistent GW method. A combined
HSE+G0W0 approach has been used to accurately calculate
quasiparticle gaps and spectra for a number of transition-metal
oxides,34 but not for Cu2O.

The paper is organized as follows. In Sec. II, we describe the
computational details of all first-principles methods employed
here. Section III presents and discusses numerical results,
beginning by analyzing the accuracy of DFT, DFT+U , and
DFT with hybrid functionals to treat Cu2O. In addition to
determining an accurate H0 for G0W0, this also establishes
a foundation for related ground-state studies of Cu2O (i.e.,
surface chemistry related to reaction catalysis). The section
concludes with an evaluation of a number of functionals as
reference Hamiltonians in subsequent G0W0 calculations, with
the resulting quasiparticle spectra analyzed in detail. Finally,
conclusions are summarized in Sec. IV.

II. COMPUTATIONAL DETAILS

DFT, DFT+U , and GW calculations were done using the
Vienna Ab-initio Simulation Package (VASP version 5.2.2),35

using Blöchl’s all-electron, frozen-core projector augmented
wave (PAW) method to represent the nuclei and core electrons,
and leaving 11 valence electrons of Cu (or 17 electrons when
studying the effect of including the semicore Cu 3p electrons)
and six valence electrons of O to be treated self-consistently.
All PAW potentials were obtained from the VASP package;
the standard PAW potential was used for O. A cubic unit
cell containing six atoms (two formula units of Cu2O) was
used, and the cell’s equilibrium volume and bulk modulus
were found with each of the DFT-based theories by fitting a
computed energy-volume curve to the Murnaghan equation
of state.36 The cell shape and atom positions were fixed to the
cuprite structure (space group Pn3m, No. 224). A �-point-
centered k-point mesh of 6×6×6 was used (corresponding
to 20 irreducible k points), with a plane-wave kinetic energy
cutoff of 700 eV, both of which converged the total energy to
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within 1 meV/atom. Brillouin zone integration employed the
tetrahedron method with Blöchl corrections.37 The exchange-
correlation functionals used in both DFT and DFT+U cal-
culations were the LDA with the Ceperley-Alder38 exchange-
correlation as parametrized by Perdew and Zunger,39 and
PBE GGA. The formalism of Dudarev et al.40 was used for
DFT+U , testing a range of U–J values from 2 to 8 eV for
both LDA+U and PBE+U to determine the optimal value
that delivered the most accurate ground-state properties. The
hybrid functionals used here were PBE0 and HSE, where
HSE was used with a screening parameter of 0.2 Å−1 in
conformance with the value recommended by Krukau et al.41

The HF kernel for hybrid functionals is evaluated on a subgrid
of k points that is denoted the q-point mesh, which was
down-sampled from the full �-point-centered 6×6×6 grid to
2×2×2 to decrease the high computational cost of the full HF
kernel calculation. Evaluation of errors due to downsampling
is discussed in the next section.

The calculation of the dielectric response function for GW

used a reduced �-point-centered q-point mesh of 3×3×3.
The converged number of bands was 64 when subsuming the
semicore electrons into the frozen core of the PAW potential,
whereas 112 bands were used when treating the semicore
electrons self-consistently. A total of 64 frequency points
were used to evaluate the dielectric response function. These
parameters resulted in quasiparticle gaps that were converged
to within 0.1 eV.

III. RESULTS AND DISCUSSION

A. DFT, DFT+U , and hybrid functional calculations
of ground-state properties

To evaluate the accuracy of each functional, a set of
observables was calculated by quantum calculations, and the
obtained values were compared to experiment. The first two

observables are the equilibrium lattice constant and the bulk
modulus. Two additional observables considered were the
photoemission spectrum peaks and the PE/IPE band gap, both
of which characterize electronic properties of the system. Pho-
toemission spectra of Cu2O exhibit six different peaks—the
oxygen-related features A and B, and the Cu-related features
C–F .42 These peak energies are used for comparison to peaks
in densities of states (DOSs) calculated with each functional
at the material’s corresponding equilibrium geometry. While it
is possible to compare the DOS conduction band peaks to the
three IPES peaks identified by Ghijsen et al.,43 calculated DOS
conduction band peak energies will be significantly shifted as
a result of any error in the band-gap energy (whose value
is extremely sensitive to the XC functional used), so this
comparison is not a strong metric for evaluation of accuracy.
Instead, we use the IPE DOS only to determine the IPE
onset (i.e., the conduction band edge), which then defines
the PE/IPE gap. Although the PE/IPE band gap cannot be
predicted precisely using the eigenvalue gap obtained from a
ground-state DFT calculation, it can still be expected to be
of the same order, and must be so for the first-order G0W0

correction to be effective. This eigenvalue gap comparison
is made here as another evaluation of the accuracy of the
electronic structure. These four calculated observables for the
LDA, LDA+U , PBE, PBE+U , PBE0, and HSE functionals
are compared with experimental values in Table I.

The accuracy of each functional can be evaluated from
the results presented in Table I. The LDA DOS peaks here
differ slightly from those in Ref. 20, most likely due to their
use of the experimental lattice parameter for the geometries,
whereas in this study the structure was determined from first
principles so that the entire calculation is internally consistent
and independent of experimental input. Additional sources
of variation are their explicit treatment of the Cu 3s 3p

TABLE I. Calculated equilibrium lattice constant, bulk modulus, DOS peaks, and eigenvalue gap using DFT, DFT+U , and DFT with
hybrid XC functionals. For DFT+U , both the LDA and PBE functionals were used, with a range of U–J values. Results are compared to
measured values.

Equilibrium Bulk Eigenvalue
U–J value lattice constant modulus DOS peaks gap

Functional (eV) (Å) (GPa) A B C D E F (eV)

LDA N/A 4.1814 145 − 7.75 − 6.0 − 2.5 − 1.95 − 1.4 − 0.6 0.68
LDA+U 2 4.1657 143 − 7.7 − 5.9 − 2.8 − 2.25 − 1.5 − 0.6 0.81

4 4.1475 141 − 7.55 − 5.75 − 3.1 − 2.5 − 1.6 − 0.7 0.92
6 4.1258 137 − 7.6 − 5.7 − 3.5 − 2.8 − 1.7 − 0.7 1.04
8 4.1000 135 − 7.75 − 5.75 − 3.8 − 3.2 − 1.75 − 0.75 1.15

PBE N/A 4.3123 109 − 6.5 − 5.0 − 2.0 − 1.5 − 1.1 − 0.5 0.43
PBE+U 2 4.3013 106 − 6.8 − 5.2 − 2.45 − 1.8 − 1.3 − 0.6 0.54

4 4.2887 103 − 6.75 − 5.0 − 2.75 − 2.4 − 1.45 − 0.6 0.65
6 4.2738 100 − 6.6 − 4.9 − 3.0 − 2.5 − 1.5 − 0.6 0.74
8 4.2557 96 − 6.7 − 5.0 − 3.4 − 2.8 − 1.5 − 0.6 0.84

PBE0 N/A 4.2851 114 − 7.4 − 5.75 − 2.9 − 2.5 − 1.7 − 0.5 2.84
HSE N/A 4.2887 114 − 7.45 − 5.8 − 3.0 − 2.45 − 1.9 − 0.7 2.04
Experimental N/A 4.2696a 112b − 7.3c − 6.0c − 3.5c − 3.0c − 2.0c − 1.0c 2.17d

aReference 49.
bReference 50.
cReference 42.
dPE/IPE gap from Ref. 1.
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semicore electrons, whereas here the Cu semicore electrons
were subsumed in the PAW potential, as well as their shifting
of removal energies using peak D as a reference, whereas
here electron removal energies were all referenced to the
valence band maximum in each calculation. It is evident
that the LDA and LDA+U fail in calculating the structural
properties, both underestimating the lattice constant by 2–4%
and overestimating the bulk modulus by 20–30%, and also
calculating eigenvalue gaps that are 45–78% lower than the
observed PE/IPE gap. These failures indicate that the LDA
family of XC functionals is inappropriate for any ground-state
DFT calculations of Cu2O material properties, as well as for
the reference Hamiltonian for G0W0.

Our results using the PBE functional agree well with
previously published predictions,44 and show some improve-
ment over the LDA results. PBE calculates a lattice constant
just 1% larger than the experimental value and reproduces
well the measured bulk modulus, although it more severely
underestimates (by 80%) the eigenvalue gap than the LDA
functional does. The PBE+U functional improves upon these
results, opening up the gap further to a maximum of nearly
40% of the true value, with greater accuracy in predicting the
equilibrium geometry, but at the cost of a 10%-less-accurate
bulk modulus. Additionally, the PBE functionals inaccurately
produce a shift in the oxygen-related features A and B of nearly
1 eV, relative to both LDA and experimental values. Although
none of the PBE+U results are wholly satisfying, one can
identify an optimal value for U–J in PBE+U at 6 eV, based
solely on its accuracy in predicting the equilibrium lattice
constant. (This value differs from previous DFT+U studies
of Cu2O, where a value of 7 eV was chosen based on a fit to
experimental data of CuO).45

The failure of the DFT+U method to open up the gap
sufficiently can be understood by studying the character of the
valence and conduction bands, shown in the projected DOS in
Fig. 1. The character of the valence band in Cu2O is not purely
Cu 3d, but also contains contributions from the O 2p and Cu
4s states, and the conduction band also has mixed Cu 3d, Cu
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FIG. 1. (Color online) Projected density of states obtained from a
PBE+U calculation, where the value of U–J is 6 eV. The inset shows
a more refined view of the character at the edge of the conduction
band.

4s, and O 3s character. DFT+U only applies the parametrized
potential to intra-atomic interactions of electrons of a specified
angular momentum, which were chosen here to be the Cu 3d

electrons, and it treats the interactions between these electrons
and the rest of the system via the standard DFT formalism. This
limited correction implies that other orbitals’ contributions to
the band edges will inhibit the ability of the added approximate
exchange to significantly shift the band-edge energies and open
up the gap. The failure of DFT+U here highlights the need
to apply a form of exact exchange not only to the selected
localized electrons, but also to the interactions of all electrons
in the system.

HF exchange was incorporated in DFT calculations by
using the hybrid functionals PBE0 and HSE. Down-sampling
of the HF q-point mesh resulted in an eigenvalue gap difference
of 0.17 eV for PBE0 and 0.09 eV for HSE, with a variability
in the lattice constant of <0.2%, relative to test calculations
conducted without down-sampling. The smaller impact of
down-sampling with the HSE functional is due to the screening
in the HSE functional, which allows for faster convergence
with respect to k-point mesh size.46 While this shows that the
HSE functional is more stable when down-sampling, the effect
of down-sampling on PBE0 results was still small enough to
justify its use to achieve lower computational expense. Hybrid
DFT results using a 2×2×2 q-point mesh for both HSE and
PBE0 functionals are also shown in Table I.

Both PBE0 and HSE perform equally well in calculating
the equilibrium lattice constant and the bulk modulus, and
their DOS peak positions are also very similar. However, the
HSE functional performs better in producing an eigenvalue
gap that is closer to the PE/IPE gap, indicating an advantage
of using HSE over PBE0. For this reason, in addition to its
greater stability when down-sampling the q-point mesh, the
HSE functional with a q-point mesh of 2×2×2 can be selected
as the optimal approach for ground-state calculations of Cu2O.

B. G0W0 calculations of the quasiparticle spectrum

The accuracy of the HSE functional signifies its potential as
a reference Hamiltonian in G0W0 calculations, but to compare
the effect of various reference Hamiltonians on the resulting
G0W0 observables, G0W0 was done with wave function and
eigenvalue input from four of the most promising ground-state
XC functionals, specifically PBE, PBE+U , PBE0, and HSE.
Additionally, because it was maintained in the earlier study
that the explicit inclusion of the semicore states in the
GW calculation was needed to predict the semiconductor
character of the material,20 the effect of inclusion of the
Cu 3p electrons was also evaluated. The results from each
combined H0+G0W0 approach are displayed in Table II,
where here only the quasiparticle peaks and gaps are compared
to the experimental values (the GW approach as implemented
in VASP cannot give total energies, making it incapable of
calculating observables such as geometries or bulk moduli).

It is evident from Table II that the most accurate H0 leads to
the most accurate G0W0 predictions. Because the HSE-derived
observables were already extremely accurate, the first-order
correction of G0W0 does not deviate strongly, resulting in
a quasiparticle gap that is closest to the experimental gap
and in electron energy removal energies that compare fairly
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TABLE II. Quasiparticle peaks and gaps (eV) as calculated with the G0W0 method, comparing the effects of selected DFT methods used
as the reference Hamiltonian. Values in parentheses were calculated treating Cu semicore electrons explicitly.

Quasiparticle peaks (electron removal energies)

Functional A B C D E F Quasiparticle gap (eV)

PBE −6.75 (−7.2) −5.5 (−5.8) −2.3 (−2.5) −1.8 (−1.8) −1.3 (−1.25) −0.55 (−0.6) 1.39 (1.54)
PBE+U −7.0 (−7.5) −5.55 (−6.0) −2.8 (−2.8) −2.3 (−2.1) −1.5 (−1.6) −0.6 (−0.6) 1.85 (1.76)
PBE0 −7.45 (−7.6) −6.0 (−6.1) −2.9 (−2.9) −2.4 (−2.2) −1.6 (−1.7) −0.6 (−0.6) 2.52 (2.36)
HSE −7.3 (−7.5) −5.9 (−6.1) −2.75 (−2.8) −2.1 (−2.2) −1.5 (−1.5) −0.5 (−0.6) 2.17 (2.02)
Experimental values −7.3a −6.0a −3.5a −3.0a −2.0a −1.0a 2.17b

aReference 42.
bPE/IPE gap from Ref. 1.

well to experimental values. For other H0 functionals, the
G0W0 perturbation does shift all observables somewhat closer
to the experimental values, but improvement in accuracy is
limited. For example, PBE0+G0W0 continues to overestimate
the quasiparticle gap, and PBE+G0W0 and PBE+U+G0W0

both continue to underestimate it. These results differ from
the conclusions obtained from the study of GW approaches
for hematite,22 where DFT+U+G0W0 was determined to
be the method of choice, highlighting the importance of
identifying a material-specific optimal H0. In particular, the
nature of the band edges determines whether DFT+U suffices:
DFT+U+G0W0 underestimates the quasiparticle gap for
Cu2O due to the mixed character at the band edges that
requires all electrons be treated with exact exchange, not just
the d electrons as in the DFT+U treatment. By contrast, the
conduction band in hematite is strongly dominated by Fe 3d

character, and so DFT+U+G0W0 is effective.
This hybridization within the valence band highlights

cuprous oxide’s unique character due to its unusual structure.
Cu2O consists of a cubic phase formed by two interpene-
trating crystobalite-like networks, differing from the many
more-closely-packed transition-metal oxides. The stability of
the cubic phase over a competing less dense crystobalite-
like structure is dependent on attractive Cu-Cu interactions
between the two sublattices.47 These interactions have been

suggested to be of a covalent nature (stemming from a charge
transfer from Cu 3d orbitals to 4s and 4p orbitals higher
in energy)47 or weakly metallic cation-cation bonding (from
partially occupied Cu 4s and 4p orbitals as a result of the
partial ionization of the Cu and O ions).48 It is this mixed
character in the valence and conduction bands that necessitates
the use of hybrid functionals, which apply exact exchange to
all electrons in the system, most significantly to those electrons
that are not Cu 3d that also contribute to the character of the
band edges. The suitability of HSE+G0W0 may be extended
to similar transition-metal oxides where hybridization occurs
in the band edges.

It was reported previously that subsuming the semicore
electrons into the PAW potential led to a metallic description
for Cu2O using GW with an LDA H0,20 but we do not see this
behavior here. Inclusion of the Cu semicore states is observed
to most strongly affect the electron removal energies of the O
2p electrons for PBE and PBE+U (peaks A and B), but the
effect on the hybrid functional quasiparticle energies and on all
quasiparticle gaps shows differences smaller than 0.2 eV. Thus
in the less accurate levels of theory, the semicore electrons have
a strong impact on the accuracy of the results; however, when
the functional used is already sufficiently accurate, the impact
is minimal, and the computational expense of their explicit
treatment can be avoided.
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FIG. 2. (Color online) Quasiparticle spectrum obtained from the HSE+G0W0 calculation. Panel (a) shows the total density of states, with
the features corresponding to experimentally observed photoemission peaks labeled A–F . Panel (b) shows the local density of states, displaying
the individual contributions from the Cu 3d , 4s, and O 2p electrons.
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TABLE III. The ion clamped static macroscopic dielectric
constant, ε∞, as calculated with selected DFT methods used as
the reference Hamiltonian within the G0W0 method. Values in
parentheses were calculated treating Cu semicore electrons explicitly.

Ion clamped static macroscopic
Functional dielectric constant, ε∞

PBE 8.58 (7.99)
PBE+U 6.15 (5.90)
PBE0 3.70 (3.76)
HSE 4.84 (4.85)
Experiment 6.46a

aReference 51.

Discrepancies between the calculated quasiparticle peaks
and experimental removal energies in Table II may arise
from our use of a unit cell representing the bulk material
in the GW calculations, which does not take into account
the effects of surface states on the PES/IPES. Additionally,
our values for the quasiparticle peaks are referenced to the
valence band maximum, so any error in calculating the
valence band maximum will shift all peaks erroneously.
This effect can be seen most strongly in the quasiparticle
peaks from PBE+G0W0, where the underestimation of the
removal energies of all electrons is most likely due to an
underestimation of the direct gap, leading to a more positive
valence band maximum, shifting all peaks positively.

The HSE+G0W0 total and projected DOS plots are shown
in Fig. 2. These projected DOSs illustrate the character of
the states which contribute to the electron removal energies
observed via photoemission. It is clear that the O 2p electrons
are the main contributor to the states in the lower-energy region
ranging from −8 to −5 eV, whereas the higher-energy region
ranging from −4 to 0 eV is mainly of Cu 3d character, with
some hybridization with O 2p states and contributions from
Cu 4s states at the edge of the valence band.

As an additional test of the choice of reference Hamiltonian
within the G0W0 method, the ion clamped static macroscopic
dielectric constant ε∞ was computed within the RPA, and
compared to the measured value in Table III. PBE+U shows
the greatest accuracy in calculating ε∞, while its value is under-
estimated by the hybrid functionals and overestimated by PBE.
Because PBE overdelocalizes electrons in strongly correlated
materials, the too high dielectric constant (too large screening)
is to be expected. It is evident that the hybrid functionals
produce consistent values independent of explicit inclusion

of the semicore electrons, whereas the value for ε∞ is more
strongly dependent on the number of electrons in the calcu-
lation when using PBE and PBE+U . This parallels the trend
observed in the dependence of the electron removal energies
on the inclusion of the semicore electrons, further illustrating
the stability of the hybrid functionals. The underestimation of
ε∞ by HSE may simply reflect shortcomings of the RPA in
calculating screening, but the impact of the error is minimized
by the improved accuracy of HSE in generating input wave
functions and eigenvalues.

The HSE+G0W0 approach is therefore an accurate means
of predicting PE/IPE gaps and PE spectra for cuprous oxide.
This also serves as the starting point for determination of
the OAS, which can be accomplished through the use of
methods such as the Bethe-Salpeter equations, which account
for the electron-hole interactions in neutral excitations. Such
calculations are beyond the scope of the present work and are
left for further study.

IV. CONCLUSIONS

To conclude, we have shown that a perturbative G0W0

approach is appropriate for understanding the electronic prop-
erties of Cu2O, as long as the correct reference Hamiltonian
is chosen. Through a thorough survey of common DFT-based
approaches and XC functionals, we have established the HSE
functional as the most accurate in reproducing a number
of experimental observables, confirming it as the proper
functional for studying ground-state properties of Cu2O. This
is because Cu2O is a mixed character insulator, necessitating a
portion of exact exchange treatment of all electrons to produce
the correct ground-state electronic structure. The combined
HSE+G0W0 approach has also been established here as a
proper tool to reproduce and analyze PE/IPE data, as well as
to serve as the starting point for studies of the OAS. Finally,
we have shown that explicit treatment of semicore electrons is
unnecessary when using higher levels of theory such as hybrid
functionals in the reference Hamiltonian.
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F. Sanz, J. Phys. Chem. C 113, 1028 (2009).

3K. Klier, in Advances in Catalysis (Elsevier, Amsterdam, 1982),
pp. 243–313.

4R. Zhou, T. Yu, X. Jiang, F. Chen, and X. Zheng, Appl. Surf. Sci.
148, 263 (1999).

5M. Hara, T. Kondo, M. Komoda, S. Ikeda, J. N. Kondo, K. Domen,
M. Hara, K. Shinohara, and A. Tanaka, Chem. Commun. 357
(1998).

6P. E. de Jongh, D. Vanmaekelbergh, and J. J. Kelly, Chem. Commun.
1069 (1999).

235142-6

http://dx.doi.org/10.1016/0031-9163(66)90044-8
http://dx.doi.org/10.1021/jp805915a
http://dx.doi.org/10.1016/S0169-4332(98)00369-9
http://dx.doi.org/10.1016/S0169-4332(98)00369-9
http://dx.doi.org/10.1039/a707440i
http://dx.doi.org/10.1039/a707440i
http://dx.doi.org/10.1039/a901232j
http://dx.doi.org/10.1039/a901232j


IMPORTANCE OF REFERENCE HAMILTONIANS . . . PHYSICAL REVIEW B 85, 235142 (2012)

7J. Frese, J. Electrochem. Soc. 138, 3338 (1991).
8M. Le, M. Ren, Z. Zhang, P. T. Sprunger, R. L. Kurtz, and J. C.
Flake, J. Electrochem. Soc. 158, E45 (2011).

9M. C. Toroker, D. K. Kanan, N. Alidoust, L. Y. Isseroff, P. Liao,
and E. A. Carter, Phys. Chem. Chem. Phys. 13, 16644 (2011).

10V. T. Agekyan, Phys. Status Solidi A 43, 11 (1977).
11P. W. Baumeister, Phys. Rev. 121, 359 (1961).
12L. Hedin, Phys. Rev. 139, A796 (1965).
13S. V. Faleev, M. van Schilfgaarde, and T. Kotani, Phys. Rev. Lett.

93, 126406 (2004).
14M. S. Hybertsen and S. G. Louie, Phys. Rev. B 34, 5390 (1986).
15E. L. Shirley, Phys. Rev. B 54, 7758 (1996).
16M. van Schilfgaarde, T. Kotani, and S. Faleev, Phys. Rev. Lett. 96,

226402 (2006).
17T. Kotani, M. van Schilfgaarde, and S. V. Faleev, Phys. Rev. B 76,

165106 (2007).
18P. Romaniello, S. Guyot, and L. Reining, J. Chem. Phys. 131,

154111 (2009).
19M. Shishkin, M. Marsman, and G. Kresse, Phys. Rev. Lett. 99,

246403 (2007).
20F. Bruneval, N. Vast, L. Reining, M. Izquierdo, F. Sirotti, and

N. Barrett, Phys. Rev. Lett. 97, 267601 (2006).
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